JPS6188780A - Control constant setting method for speed controller - Google Patents

Control constant setting method for speed controller

Info

Publication number
JPS6188780A
JPS6188780A JP59209736A JP20973684A JPS6188780A JP S6188780 A JPS6188780 A JP S6188780A JP 59209736 A JP59209736 A JP 59209736A JP 20973684 A JP20973684 A JP 20973684A JP S6188780 A JPS6188780 A JP S6188780A
Authority
JP
Japan
Prior art keywords
torque
speed
calculated
rotational speed
calculator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59209736A
Other languages
Japanese (ja)
Other versions
JPH0410319B2 (en
Inventor
Noboru Fujimoto
登 藤本
Toshiaki Okuyama
俊昭 奥山
Takayuki Matsui
孝行 松井
Yuzuru Kubota
久保田 譲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59209736A priority Critical patent/JPS6188780A/en
Publication of JPS6188780A publication Critical patent/JPS6188780A/en
Publication of JPH0410319B2 publication Critical patent/JPH0410319B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To optimally set a control gain by integrating to be hardly affected by the influence of a noise, and presuming an accurate inertia moment considered for the influence of a load torque. CONSTITUTION:The inertial moments J of a rotor of an induction motor 3 and a load unit 4 coupled with the rotor are calculated by a calculator B. Then, a torque T is calculated by an i*m/theta converter 13, an integrator 14 for integrating a torque current command signal i*8, and a torque calculator 16, and a signal DELTAomegar proportional to the rotating speed is obtained by the change width detector 15 of the speed omegar. They are input to an inertia moment calculator 17, the inertial moment of the machine system is calculated, and the gain of a speed regulator ASR10 is regulated by the output.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、d動機の速度制御装置の制御定数設定方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a control constant setting method for a speed control device for a d-motor.

〔発明の背景〕[Background of the invention]

電動機の速度制御装置におけるオートチエンジングの方
法としては、例えば/i開昭58−192486号公報
に示されるものが知られている。この方法は回転速度の
2階微分と電機子電流の1階微分の比を演算して、負荷
トルクの影響を受けることなく、電動機磁束と機械系の
起動時定数(慣性モーメント)の比を求め、速度調節部
のゲインをダイレクトに自動設定する。しかし、この方
法においては微分演算が行われるため、回転速度及び電
機子電流の検出信号に含マ几るパルス状ノイズの影響を
受は易く、その結果、4様子電流にリプルが多く含まれ
るようになることが難点である。
As a method of auto-engineering in a speed control device for an electric motor, for example, the method disclosed in Japanese Patent Publication No. 58-192486 is known. This method calculates the ratio of the second derivative of the rotational speed and the first derivative of the armature current to find the ratio between the motor magnetic flux and the starting time constant (moment of inertia) of the mechanical system without being affected by the load torque. , directly and automatically sets the gain of the speed adjustment section. However, since differential calculation is performed in this method, it is easily affected by pulse-like noise contained in the rotational speed and armature current detection signals, and as a result, the four-state current may contain many ripples. The difficulty is to become

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電動機の速度制御装置における速度調
節の制御定数設定を高精度にかつ自動的に行う方法を提
供することにある。
An object of the present invention is to provide a method for automatically and highly accurately setting control constants for speed adjustment in a speed control device for an electric motor.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、トルクに比例した信号の積分及び回転
速度の変化幅−基づいて機械系の慣性モーメントを演算
し、これに基づいて速度調節部のゲインを実運転前に自
動設定するようにしたことにある。
The feature of the present invention is that the moment of inertia of the mechanical system is calculated based on the integral of the signal proportional to the torque and the variation width of the rotational speed, and the gain of the speed adjustment section is automatically set based on this before actual operation. It's what I did.

〔発明の実ll!li例〕[The fruits of invention! li example]

以下、図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図1’iベクトル制御インバーメ装置で誘導電動機
を態動する回路構成図である。1及び3はトランジスタ
等で構成されるインバータとそのドライバ回路、3は誘
導電動機、4は負荷装置、5は回転速度検出器である。
FIG. 1 is a circuit configuration diagram for operating an induction motor in a vector control inverter. 1 and 3 are inverters and their driver circuits composed of transistors, etc.; 3 is an induction motor; 4 is a load device; and 5 is a rotational speed detector.

