JPS6187810A - Method for blowing gas into molten iron in refining vessel - Google Patents

Method for blowing gas into molten iron in refining vessel

Info

Publication number
JPS6187810A
JPS6187810A JP20953084A JP20953084A JPS6187810A JP S6187810 A JPS6187810 A JP S6187810A JP 20953084 A JP20953084 A JP 20953084A JP 20953084 A JP20953084 A JP 20953084A JP S6187810 A JPS6187810 A JP S6187810A
Authority
JP
Japan
Prior art keywords
tuyere
gas
blowing
oxygen
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20953084A
Other languages
Japanese (ja)
Other versions
JPH0445564B2 (en
Inventor
Yasuo Kishimoto
康夫 岸本
Yoshihide Kato
嘉英 加藤
Tetsuya Fujii
徹也 藤井
Yasuhiro Kakio
垣生 泰弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20953084A priority Critical patent/JPS6187810A/en
Publication of JPS6187810A publication Critical patent/JPS6187810A/en
Publication of JPH0445564B2 publication Critical patent/JPH0445564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To inhibit effectively the melt fracture of a bottom tuyere of a vessel when oxygen is blown into a molten iron bath in the vessel from the bottom tuyere, by blowing oxygen under a specified high pressure at the inlet of the tuyere. CONSTITUTION:A stainless steel pipe 4 is placed in bottom brick 2 covering the inside of the bottom iron shell 1 of a converter with tuyere brick 3 in-between, and an oxygen feeding pipe 5 is connected to the lower end of the pipe 4. When oxygen or a gas contg. oxygen is blown into a molten iron bath in the converter from the pipe 5, the pressure of the gas is regulated to at least 30kgf/cm<2> at the inlet of the tuyere 3. Thus, the molten iron is well decarburized, and the melt fracture of the tuyere 3 is effectively inhibited whether a coolant is used or not.

Description

【発明の詳細な説明】 (産業上の利用分野) 転炉の如き精錬容器の底部に配設した羽口(以下底吹き
羽口という)から該容器の内部に受入れた溶鉄の浴中に
、酸素を含む気体を吹込むことにより該溶鉄の精錬反応
を進行させその間における底吹き羽目の溶損の有効な抑
制に関してこの明細書で述べる技術内容は、該気体の高
圧吹込みの有用性についての開発研究の成果を提案する
ところにある。
[Detailed Description of the Invention] (Industrial Application Field) Into a bath of molten iron received into the interior of a refining vessel such as a converter through a tuyere (hereinafter referred to as bottom blowing tuyere) disposed at the bottom of the vessel, The technical content described in this specification regarding the progress of the refining reaction of the molten iron by blowing in a gas containing oxygen and the effective suppression of erosion of the bottom blowwall during the process is based on the usefulness of high-pressure blowing of the gas. It is about proposing the results of development research.

近時、転炉に代表される精錬容器の炉底からArやN2
ガスを底吹きする一方炉上からは上吹きランスによって
酸素を吹込む複合吹錬法が工業的に広く行なわれている
Recently, Ar and N2 have been released from the bottom of refining vessels such as converters.
The combined blowing method, in which gas is blown from the bottom and oxygen is blown from the top of the furnace using a top-blowing lance, is widely used industrially.

この複合吹錬法によれば溶鉄からの脱炭を441. 炭
素&1度まで行なっても鉄が過剰に酸化するようなこと
はなく、またスプラッシュの発生が少いことから鉄歩留
も良好で、更に底吹きされる不活性ガスによる溶鉄の攪
拌効果でスラグ−メタル反応が促進され、精錬効果が良
好であるなどの種々の利益が19られる。
This composite blowing method decarburizes molten iron by 441. There is no excessive oxidation of iron even when carbon & 1 degree is used, and the iron yield is good because there is little splash, and the stirring effect of the molten iron by the bottom-blown inert gas reduces slag. - There are various benefits such as accelerated metal reaction and good refining effect.

(従来の技術) この複合吹錬法を実itするために不可欠な底吹き羽口
としては、金属製のパイプや多孔質の耐火物製のいわゆ
るポーラスプラグが用いられたが、何れにも次のような
問題があった。
(Prior art) Metal pipes and so-called porous plugs made of porous refractories have been used as the bottom blowing tuyere, which is essential for implementing this composite blowing method. There was a problem like this.

すなわち、金属製パイプは安価であるという利点がある
反面、とくに7R’ILを絞ったときに転炉内の溶鉄が
パイプの中空孔内に差し込んで、羽口の閉塞を生じるお
それがあり、流量を変化させて調整し得る範囲が狭いと
いう欠点がある。
In other words, while metal pipes have the advantage of being inexpensive, there is a risk that, especially when the 7R'IL is throttled down, the molten iron in the converter may enter the hollow hole of the pipe and cause blockage of the tuyeres, reducing the flow rate. The disadvantage is that the range in which it can be adjusted by changing is narrow.

一方特開昭57−200533号公報に示されたような
ポーラスプラグは、流量を絞っても羽目の閉塞を生じる
おそれはなく、流量を調整し得る範囲か広いという利点
がある反面、高価につくという欠点がある。
On the other hand, a porous plug as shown in Japanese Patent Application Laid-Open No. 57-200533 has the advantage that there is no risk of clogging the lining even if the flow rate is restricted, and that the flow rate can be adjusted over a wide range, but on the other hand, it is expensive. There is a drawback.