A部はベクトル制御の一般的な回路で、わかシ易くする
為アナログ的にブロック図で示している。ここで6は底
流調節器(ACR)、7はベクトル演算器、8は周波数
指令信号ω−に比例した周波数の2相正弦波信号を出力
する発振器、9はi−をi、*及びT2 (2次時定a
)で割算してすべり周波数指令値ω−を求める演算器、
10は速度調節器(A部几)、11は回転速度指令器、
12は励磁電流指令器である。
Part A is a general circuit for vector control, and is shown in an analog block diagram for ease of understanding. Here, 6 is an undercurrent regulator (ACR), 7 is a vector calculator, 8 is an oscillator that outputs a two-phase sine wave signal with a frequency proportional to the frequency command signal ω-, and 9 is i-, *, and T2 ( Secondary time constant a
) to calculate the slip frequency command value ω−,
10 is a speed regulator (A part), 11 is a rotation speed command device,
12 is an excitation current command device.

B部は本発明における誘導電動機30回転子とこれに連
結する負荷装置4等の慣性モーメントJの演算部である
。これはi−一φ変換器13、トルク電流指令信号i−
を積分する積分器14、回転速度ω、の変化幅検出器1
5、トルク演算器16、及び・慣性モーメント演算器1
7より構成され、この出力によりA3R10のゲインを
調整する。
Section B is a section for calculating the moment of inertia J of the rotor of the induction motor 30 and the load device 4 connected thereto in the present invention. This is i-1φ converter 13, torque current command signal i-
an integrator 14 that integrates rotational speed ω, and a variation width detector 1 for the rotational speed ω.
5, torque calculator 16, and moment of inertia calculator 1
7, and the gain of A3R10 is adjusted by this output.

前述したベクトル制御の原理は、=h!I!llI機通
流の励磁成分とトルク発生成分の指令1g号i、串と五
−のそれぞれに応じて磁束とトルクを独立に制御するこ
とにより、誘導電動機を高速応答、高精度に速度制御す
るようにしたものであるが、その詳細は周知であるので
、ここでは詳しい動作説明は省略する。本発明は、この
ような速度1fflj御装置の速度調節器のゲインを自
動設定する方法に関する。
The principle of vector control mentioned above is =h! I! By independently controlling the magnetic flux and torque according to the excitation component and torque generation component commands 1g-i, skewer and 5- of the llI machine current, the speed of the induction motor can be controlled with high speed response and high accuracy. However, since the details are well known, a detailed explanation of the operation will be omitted here. The present invention relates to a method for automatically setting the gain of the speed regulator of such a speed 1fflj control device.

以下、本発明の内容について述べる。The content of the present invention will be described below.

速度制御系の制御ループは第2図のように表わせ、その
−巡伝達関数Gは次式となる。
The control loop of the speed control system is expressed as shown in FIG. 2, and its -cyclic transfer function G is given by the following equation.

・・・・・・・・・(lン ここで、磁束φは一定としても、慣性モーメントJが;
動機及び負荷装置の変更により変化すると制御系のゲイ
ンが変動し、最適応答の制御が行えない。そこで本発明
においては、Jを実運転前に正確に測定し、速度調節器
のゲインKlをJに比例して自動的に設定する。
・・・・・・・・・(In this case, even if the magnetic flux φ is constant, the moment of inertia J is;
When changes occur due to changes in the motive force and load equipment, the gain of the control system fluctuates, making it impossible to control the optimum response. Therefore, in the present invention, J is accurately measured before actual operation, and the gain Kl of the speed regulator is automatically set in proportion to J.

慣性モーメントJは、次式より求めることができる。The moment of inertia J can be calculated from the following equation.