加えてこれらの羽口は何れも転炉の炉底耐大物と較べた
場合に、耐用寿命がより短く、炉底の耐火物が未だ健全
であるにも拘わらず、底吹きの羽口の寿命がいち早く到
来してしまうために、炉体を不粋済にも交換づるほかに
は、羽口を閉塞して底吹き不活性ガスの吹込みを停止し
、上吹きランイのみから吹込む酸素による不満足な精錬
を継F′口することが余(八なくされてしまう。
In addition, all of these tuyeres have a shorter service life when compared to the large bottom refractories of converters, and even though the bottom refractories are still sound, the lifespan of bottom blowing tuyeres is shorter than that of converter bottom refractories. In order to avoid this, the furnace body should be replaced with a new one, and the tuyeres should be closed to stop the injection of bottom-blown inert gas, and the unsatisfactory oxygen caused by blowing in only from the top-blowing run could be avoided. There is no need to carry out further refinement.

発明者らは、底吹き羽口の溶損前+hに有効で、かつ、
広い範囲での吹込み流量の調整ができる製鋼容器内溶鉄
中への気体吹き込み方法についてさきに特願昭58−6
1482号に提案した。この方法は、内径が3mm以下
の羽口管を用い、かつその羽口管の入口の気体圧力が全
吹込み期間の少くとも一部の期間において50kgf 
/ cr1以上となるように不活性ガスなどの気体を吹
き込むものである。
The inventors have found that the method is effective for +h before melting of the bottom blowing tuyeres, and
Regarding a method of blowing gas into molten iron in a steelmaking container, which allows the blowing flow rate to be adjusted over a wide range, a patent application filed in 1983
No. 1482 was proposed. This method uses a tuyere tube with an inner diameter of 3 mm or less, and the gas pressure at the inlet of the tuyere tube is 50 kgf during at least part of the entire blowing period.
/ cr 1 or more.

この方法においては、ガス吹き込み流量を広い範囲で調
整することができ、したがって脱燐及び脱硫率ないしは
鉄歩留の向上など、目的に応じた吹錬を行うことができ
、さらには、不活性ガスなどの吹込み用底吹き羽口の溶
損を防止して羽目の耐用寿命を長くすることができる長
所を有するが、その反面従来の転炉底部からの不活性ガ
スの吹き込みと同様、攪拌効果の増強にも役立つ酸素を
転炉底部より製鋼容器中に吹きこむ方法に比べたとき、
単なる攪拌を司る不活性ガスは溶鉄と反応しないため、
経済的に劣る問題点があった。
In this method, the gas blowing flow rate can be adjusted over a wide range, and therefore blowing can be carried out according to the purpose, such as improving the dephosphorization and desulfurization rate or iron yield. It has the advantage of preventing melting of the bottom blowing tuyere and extending the service life of the tuyere, but on the other hand, it has the same agitation effect as conventional blowing of inert gas from the bottom of the converter. When compared to the method of blowing oxygen into the steelmaking vessel from the bottom of the converter, which also helps increase the
Since the inert gas that controls simple stirring does not react with molten iron,
There was a problem with the economic disadvantage.

また攪拌効果を増強しつつ精錬容器内の溶鉄と反応する
酸素を吹込む場合は、底吹き羽目を冷却してその溶損を
防ぐための冷却ガス(以下クーラントという)が必要で
あって、このクーラントは経済的に少い方が望ましい。
In addition, when injecting oxygen that reacts with the molten iron in the refining vessel while enhancing the stirring effect, a cooling gas (hereinafter referred to as coolant) is required to cool the bottom blowwall and prevent it from melting. It is economically desirable to use less coolant.

(発明が解決しようとする問題点) この発明は、底吹き羽口の溶損防止に有効でかつとくに
n9索または酸素を含む気体を精錬容器内に装入した溶
鉄中へ適切に吹込む方法を与えることを目的とする。
(Problems to be Solved by the Invention) This invention provides a method that is effective for preventing erosion of the bottom blowing tuyeres, and in particular, appropriately blows N9 cable or gas containing oxygen into molten iron charged into a smelting vessel. The purpose is to give

(問題点を解決するための手段) 上記の目的は次の各方法によって有利に成就される。(Means for solving problems) The above objects are advantageously achieved by the following methods.

1、容器底部に配設した羽口から精錬容器内の溶鉄の浴
中に酸素又は酸素を含む気体を底吹きする際、該気体を
羽口入口において少なくとも30kgf/cJの高圧下
に供給することを特徴とする、精錬容器内の溶鉄中への
気体吹込み方法(第1発明) であり、この場合羽口として、酵素又は酸素を含む気体
とこれを外包する羽口冷却ガスとの同心状噴出に役立つ
多重管羽口を用いることが実施態様として好適である。
1. When bottom-blowing oxygen or a gas containing oxygen into the molten iron bath in the refining container from the tuyere provided at the bottom of the container, the gas must be supplied under high pressure of at least 30 kgf/cJ at the tuyere inlet. A method for injecting gas into molten iron in a refining vessel (first invention), characterized in that the tuyere is a concentric arrangement of a gas containing an enzyme or oxygen and a tuyere cooling gas surrounding it. A preferred embodiment is the use of multi-tube tuyeres to assist in ejection.