すなわち、第1図の演算部f3Ki、”、i−及びω、
を入力し、第3図に示すように回転速度を一定レートで
加速する。このときφが一定(ベクトル1tlJ御にお
いてはトルク変化に対してφは一定に保たれる)の条件
に2いては、電動機発生トルクT、は、五−に比例しく
T、=にφi−)、また、電動機が無負荷に近い場合は
、発生トルクをそのまま加速トルクとみなせるので、加
速期間中の1、*の積分量(トルクの積分量に比例)を
、その積分期間における回転速度変化幅で割算すること
によりJが求められる。
That is, the calculation unit f3Ki,'', i- and ω, in FIG.
is input, and the rotational speed is accelerated at a constant rate as shown in FIG. At this time, under the condition that φ is constant (in vector 1tlJ control, φ is kept constant with respect to torque changes), the motor generated torque T, is proportional to T,=φi−) , In addition, when the electric motor is close to no load, the generated torque can be directly regarded as acceleration torque, so the integral amount of 1, * (proportional to the integral amount of torque) during the acceleration period can be calculated as the rotational speed change width during that integral period. J can be found by dividing by .

しかし実際においては、負荷トルクThを考慮する必要
がある。加速トルクは発生トルクT、からTLを差し引
いたものでありJは次式で与えられる。
However, in reality, it is necessary to consider the load torque Th. The acceleration torque is obtained by subtracting TL from the generated torque T, and J is given by the following equation.

但し、T、、 > 0 、  Δω7.〉Oここで、T
、は前述のようにi−よ)推定できるが、TLは回転速
度及び負荷条件に応じて変動する。そこで、次に回転速
度を一定レートで減速した場合においてJを求める。減
速トルクは発生トルクT、よりTt、を差し引いたもの
であるから前述と同様にしてJは次式で与えられる。
However, T, > 0, Δω7. 〉OHere, T
can be estimated (i-y) as described above, but TL varies depending on the rotational speed and load conditions. Therefore, next time, J is determined when the rotational speed is decelerated at a constant rate. Since the deceleration torque is obtained by subtracting Tt from the generated torque T, J is given by the following equation in the same manner as described above.

但し、Ted(o 、Δω、6<O ここで、加減速レート及び加減速の回転速度変化幅が同
一の場せを考えると、負荷トルクと回転速度の関係が一
定の条件におい、ては次式が取立する。
However, Ted(o , Δω, 6<O Here, considering the case where the acceleration/deceleration rate and the rotational speed change width of acceleration/deceleration are the same, under the condition that the relationship between the load torque and the rotational speed is constant, the following The ceremony will be collected.

Δω1.=Δωを櫨=Δω。Δω1. = Δω = Δω.

したがって、(3)、(4)式の和よりすなわち、Jは
加速時及び減速時におけるi−の積分量の差から、負荷
トルクの影響を受けることなく求めることができる。
Therefore, J can be determined from the sum of equations (3) and (4), that is, from the difference in the integral amount of i- during acceleration and deceleration, without being affected by the load torque.

以上述べたび算は、マイクロコンピユータラ用いた制#
装置であればソフト処理だけで対応することができる。
The multiplication described above is a system using a microcomputer.
If it is a device, it can be handled using only software processing.

第4図にその演算のフローチャートを示す。FIG. 4 shows a flowchart of the calculation.

先ずl♂を取り込み心動機の相互インダクタンスMより
φを演算する。次にω−を一定レートで変化させ加速を
行う。この間j、*をΔを秒毎に1秒間メモリに取シ込
み、そしてその1秒間における回転速度の初期値ω、l
と終期値ωr2をメモリに取込む。こnより1秒間にお
けるit“の累積加算(Jl、*Δt)と回転速度変化
幅Δω、を求めfT、、dt  を演算する。次にω、
を〜疋し−トで減速させ、前述と同様にして、/T−a
dt  を求める。
First, l♂ is taken in and φ is calculated from the mutual inductance M of the cardiac motor. Next, acceleration is performed by changing ω- at a constant rate. During this time, j, * is imported into the memory for 1 second every second, and the initial values ω, l of the rotational speed during that 1 second are
and the final value ωr2 are taken into memory. From this, find the cumulative addition (Jl, *Δt) of "it" for 1 second and the rotational speed change width Δω, and calculate fT, dt. Next, ω,
Decelerate with ~t, and do the same as above, /Ta
Find dt.

以上の結果を基に(6)式に基づきJを演算する。そし
て、このJに蔭づき速度調節器ASRのゲインに1を設
定する。
Based on the above results, J is calculated based on equation (6). Based on this J, the gain of the speed regulator ASR is set to 1.