2、容器底部に配設した羽口から精錬容器内の溶鉄の浴
中に酸素又は酸素を含む気体を底吹きする際、該気体を
、単管羽目を通しその入口にて少くとも50kgf /
 ciの高圧を実質的に全吹込み期間中にわたり維持し
つつ、供給することを1−“j徴とする、精錬容器内の
溶鉄中への気体吹込み方法。(第2発明) ここに酸素又は酸素を含む気体というのは、純酸素ない
しは02が少なくどもGOVo1%を占め残りは例えば
Nz、Arなどの不活性気体などの混合気体よりなる高
)農度l′l!i索含有気体を指ず。C1と不活性ガス
との混合比に関しては02の全吹込み気体に占める割合
が60VO1%をこえる方が次のように有利である。
2. When bottom-blowing oxygen or a gas containing oxygen into the molten iron bath in the refining container from the tuyere provided at the bottom of the container, the gas must be passed through the single pipe siding at the inlet at a rate of at least 50 kgf/
A method for blowing gas into molten iron in a refining vessel, the method comprising supplying gas while maintaining a high pressure of ci throughout the entire blowing period (second invention). Alternatively, a gas containing oxygen refers to a gas containing pure oxygen or 02, which accounts for at least 1% of GOVo, and the remainder is a mixed gas such as an inert gas such as Nz or Ar. Regarding the mixing ratio of C1 and inert gas, it is advantageous for the proportion of 02 to exceed 60 VO 1% in the total blown gas as follows.

ザなわら02比率が多いほど同−流量でも鋼浴中のΩ−
と反応し酸素量の2倍のCOバガスなるため攪拌力が増
加する。また不活性ガスより安価であるので、この点で
コスト的にも有利となる。
The higher the 02 ratio, the higher the Ω in the steel bath even at the same flow rate.
The stirring power increases because CO bagasse reacts with the amount of oxygen and becomes twice as much as the amount of oxygen. Furthermore, since it is cheaper than inert gas, it is advantageous in terms of cost.

一方、02の反応熱によって羽目の溶損量が多くなるの
で一般的には02を多くづるのは不利であるか、この発
明ではこの溶10を減少するのに羽口入側のガス圧を高
圧とした。
On the other hand, since the reaction heat of 02 increases the amount of melting loss of the tuyeres, it is generally considered disadvantageous to increase the amount of 02, and in this invention, the gas pressure on the inlet side of the tuyere is reduced to reduce this melt 10. The pressure was high.

なお、この高圧吹込みは設備費とランニングコストは増
加するわ(プであるが、上記のメリットとデメリッ[・
を考え合せると02の全吹込み気体中に占める割合は6
0Vo1%をこえることがのぞましいわけである。
Note that this high-pressure injection will increase equipment costs and running costs (but the above advantages and disadvantages [-
Taking these into account, the proportion of 02 in the total blown gas is 6.
Therefore, it is desirable that the voltage exceeds 0Vo1%.

さて発明者らは、種々の実験検討を行い、とくに底吹き
羽目の径を小さくし、酸素又は酸素を含む気体の圧力を
大きくすることによって、羽口の溶1員を抑制し得るこ
とを見出した。
The inventors have conducted various experimental studies and found that it is possible to suppress the melting of the tuyere by particularly reducing the diameter of the bottom blown tuyere and increasing the pressure of oxygen or oxygen-containing gas. Ta.

その理由としては、次のことが考えられる。Possible reasons for this are as follows.

第一に、羽口に送られる酸素を含む気体の圧力を高くす
るど、羽口出口での酸素を含む気体の膨張による吸熱効
果が大きく、羽口の冷却効果が向上する。換言すると羽
口の径を小さくし高圧を適用すると、羽口の単位断面積
当り質吊流準が増加して、酸素を含む気体による羽口の
冷却効果が向上覆る上に高圧気体は流速が大きく、その
ため気体と底吹き羽口の管体内壁との間の伝熱係数が大
きくなり、それによっても上記気体が羽口を冷却する効
果も向上する。
First, by increasing the pressure of the oxygen-containing gas sent to the tuyere, the heat absorption effect due to the expansion of the oxygen-containing gas at the tuyere outlet increases, and the cooling effect of the tuyere improves. In other words, when the diameter of the tuyere is reduced and high pressure is applied, the suspended flow standard per unit cross-sectional area of the tuyere increases, which improves the cooling effect of the tuyere by oxygen-containing gas. This increases the heat transfer coefficient between the gas and the inner wall of the tube of the bottom blowing tuyere, which also improves the effectiveness of the gas in cooling the tuyere.

第2に羽口に送られる酸素を含む気体の圧力を高くする
と、羽目先端で酸素を含む気体の膨張による吸熱効果に
よつC羽口先端に生成されるいわゆるマツシュルームと
よばれる凝固鉄が生成することが注目される。
Second, when the pressure of the oxygen-containing gas sent to the tuyere is increased, solidified iron, called pine mushroom, is generated at the C-tuyere tip due to the endothermic effect caused by the expansion of the oxygen-containing gas at the tuyere tip. It is noteworthy that

すなわち、発明者らは、溶鋼を用いたホットモデル実験
によって、・酸素を含む気体の圧力が30〜100kg
f / cJの場合と、10〜15kgf / cJど
の場合とについてのマツシュルーム生成へのFI2 g
を謂ぺたところ、第1図(A)及び(B)に見られるよ
うに上記気体の顕熱によるマツシュルームへの冷却効果
に著しく違いが生じることを見出した。
That is, the inventors conducted a hot model experiment using molten steel and found that the pressure of oxygen-containing gas was 30 to 100 kg.
FI2 g to pine mushroom production for f/cJ case and 10-15 kgf/cJ case
However, as shown in FIGS. 1(A) and 1(B), it was discovered that there was a significant difference in the cooling effect on the pine mushroom due to the sensible heat of the gas.

第1図(A)に示されるように圧力が30〜100kg
 r / c+/の場合における上記気体のマツシュル
ームへの冷J、l′l効果は第1図(B)に示される圧
力が10〜20kgf/cvrの場合と比較してはるか
に大きくなる。このためとくに圧力を30〜100k8
/cfにした場合には、気体のマツシュルームへの冷却
効果は火点からの輻射や溶鋼からの対流熱転)ヱよりも
大きくなって、安定したマツシュルームが羽口先端に適
切に生成される。
As shown in Figure 1 (A), the pressure is 30 to 100 kg.
The cold J,l'l effect of the gas on the pine mushroom in the case of r/c+/ is much larger than that in the case where the pressure is 10-20 kgf/cvr as shown in FIG. 1(B). For this reason, the pressure should be increased from 30 to 100k8.
/cf, the cooling effect of the gas on the pine mushroom becomes greater than the radiation from the fire point and the convection heat transfer from the molten steel, and a stable pine mushroom is appropriately generated at the tip of the tuyere.