以上、本発明によれば負荷トルクの影響を受けずく慣性
モーメントJの正確な値を求めることができ、速度制御
性能を向上できる効果がある。なお、前記実施例におい
ては、Jの演算において負荷トルクの影響を除くため電
動機を加減速したが、回転速度の変化幅が小さい範囲で
測定するならば、負荷トルクは回転速度によらずほぼ一
定とみなせるので、予め一定速度における負荷トルクの
種分量f  ’l’、、dt  を求めておき、次に尼
#機を加速して、その時のトルク積分ifT、dtより
、前述負荷トルク積分量を差し引いて石柱モーメントJ
を演算しても同様の結果が得られる。この関係は(3)
式から明らかである。このときのフローチャートを第5
図に示す。
As described above, according to the present invention, it is possible to obtain an accurate value of the moment of inertia J that is not affected by load torque, and there is an effect that speed control performance can be improved. In the above embodiment, the electric motor was accelerated or decelerated in order to eliminate the influence of load torque in calculating J, but if the measurement is performed in a range where the rotational speed changes within a small range, the load torque is almost constant regardless of the rotational speed. Therefore, calculate the load torque type f 'l', dt at a constant speed in advance, then accelerate the machine and calculate the aforementioned load torque integral from the torque integral ifT, dt at that time. Subtract stone pillar moment J
A similar result can be obtained by calculating . This relationship is (3)
It is clear from Eq. The flowchart at this time is shown in the fifth section.
As shown in the figure.

以上述べた実施例は周知のベクトル制御装置に本発明を
適用した例であるが、他の制御装置であってもトルク及
び回転速度に比例した信号が得られる揚台は同様に本発
明を適用できる。これらの信号は演算推定された信号で
あってよい。周知のベクトル制御装置はインバータ出力
周波数ω1をii+lJ (Aする/ζめに1また速度
制御のためのフィードバック信号に速度検出信号が用い
られ電動機取付の速度検出器が必要で7ステム構成が複
雑である。
The embodiment described above is an example in which the present invention is applied to a well-known vector control device, but the present invention can be similarly applied to other control devices that can obtain signals proportional to torque and rotational speed. can. These signals may be computationally estimated signals. The well-known vector control device sets the inverter output frequency ω1 to ii+lJ (A/ζ). Also, a speed detection signal is used as a feedback signal for speed control, a speed detector attached to the motor is required, and the seven-stem configuration is complicated. be.

この解決のため、速度検出器を用いないベクトル制御方
式が開発された。、g6図にこの制侃装置への本発明の
適用例を示す。この方式の原理及び動作については特願
昭58−29143号に述べられているので、ここでは
詳しい説明は省略するが、電動機の誘導起d力を検出し
、この起遇カベクトルを座標基準に、起電力に対し90
度位相差の電動礪電流成分(励磁電流)を調節して磁束
を、また、起−力に対して同位相の電流成分(トルク電
流)を調パ6してトルクを制御するものである。このも
のにおいても、速度調節器10より前記実施例と同様に
トルク電流指令it*が得られ、励侭電流指令話12よ
り励磁混流指令i、傘が得られる(ここで起電力調節器
18の出力信号Δi−は、磁束の基準値からの変化を防
止するように起電力検出器19からの起電力検出信号に
応じて1)に付加されるもので、磁束はitに比例して
制御される)。
To solve this problem, a vector control method that does not use a speed detector was developed. , g6 shows an example of application of the present invention to this control device. The principle and operation of this system are described in Japanese Patent Application No. 58-29143, so a detailed explanation will be omitted here. 90 for electromotive force
The magnetic flux is controlled by adjusting the electric current component (excitation current) having a phase difference, and the torque is controlled by adjusting the current component (torque current) having the same phase with respect to the electromotive force. In this case as well, the torque current command it* is obtained from the speed regulator 10 as in the previous embodiment, and the excitation mixed current command i, umbrella, is obtained from the excitation current command line 12 (here, the electromotive force regulator 18 The output signal Δi− is added to 1) according to the electromotive force detection signal from the electromotive force detector 19 so as to prevent the magnetic flux from changing from the reference value, and the magnetic flux is controlled in proportion to it. ).