これに反し圧力を10〜15kg/cJにした場合、マ
ツシュルームへの冷却効果は、火点からの輻射と溶鋼か
らの対流熱伝達よりも小ざくなって羽口先端にお(プる
満足なマツシュルームは生成され得ない。
On the other hand, when the pressure is set to 10 to 15 kg/cJ, the cooling effect on the pine mushroom is smaller than the radiation from the fire point and the convective heat transfer from the molten steel, and a satisfactory pine mushroom is produced at the tip of the tuyere. cannot be generated.

一般に底吹ぎ羽口より酸素を吹込む場合、その先端にマ
ツシュルームが安定に生成されないと、火点からの輻射
や火点で生成される酸化鉄によって羽口近傍の耐火物が
他の部分の耐火物よりも早く溶損することとなり、その
ため羽目自体の溶損も早められてしまうこととなる。
Generally, when blowing oxygen through a bottom-blown tuyere, if pine mushrooms are not stably generated at the tip, radiation from the fire point and iron oxide generated at the fire point will damage the refractory near the tuyere. It will melt down faster than the refractory, and therefore the siding itself will melt away faster.

第3に、羽目から溶鉄中に吹き込まれる酸素を含む気体
の噴出流の挙動の違いに起因し、吹込みガスの圧力を高
くした方が、羽口の溶10が少なくなる。
Thirdly, due to the difference in the behavior of the jet flow of oxygen-containing gas that is blown into the molten iron from the tuyere, the higher the pressure of the blown gas, the less the molten metal 10 in the tuyere.

すなわち、既に述べたホットモデル実験から圧力が30
〜100kg f / c+iの場合と、10〜15眩
f/cm2の場合とでは第2図(A)及び(B)に見ら
れるように、酸素を吹きこんだときの火点からの輻射に
よる羽目への熱流束に、違いが生じることがわかった。
That is, from the hot model experiment already mentioned, the pressure is 30
As can be seen in Figure 2 (A) and (B) in the case of ~100 kg f/c+i and the case of 10 to 15 dazzling f/cm2, there are side effects due to radiation from the flame point when oxygen is blown into the flame. It was found that there is a difference in the heat flux to the

第2図(A)に示されるように圧力が30〜100kg
f/clの場合は、火点からの輻射による羽口への熱流
束はガスジェット領域が長いために火点の位置が遠ざか
り、一方圧力が10〜15kgf / clの場合には
ガスジェット領域が短くなり第2図(B)に承りように
火点からの輻射による羽口への熱流束がより多くなる。
As shown in Figure 2 (A), the pressure is 30 to 100 kg.
f/cl, the heat flux to the tuyeres due to radiation from the fire point moves away from the fire point due to the long gas jet region, while when the pressure is 10-15 kgf/cl, the gas jet region As shown in Figure 2 (B), the heat flux to the tuyere due to radiation from the fire point increases.

したがって羽口の溶IQは、圧力が30〜100J f
/Cシの場合に比べて圧力が10〜15y r 7/ 
clの場合には、早められてしまうことになる。
Therefore, the melting IQ of the tuyere is 30 to 100 J f
The pressure is 10 to 15 years compared to /C case 7/
In the case of cl, it will be accelerated.

第1図(A>におけるマツシュルームへの冷却効果およ
び第2図(A)に示す底吹き羽口への熱流束低減の効果
はともに酸素又は酸素を含む気体の圧力が高い程、有効
であるが、一般に上記の実験結果に従い、上記冷却効果
が上記熱流束を上まわって、羽口先端に適切なマツシュ
ルームの生成を確保するためには、酸素を含む気体の供
給圧力を、少くとも30kg f / cmfとするこ
とが必要で、このとき底吹き羽目が酸素をSむ気体に対
しこれを外包するクーラントとの同心状噴出を行う、い
わゆる2重管羽目に代表される多重管方式であれば、と
くに上記の最低圧力限界においてすらより十分な羽目保
護が達せられる。ここに羽目冷却ガスとしては炭化水素
、−酸化炭素、二酸化炭素および不活性ガスなどが適合
するが上記の高圧吹込みの下でその流量は従来それに羽
口冷却を全面依存した場合と比べて大幅に節減できる。
The cooling effect on the pine mushroom shown in Figure 1 (A>) and the effect of reducing the heat flux to the bottom blowing tuyere shown in Figure 2 (A) are both more effective as the pressure of oxygen or oxygen-containing gas is higher. Generally, according to the above experimental results, in order for the cooling effect to exceed the heat flux and to ensure proper pine mushroom formation at the tuyere tip, the oxygen-containing gas supply pressure should be at least 30 kg f/ cmf, and in this case, if the bottom blower is a multi-pipe system represented by a so-called double-pipe siding, in which the bottom blower ejects the oxygen-containing gas concentrically with the coolant enclosing it, In particular, better siding protection is achieved even at the minimum pressure limits mentioned above.Suitable siding cooling gases here include hydrocarbons, carbon oxides, carbon dioxide and inert gases, but under the high pressure blowing mentioned above, The flow rate can be significantly reduced compared to the conventional case where tuyere cooling was completely dependent on it.

底吹き羽口が金属製パイプよりなる単管方式のときは、
他に羽目冷却の助成手段を欠くことを考慮して、酸素を
含む気体の供給圧力を少くとも50kgf/cイとする
ことが、多重管方式の場合と同等の効果を得るために必
要である。
When the bottom blowing tuyere is a single pipe type made of metal pipe,
Taking into consideration the lack of other means to assist in cooling the siding, it is necessary to set the supply pressure of oxygen-containing gas to at least 50 kgf/c in order to obtain the same effect as the multi-pipe system. .

一般に、転炉底部からの攪拌ガス(時として酸素ガスも
含む)の吹込みは、次の(1)〜(3)を目的として行
なわれる。
Generally, stirring gas (sometimes also containing oxygen gas) is injected from the bottom of the converter for the following purposes (1) to (3).

(1)溶鉱の炭素濃度が低くなっても、鉄の酸化に層先
して脱炭反応を生じさせ、鉄の過剰な酸化を防止して鉄
歩留を向上させる。
(1) Even if the carbon concentration of the molten ore becomes low, the decarburization reaction occurs before the oxidation of iron, thereby preventing excessive oxidation of iron and improving the iron yield.

(2)スラグと溶鉄との間の脱硫・脱燐反応を促進し、
不純物の除去効果を増大する。
(2) Promote desulfurization and dephosphorization reactions between slag and molten iron,
Increases impurity removal effect.

(3)吹錬前半におけるスロッピングの防止を図る。(3) Aim to prevent slopping in the first half of blowing.

ところで転炉底部からの酸素を含む気体の吹込みについ
ては、酸素自体によって溶鉄の脱炭反応を進める。
By the way, regarding the injection of gas containing oxygen from the bottom of the converter, the decarburization reaction of the molten iron is promoted by the oxygen itself.

ためにも行われる。It is also done for the sake of

ここで、転炉底部からの吹込みについては、上記(1)
を目的とする場合には、吹錬後半における流量を増大す
る必要がある。一方、逆に上記(2)の脱P反応の促進
を目的とする場合には、吹錬後半において流量を絞る必
要があり、それというのは吹錬後半において流量が多い
と鉄の酸化が少なくなり、スラグ中の酸化鉄濃度が低下
して、脱燐が良好に行なわれなくなるからである。
Here, regarding the injection from the bottom of the converter, see (1) above.
If this is the purpose, it is necessary to increase the flow rate in the latter half of blowing. On the other hand, if the purpose is to promote the P dephosphorization reaction in (2) above, it is necessary to reduce the flow rate in the latter half of blowing. This is because the iron oxide concentration in the slag decreases and dephosphorization cannot be performed satisfactorily.

したがって、上記(2)を目的とする場合には、上記(
3)の場合と同じく、吹錬前半において多聞に吹込み、
後半には吹込み流量を減少させる必要がある。
Therefore, if the purpose is (2) above,
As in the case of 3), in the first half of the blowing process,
In the second half, it is necessary to reduce the blowing flow rate.

この発明の方法によれば、多′重管においては上記(2
)および(3)を目的とした吹き込みガス流量の調整も
、酸素のガスに対する流聞比を変えれば容易に行える。
According to the method of this invention, the above (2
) and (3) can be easily adjusted by changing the ratio of oxygen to gas.

ずなわら、従来の大径ノズルを用い、低圧ガスを吹き込
む方法では、吹錬の途中で吹き込みガスの流量を大幅に
減らすと、羽口が溶鉄によって閉塞する恐れがあったの
に反し、この発明の方法によればそのような恐れは全く
なく、吹錬の途中で流量を大幅に減らすことができる。
However, with the conventional method of blowing low-pressure gas using a large-diameter nozzle, there was a risk that the tuyeres would become clogged with molten iron if the flow rate of the blowing gas was significantly reduced during blowing. According to the method of the invention, there is no such fear at all, and the flow rate can be significantly reduced during blowing.

以−ヒのことを明らかにするために、ステンレス鋼パイ
プを用いて、内径が2.0mm、 4 mmおよび6■
の羽口をつくり、実際の転炉において羽[二1がら吹き
込まれる圧力と、流量との関係を測定した。
In order to clarify this, we used stainless steel pipes with inner diameters of 2.0 mm, 4 mm and 6 mm.
A tuyere was made and the relationship between the pressure blown into the blade and the flow rate was measured in an actual converter.

その結果を第4図に示す。The results are shown in FIG.

図からも明らかなように、内径が2mmと4n+mとの
羽目においては圧力を多くしてもガス流ωが過剰に増大
するようなことはなく、逆に、溶鉄が逆流して、底吹き
羽口の閉塞を生じない圧力をや1[持したまま流量を絞
ることができる。
As is clear from the figure, even if the pressure is increased, the gas flow ω does not increase excessively in the case where the inner diameter is 2 mm and 4n+m.On the contrary, the molten iron flows backward and the bottom blowing blade The flow rate can be reduced while maintaining a pressure that does not cause oral obstruction.

これに対して、内径が6mmの羽口においては、圧力を
高くすると流量が過剰に増大し、また、流量を一定以下
に減らすためには、圧力を人さく減圧しなければならず
、そのため溶鉄が逆流し、羽口が閉塞してしまう。
On the other hand, in a tuyere with an inner diameter of 6 mm, when the pressure is increased, the flow rate increases excessively, and in order to reduce the flow rate below a certain level, the pressure must be reduced manually, so The water flows backwards and the tuyeres become blocked.