また、回転速度の推定値ω、け、起電力検出信号e、(
起電力調節器18の作用により定常的にばe、はω−に
一致する。)よりすベシ周波数ω、牢を差し引き演算さ
れる。上述のように、磁束、トルク及び回転速度のそれ
ぞれに比例する1−9i−及びω7が得られるため、前
記実兄例と同様にこれらを用いて本発明を実施でき、同
様の効果が得られる。
Also, the estimated value of rotational speed ω, ke, the electromotive force detection signal e, (
Due to the action of the electromotive force adjuster 18, e constantly matches ω-. ) is calculated by subtracting the frequency ω and the distance. As described above, since 1-9i- and ω7 are obtained which are proportional to the magnetic flux, torque, and rotational speed, the present invention can be carried out using these in the same way as in the above-mentioned real-life example, and the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微分演算によらず、ノイズの影響を受
は難い積分演算を行っており、また、負荷トルクの影響
を考慮に入れた晶精度の慣性モーメントJを推定でき、
これにより制−ゲインを最適に設定できるという効果が
ある。
According to the present invention, an integral calculation is performed that is not easily affected by noise, instead of a differential calculation, and it is possible to estimate the moment of inertia J of crystal accuracy taking into account the influence of load torque.
This has the effect that the control gain can be set optimally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の速波制御装置の制御定数設定方法の実
施例のベクトル制御装置への適用例のブロック図、第2
図、第3図はそれぞ几第1図の方法の原理説明図、第4
図は第1図の方法実施のソフトウェアのフローチャート
、第5図は本発明の速度判御装置のイ1]御定数設定方
法の他の実施例のソフトウェアのフローチャート、第6
図は本発明の速度制#装置の制御定数設定方法の他の実
施例のベクトル制御装置への適用時のブロック図である
。 3・・・交流電動4J、A・・・ベクトル制御装置、1
0・・・速度調節器。
FIG. 1 is a block diagram of an example of application of the control constant setting method for a fast wave control device of the present invention to a vector control device;
Fig. 3 is an explanatory diagram of the principle of the method shown in Fig. 1, and Fig. 4 is
The figures are a flowchart of software for implementing the method shown in Fig. 1, and Fig. 5 is a flowchart of software for another embodiment of the speed control device of the present invention.
The figure is a block diagram when another embodiment of the method for setting control constants for a speed control device according to the present invention is applied to a vector control device. 3...AC electric 4J, A...vector control device, 1
0... Speed regulator.

Claims (1)

【特許請求の範囲】[Claims] 1、電動機の速度制御装置において、電動機のトルクを
変え、回転速度を変化させた際においてトルク及び回転
速度に比例した信号に基づき、前記トルク比例信号の積
分量と回転速度の変化幅を演算し、その比より機械系の
慣性モーメントを計算し、その結果に基づいて速度調節
器の制御定数を自動的に設定するようにしたことを特徴
とする速度制御装置の制御定数設定方法。
1. In an electric motor speed control device, when the torque of the electric motor is changed and the rotational speed is changed, the integral amount of the torque proportional signal and the variation range of the rotational speed are calculated based on the signal proportional to the torque and rotational speed. A method for setting a control constant for a speed control device, characterized in that the moment of inertia of a mechanical system is calculated from the ratio thereof, and the control constant of a speed regulator is automatically set based on the result.
JP59209736A 1984-10-08 1984-10-08 Control constant setting method for speed controller Granted JPS6188780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209736A JPS6188780A (en) 1984-10-08 1984-10-08 Control constant setting method for speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209736A JPS6188780A (en) 1984-10-08 1984-10-08 Control constant setting method for speed controller

Publications (2)

Publication Number Publication Date
JPS6188780A true JPS6188780A (en) 1986-05-07
JPH0410319B2 JPH0410319B2 (en) 1992-02-24

Family

ID=16577784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209736A Granted JPS6188780A (en) 1984-10-08 1984-10-08 Control constant setting method for speed controller

Country Status (1)

Country Link
JP (1) JPS6188780A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232788A (en) * 1987-06-12 1990-02-02 Hitachi Ltd Control of motor and motor control device
US5175483A (en) * 1990-09-21 1992-12-29 Hitachi, Ltd. Method and an apparatus for computing moment of inertia in a motor speed controller, and a speed control method and apparatus for a motor
JPH06209589A (en) * 1993-08-10 1994-07-26 Hitachi Ltd Automatic adjusting method for vector control equipment
WO1996037039A1 (en) * 1995-05-17 1996-11-21 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
US6992454B2 (en) 2001-04-04 2006-01-31 Kabushiki Kaisha Yaskawa Denki Motor controller and method for measuring characteristics of mechanism
JP2009153288A (en) * 2007-12-20 2009-07-09 Hitachi Industrial Equipment Systems Co Ltd Power converter
JP2010011680A (en) * 2008-06-30 2010-01-14 Yamaha Motor Co Ltd Load identifying method and robot control system
CN102966582A (en) * 2011-08-29 2013-03-13 Abb公司 Method and apparatus for determining change in mass of fan impeller
CN109660169A (en) * 2018-11-26 2019-04-19 浙江浙能技术研究院有限公司 A kind of rotary inertia transient state discrimination method of induction machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655522B2 (en) * 2004-07-02 2011-03-23 株式会社ジェイテクト Control constant design adapting device for electric power steering system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836180A (en) * 1981-08-28 1983-03-03 Hitachi Ltd Controlling method and device for position of motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836180A (en) * 1981-08-28 1983-03-03 Hitachi Ltd Controlling method and device for position of motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232788A (en) * 1987-06-12 1990-02-02 Hitachi Ltd Control of motor and motor control device
US5175483A (en) * 1990-09-21 1992-12-29 Hitachi, Ltd. Method and an apparatus for computing moment of inertia in a motor speed controller, and a speed control method and apparatus for a motor
JPH06209589A (en) * 1993-08-10 1994-07-26 Hitachi Ltd Automatic adjusting method for vector control equipment
JP2847092B2 (en) * 1993-08-10 1999-01-13 株式会社日立製作所 Automatic adjustment method of vector control device
WO1996037039A1 (en) * 1995-05-17 1996-11-21 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
US6037736A (en) * 1995-05-17 2000-03-14 Kabushiki Kaisha Yaskawa Denki Apparatus for determination of control constant
US6992454B2 (en) 2001-04-04 2006-01-31 Kabushiki Kaisha Yaskawa Denki Motor controller and method for measuring characteristics of mechanism
JP2009153288A (en) * 2007-12-20 2009-07-09 Hitachi Industrial Equipment Systems Co Ltd Power converter
JP2010011680A (en) * 2008-06-30 2010-01-14 Yamaha Motor Co Ltd Load identifying method and robot control system
CN102966582A (en) * 2011-08-29 2013-03-13 Abb公司 Method and apparatus for determining change in mass of fan impeller
CN109660169A (en) * 2018-11-26 2019-04-19 浙江浙能技术研究院有限公司 A kind of rotary inertia transient state discrimination method of induction machine

Also Published As

Publication number Publication date
JPH0410319B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JP2892802B2 (en) Motor speed control device
EP0091589A2 (en) Apparatus for controlling an induction motor
JPS6188780A (en) Control constant setting method for speed controller
US5386186A (en) Stator flux oriented control
JPH06121570A (en) Ac motor control system
JPH0744862B2 (en) Electric motor speed controller
JPH06225576A (en) Method and equipment for compensating slip of induction machine
JPH04312382A (en) Control method for induction motor
JP2847092B2 (en) Automatic adjustment method of vector control device
JPH0531388B2 (en)
JPS63316687A (en) Vector controlling arithmetic device for induction motor
JPS6233520Y2 (en)
JP3683371B2 (en) Permanent magnet type synchronous motor speed control method
JPS5915268Y2 (en) Slip frequency control device for induction motor using current source inverter
JPH0561876B2 (en)
JP2881957B2 (en) Induction motor control device
JPH07123360B2 (en) Induction motor vector controller
JPH06189576A (en) Control device for induction motor
JPS6332032B2 (en)
JPS6032589A (en) Detecting method by calculation of motor magnetic flux
JPH0731174A (en) Disturbance load torque estimation system
JPH0685637B2 (en) Induction motor vector controller
JPH0771400B2 (en) Variable speed controller for induction motor
JPS649839B2 (en)
JPH06284771A (en) Speed control apparatus for induction motor