(実施例) さて第4図(A>および(B)には、この発明の実施に
供される底吹き羽口の構造を例示したつ第4図<A)で
は、転炉の底部鉄皮1内側を被覆する炉底レンガ2に羽
口レンガ3を介してステンレス鋼パイプ4を配設し、こ
のステンレス鋼パイブ4の下端部に、酸素を含む気体の
送給配管5を連結する。
(Example) Figures 4 (A> and (B) illustrate the structure of the bottom blowing tuyeres used for carrying out the present invention. Figure 4 <A) shows the bottom iron shell of the converter. A stainless steel pipe 4 is disposed through a tuyere brick 3 to a hearth brick 2 covering the inside of the furnace, and a gas supply pipe 5 containing oxygen is connected to the lower end of the stainless steel pipe 4.

また、第4図(8)では、転炉の底部鉄皮1内側をDI
 mする炉底レンガ2に羽口レンガ3を介して二重管6
を配設し、この二重管6の下端部で内管には酸素送給配
管7、外管にはクーラント送給配管8をそれぞれ連結す
る。
In addition, in Fig. 4 (8), the inside of the bottom shell 1 of the converter is DI
The double pipe 6 is connected to the hearth brick 2 through the tuyere brick 3.
At the lower end of this double pipe 6, an oxygen supply pipe 7 is connected to the inner pipe, and a coolant supply pipe 8 is connected to the outer pipe.

このような構造の2種項の底吹き羽目を用い、これらの
底吹き羽口を転炉底部に配設する故と、第4図(A)の
場合では、ステンレス鋼バイブ4の内径、また、第4図
(B)の場合では、二重管6の内径をそれぞれ各様に設
定した。
In the case of Fig. 4 (A), the inner diameter of the stainless steel vibrator 4 and In the case of FIG. 4(B), the inner diameter of the double tube 6 was set variously.

第1実施例においては、ステンレス鋼バイブ4の内径を
2.0mm、その配設本数を8本、第2、第3実施例に
おいては、ステンレス鋼バイブ4の内径を4.Ommそ
の配設本数を3本とした何れも単管方式、また第4実施
例では、二重管6の内径を2.0mm、その配設本数を
8本、第5、第6各実施例においては、二重管6の内径
を4.Omm、その配設本数を5本とそれぞれ設定した
多単管方式として、以下の精錬を行った。なa3各実施
例とも、ステンレス鋼バイブ4および二重管6の外管の
材質には5US304を、二重管6の内管の材質には銅
パイプを用いた。
In the first embodiment, the inner diameter of the stainless steel vibrator 4 is 2.0 mm, and the number of vibrators disposed is 8. In the second and third embodiments, the inner diameter of the stainless steel vibrator 4 is 4.0 mm. Omm In the fourth embodiment, the inner diameter of the double pipe 6 is 2.0 mm, and the number of pipes is 8. In the fifth and sixth embodiments, the number of pipes is 3. In this case, the inner diameter of the double pipe 6 is set to 4. The following refinement was carried out using a multi-single tube system in which the number of tubes was set to 5. In each of the examples, 5US304 was used as the material for the outer tube of the stainless steel vibrator 4 and the double tube 6, and copper pipe was used as the material for the inner tube of the double tube 6.

一方、第1、第2比較例として5US304を用いおの
おの内径4.0111111としたステンレス鋼バイブ
4を、転炉底部に10本また、第3比較例として二重管
6の内管の内径4.ommとしたものを転炉底部に10
本設冒し、上記各実施例と同様に溶銑に対Jる吹錬に供
した。
On the other hand, as first and second comparative examples, ten stainless steel vibrators 4 made of 5US304 and each having an inner diameter of 4.0111111 were installed at the bottom of the converter, and as a third comparative example, the inner diameter of the double pipe 6 was 4.0111111. 10 mm at the bottom of the converter.
After the actual installation, hot metal was subjected to blowing in the same manner as in each of the above examples.

各実施例及び比較例において、精錬を行った溶銑の温度
は1250℃〜1330℃、吹錬時間は13−16分、
出鋼温度は1650〜1730℃であった。
In each example and comparative example, the temperature of the hot metal that was refined was 1250°C to 1330°C, the blowing time was 13 to 16 minutes,
The tapping temperature was 1650 to 1730°C.

吹錬の条件を表1にまとめて示す。The blowing conditions are summarized in Table 1.

各実施例及び比較例とも所定のチャージ間隔にて羽口の
残長さの測定を行い、羽口の溶損速度を求めた。その結
果も表1にあわせ示した。表1中のバーンバックは、羽
口材が酸素と反応して急速溶損する現象をいう。
In each of the Examples and Comparative Examples, the remaining length of the tuyere was measured at predetermined charging intervals, and the erosion rate of the tuyere was determined. The results are also shown in Table 1. Burnback in Table 1 refers to a phenomenon in which the tuyere material reacts with oxygen and is rapidly eroded.

以上の結果から明らかなように、単管羽口は50kgf
lcJ以上、二車管理口は30kgf / c1以上と
すれば比較例の溶損速度に較べ、各実施例における溶損
速度は、はるかに低く、しかもそのばらつきも少なくな
る。
As is clear from the above results, the single pipe tuyere has a weight of 50 kgf.
lcJ or more, and the motorcycle control port is 30 kgf/c1 or more, the erosion rate in each example is much lower than that in the comparative example, and its variation is also reduced.

特に二重管におけるM4実施例、第5実施例は単管にお
ける第1.第2実施例よりもざらに溶損速度は小さくば
らつきも小さい。従ってLIi管同様の溶損速度を期待
するなら全吸込み全期間中30眩f/cシとする必要は
なく一部の期間でよい。また単管における第1実施例、
第2実施例も同じく単管である比較例1.3よりも溶損
速度ははるかに小さく、とくに外管よりクーラントを流
している二重管で行った比較例2に比べても小さくなっ
ている。
In particular, the M4 embodiment in the double pipe and the fifth embodiment are the M4 embodiment in the double pipe and the M4 embodiment in the single pipe. The erosion rate is roughly smaller than that of the second embodiment, and the variation is also small. Therefore, if you expect the same erosion rate as the LIi tube, it is not necessary to use 30 dazzling f/c during the entire suction period, but only for a part of the period. Also, the first embodiment in a single pipe,
The erosion rate of the second example was also much lower than that of Comparative Examples 1 and 3, which had a single tube, and was especially lower than that of Comparative Example 2, which had a double tube in which the coolant was flowing from the outer tube. There is.

上記各実施例で実証したように、この発明に従い、単管
方式では溶鉄中へ吸込む気体の羽口管内圧力を実質的に
全吹込み期間中50に8f / c1以上となるように
設定し、一方、多重管にあっては溶鉄中に気体を吹込む
羽目管内圧ツノを30kgf / cr!以上とする期
間は、その目的に応じて任意に設定することができる。
As demonstrated in the above embodiments, according to the present invention, in the single pipe system, the pressure inside the tuyere pipe of the gas sucked into the molten iron is set to be 8f/c1 or more during substantially the entire blowing period, On the other hand, in the case of multiple pipes, the internal pressure of the siding pipe that blows gas into the molten iron is 30 kgf/cr! The above period can be arbitrarily set depending on the purpose.

次に羽目の径、配設本数などの吹錬の条件は、前記した
第4実施例と同じく主として、スラグ・メタル間の脱り
ん反応の促進と、スロッピングの防止とを目的とする吹
錬を次のように実施した。
Next, the conditions for blowing, such as the diameter of the slats and the number of slats, are the same as in the fourth embodiment described above. was carried out as follows.

対象となる溶銑の成分は、C4,2%〜4.4%、3i
  0.15%〜0.38%、 Mn  O,31%〜
0.48%、P 0909%〜0.11%、 30.0
2%〜0.04%であり、吹錬終了後の溶鋼成分のC温
度は0.05%〜0.11%、温度は1690℃〜17
20℃であつ lこ 。
The target hot metal components are C4, 2% to 4.4%, 3i
0.15%~0.38%, MnO, 31%~
0.48%, P 0909%~0.11%, 30.0
The C temperature of the molten steel component after blowing is 0.05% to 0.11%, and the temperature is 1690°C to 17%.
Hot at 20℃.

この発明の方法を実施した吹錬においては、吹錬開始時
から吹錬終了後までの全期間のうち、吹錬開始時から7
割の時間における圧力を60〜90kgrlc!、ガス
流量を平均0.05 Nm 3/min −tとし、そ
の後の圧力を10〜15kgf / c/に減圧し、ま
た流nを0.003〜0,005Nm 3/i+in 
−tに減量した。一方、比較方法としては、吹錬開始時
から7割の時間における圧力を10〜20kgf / 
cJにおいて流量を上記実施例と同様平均0.05 N
m 3/n+1n−tとし、その後圧力を3〜5kgf
/dに減圧して、羽口が閉塞しないようにするために必
要な最小の流量である0、01〜0.02 Nm ” 
/1n・【に減量した。
In blowing in which the method of this invention is carried out, seven days from the start of blowing out of the entire period from the start of blowing to the end of blowing.
60~90kgrlc pressure in a certain amount of time! , the gas flow rate was set to an average of 0.05 Nm 3/min -t, the subsequent pressure was reduced to 10 to 15 kgf/c/, and the flow n was set to 0.003 to 0,005 Nm 3/i+in
−t. On the other hand, as a comparison method, the pressure during 70% of the time from the start of blowing is set at 10 to 20 kgf/
The average flow rate at cJ was 0.05 N as in the above example.
m3/n+1n-t, then increase the pressure to 3 to 5 kgf
0.01 to 0.02 Nm, which is the minimum flow rate necessary to reduce the pressure to /d and prevent the tuyere from clogging.
The weight was reduced to /1n・[.

吹錬終了時の溶鋼の成分を分析し、炭素濃度と燐濃度と
の関係を求めた。その結果を第5図に示す。図に示され
るように、この発明により比較方法に較べ燐濃度を低く
できこの発明の方法が脱燐特性に優れていることがわか
る。
The components of the molten steel at the end of blowing were analyzed, and the relationship between carbon concentration and phosphorus concentration was determined. The results are shown in FIG. As shown in the figure, it can be seen that the method of the present invention can lower the phosphorus concentration compared to the comparative method, and that the method of the present invention has excellent dephosphorization properties.

なお、この発明の方法の対象となるのは転炉のみに限ら
ず、例えば取鋼精錬を行う場合についてもこの発明の方
法を実施することができる。
Note that the method of the present invention is applicable not only to converters, but can also be applied to, for example, steel refining.

(発明の効果) 精錬容器内の溶鉄浴中へ酸素を含む気体を高圧下に吹き
込むことによって、それによる溶鉄のIIR炭反応に寄
与させるほか羽口の溶1qをクーラントの使用の有無に
拘わらず有効に抑制し、とくに第2発明により、クーラ
ント不使用の場合においてより有効な溶損防止の下に羽
目の耐用寿命を長くすることができる。
(Effect of the invention) By blowing oxygen-containing gas into the molten iron bath in the refining vessel under high pressure, in addition to contributing to the IIR coal reaction of the molten iron, 1q of the molten iron in the tuyere is blown into the molten iron bath with or without coolant. In particular, according to the second aspect of the present invention, it is possible to effectively prevent melting damage and extend the service life of the siding even when no coolant is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は気体顕熱によるマツシュルームへの冷却効果と
吹込み気体流量の関係に及ぼす圧力の影響を示すグラフ
、 第2図は火点からの輻射による羽目への熱流束と吹込み
気体流量の関係に及ぼす圧力の影響を示ずグラフ、 第3図は底吹き羽口の内管径をパラメータとする吹込み
気体の流量圧力相関図であり、第4図は底吹ぎ羽口の代
表例をあられ寸断面図、第5図は脱りん特性比較図であ
る。 火点、か墾On#によJ 羽口への扼U友束(KW) 05  20   40   60    Bo   
  f00吹込升圧力(Kとaがう 第4図 (A) 第4図 (B) 吹止C製炭(%ン
Figure 1 is a graph showing the influence of pressure on the relationship between the cooling effect on pine mushrooms due to gas sensible heat and the flow rate of blown gas. Figure 2 is a graph showing the relationship between the heat flux to the siding due to radiation from the fire point and the flow rate of blown gas. The graph does not show the influence of pressure on the relationship. Figure 3 is a flow rate and pressure correlation diagram of the blown gas with the inner pipe diameter of the bottom blowing tuyere as a parameter, and Figure 4 is a typical example of a bottom blowing tuyere. FIG. 5 is a cross-sectional view of a hailstone, and FIG. 5 is a comparison diagram of dephosphorization characteristics. Fire point, Kaden On # J Yuzuka to the tuyere (KW) 05 20 40 60 Bo
f00 Blow-in pressure (K and a Fig. 4 (A) Fig. 4 (B) Blow-off C coal production (%

Claims (1)

【特許請求の範囲】 1、容器底部に配設した羽口から精錬容器内の溶鉄の浴
中に酸素又は酸素を含む気体を底吹きする際、該気体を
羽口入口において少なくとも30kgf/cm^2の高
圧下に供給することを特徴とする、精錬容器内の溶鉄中
への気体吹込み方法。 2、羽口として、酸素又は酸素を含む気体とこれを外包
する羽口冷却ガスとの同心状噴出に役立つ多重管羽口を
用いる1記載の方法。 3、容器底部に配設した羽口から精錬容器内の溶鉄の浴
中に酸素又は酸素を含む気体を底吹きする際、該気体を
、単管羽口を通しその入口にて少くとも50kgf/c
m^2の高圧を実質的に全吹込み期間中にわたり維持し
つつ、供給することを特徴とする、精錬容器内の溶鉄中
への気体吹込み方法。
[Claims] 1. When bottom-blowing oxygen or a gas containing oxygen into the molten iron bath in the refining container from the tuyere provided at the bottom of the container, the gas is supplied at a rate of at least 30 kgf/cm^ at the tuyere inlet. 2. A method for blowing gas into molten iron in a refining vessel, characterized by supplying the gas under high pressure. 2. The method according to 1, in which a multi-tube tuyere is used as the tuyere, which serves for concentric ejection of oxygen or a gas containing oxygen and a tuyere cooling gas surrounding the same. 3. When bottom-blowing oxygen or a gas containing oxygen into the molten iron bath in the refining vessel from the tuyere provided at the bottom of the vessel, the gas is passed through the single-tube tuyere and at least 50 kgf/ c.
A method for blowing gas into molten iron in a refining vessel, characterized by supplying gas while maintaining a high pressure of m^2 over substantially the entire blowing period.
JP20953084A 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel Granted JPS6187810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20953084A JPS6187810A (en) 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20953084A JPS6187810A (en) 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel

Publications (2)

Publication Number Publication Date
JPS6187810A true JPS6187810A (en) 1986-05-06
JPH0445564B2 JPH0445564B2 (en) 1992-07-27

Family

ID=16574314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20953084A Granted JPS6187810A (en) 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel

Country Status (1)

Country Link
JP (1) JPS6187810A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153818A (en) * 1983-02-21 1984-09-01 Nippon Steel Corp Refining process in top and bottom-blown converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153818A (en) * 1983-02-21 1984-09-01 Nippon Steel Corp Refining process in top and bottom-blown converter

Also Published As

Publication number Publication date
JPH0445564B2 (en) 1992-07-27

Similar Documents

Publication Publication Date Title
WO2011049240A1 (en) Top lance for refining and method for refining molten iron using same
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
JP4273688B2 (en) Converter blowing method
JP2006249568A (en) Method for producing molten iron having low phosphorus
US4420334A (en) Method for controlling the bottom-blowing gas in top-and-bottom blown converter steel making
JPH10310812A (en) Method for improving recovery of afterburning heat in vessel providing lance
JPS6187810A (en) Method for blowing gas into molten iron in refining vessel
JPS58130216A (en) Refining method of high alloy steel and stainless steel
JP5915568B2 (en) Method of refining hot metal in converter type refining furnace
TW200525041A (en) Method for producing low carbon steel
JP3309301B2 (en) Converter refining method and refining lance
JPH0124855B2 (en)
JP2002012907A (en) Method for operating metal melting furnace, smelting furnace, refining furnace and vacuum refining furnace
JPS6056051A (en) Production of medium- and low-carbon ferromanganese
JPH03274218A (en) Multiple purpose three-ply pipe lance
KR100225249B1 (en) Remaining slag control method of of slopping control
JPH0440407B2 (en)
JPS6067609A (en) Refinement of molten metal bath
JPS59185718A (en) Method for blowing gas into molten iron in steel manufacture vessel
JP4686873B2 (en) Hot phosphorus dephosphorization method
JP2002069525A (en) Top-blown lance for dephosphorizing molten iron and method for dephosphorizing molten iron
JP4244546B2 (en) Top blowing lance for converter smelting
JPS6056009A (en) Steel making method
JPS5833290B2 (en) Oxygen bottom blowing converter
JPH1192815A (en) Converter blowing for restraining generation of dust

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees