JPH0445564B2 - - Google Patents

Info

Publication number
JPH0445564B2
JPH0445564B2 JP59209530A JP20953084A JPH0445564B2 JP H0445564 B2 JPH0445564 B2 JP H0445564B2 JP 59209530 A JP59209530 A JP 59209530A JP 20953084 A JP20953084 A JP 20953084A JP H0445564 B2 JPH0445564 B2 JP H0445564B2
Authority
JP
Japan
Prior art keywords
tuyere
gas
blowing
oxygen
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59209530A
Other languages
Japanese (ja)
Other versions
JPS6187810A (en
Inventor
Yasuo Kishimoto
Yoshihide Kato
Tetsuya Fujii
Yasuhiro Kakio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP20953084A priority Critical patent/JPS6187810A/en
Publication of JPS6187810A publication Critical patent/JPS6187810A/en
Publication of JPH0445564B2 publication Critical patent/JPH0445564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 転炉の如き精錬容器の底部に配設した羽口(以
下底吹き羽口という)から該容器の内部に受入れ
た溶鉄の浴中に、酸素を含む気体を吹込むことに
より該溶鉄の精錬反応を進行させその間における
底吹き羽口の溶損の有効な抑制に関してこの明細
書で述べる技術内容は、該気体の高圧吹込みの有
用性についての開発研究の成果を提案するところ
にある。 近時、転炉に代表される精錬容器の炉底から
ArやN2ガスを底吹きする一方炉上からは上吹き
ランスによつて酸素を吹込む複合吹錬法が工業的
に広く行なわれている。 この複合吹錬法によれば溶鉄からの脱炭を低炭
素濃度まで行なつても鉄が過剰に酸化するような
ことはなく、またスプラツシユの発生が少いこと
から鉄保留も良好で、更に底吹きされる不活性ガ
スによる溶鉄の撹拌効果でスラグ−メタル反応が
促進され、精錬効果が良好であるなどの種々の利
益が得られる。 (従来の技術) この複合吹錬法を実施すするために不可欠な底
吹き羽口としては、金属製のパイプや多孔質の耐
火物製のいわゆるポーラスプラグが用いられた
が、何れにも次のような問題があつた。 すなわち、金属製パイプは安価であるという利
点がある反面、とくに流量を絞つたときに転炉内
の溶鉄がパイプの中空孔内に差し込んで、羽口の
閉塞を生じるおそれがあり、流量を変化させて調
整し得る範囲が狭いという欠点がある。 一方特開昭57−200533号公報に示されたような
ポーラスプラグは、流量を絞つても羽口の閉塞を
生じるおそれはなく、流量を調整し得る範囲が広
いという利点がある反面、高価につくという欠点
がある。 加えてこれらの羽口は何れも転炉の炉底耐火物
と較べた場合に、耐用寿命がより短く、炉底の耐
火物が未だ健全であるにも拘わらず、底吹きの羽
口の寿命がいち早く到来してしまうために、炉体
を不経済にも交換するほかには、羽口を閉塞して
底吹き不活性ガスの吹込みを停止し、上吹きラン
イのみから吹込む酸素による不満足な精錬を継続
することが余儀なくされてしまう。 発明者らは、底吹き羽口の溶損防止に有効で、
かつ、広い範囲での吹込み流量の調整ができる製
鋼容器内溶鉄中への気体吹き込み方法についてさ
きに特願昭58−61482号に提案した。この方法は、
内径が3mm以下の羽口管を用い、かつその羽口管
の入口の気体圧力が全吹込み期間の少くとも一部
の期間において50Kgf/cm2以上となるように不活
性ガスなどの気体を吹き込むものである。 この方法においては、ガス吹き込み流量を広い
範囲で調整することができ、したがつて脱燐及び
脱硫率ないしは鉄歩留の向上など、目的に応じた
吹錬を行うことができ、さらには、不活性ガスな
どの吹込み用底吹き羽口の溶損を防止して羽口の
耐用寿命を長くすることができる長所を有する
が、その反面従来の転炉底部からの不活性ガスの
吹き込みと同様、撹拌効果の増強にも役立つ酸素
を転炉底部より製鋼容器中に吹きこむ方法に比べ
たとき、単なる撹拌を司る不活性ガスは溶鉄と反
応しないため、経済的に劣る問題点があつた。 また撹拌効果を増強しつつ精錬容器内の溶鉄と
反応する酸素を吹込む場合は、底吹き羽口を冷却
してその溶損を防ぐための冷却ガス(以下クーラ
ントという)が必要であつて、このクーラントは
経済的に少い方が望ましい。 (発明が解決しようとする問題点) この発明は、底吹き羽口の溶損防止に有効でか
つとくに酸素または酸素を含む気体を精錬容器内
に装入した溶鉄中へ適切に吹込む方法を与えるこ
とを目的とする。 (問題点を解決するための手段) 上記の目的は次の各方法によつて有利に成就さ
れる。 1 容器底部に配設した羽口から精錬容器内の溶
鉄の浴中に酸素を60vol%以上含む気体を底吹
きする際、羽口として、酸素を含む気体とこれ
を外包する羽口冷却ガスとの同心状噴出に役立
つ多重管羽口を用いて、酸素を含む気体を羽口
入口において少なくとも30Kgf/cm2の高圧下に
供給することを特徴とする、精錬容器内の溶鉄
中への気体吹込み方法(第1発明) であり、 2 容器底部に配設した羽口から精錬容器内の溶
鉄の浴中に酸素を60vol%以上含む気体を底吹
きする際、該気体を、単管羽口を通しその入口
にて少くとも50Kgf/cm2の高圧を実質的に全吹
込み期間中にわたり維持しつつ、供給すること
を特徴とする、精錬容器内の溶鉄中への気体吹
込み方法。(第2発明) ここに酸素を含む気体というのは、純酸素ない
しはO2が少なくとも60vol%を占め残りは例えば
N2,Arなどの不活性気体などの混合気体よりな
る高濃度酸素含有気体を指す。O2と不活性ガス
との混合比に関してはO2の全吹込み気体に占め
る割合が60vol%をこえる方が次のように有利で
ある。 すなわちO2比率が多いほど同一流量でも鋼浴
中のと反応し酸素量の2倍のCOガスになるた
め撹拌力が増加する。また不活性ガスより安価で
あるので、この点でコスト的にも有利となる。 一方、O2の反応熱によつて羽口の溶損量が多
くなるので一般的にはO2を多くするのは不利で
あるが、この発明ではこの溶損を減少するのに羽
口入側のガス圧を高圧とした。 なお、この高圧吹込みは設備費とランニングコ
ストは増加するわけであるが、上記のメリツトと
デメリツトを考え合せるとO2の全吹込み気体中
に占める割合は60Vol%をこえることがのぞまし
いわけである。 さて発明者らは、種々の実験検討を行い、とく
に底吹き羽口の径を小さくし、酸素又は酸素を含
む気体の圧力を大きくすることによつて、羽口の
溶損を抑制し得ることを見出した。 その理由としては、次のことが考えられる。 第一に、羽口に送られる酸素を含む気体の圧力
を高くすると、羽口出口での酸素を含む気体の膨
張による吸熱効果が大きく、羽口の冷却効果が向
上する。換言すると羽口の径を小さくし高圧を適
用すると、羽口の単位断面積当り質量流量が増加
して、酸素を含む気体による羽口の冷却効果が向
上する上に高圧気体は流速が大きく、そのため気
体と底吹き羽口の管体内壁との間の伝熱係数が大
きくなり、それによつても上記気体が羽口を冷却
する効果も向上する。 第2に羽口に送られる酸素を含む気体の圧力を
高くすると、羽口先端で酸素を含む気体の膨張に
よる吸熱効果によつて羽口先端に生成されるいわ
ゆるマツシユルームとよばれる凝固鉄が生成する
ことが注目される。 すなわち、発明者らは、溶鋼を用いたホツトモ
デル実験によつて、酸素を含む気体の圧力が30〜
100Kgf/cm2の場合と、10〜15Kgf/cm2との場合
とについてのマツシユルーム生成への影響を調べ
たところ、第1図A及びBに見られるように上記
気体の顕熱によるマツシユルームへの冷却効果に
著しく違いが生じることを見出した。 第1図Aに示されるように圧力が30〜100Kg
f/cm2の場合における上記気体のマツシユルーム
への冷却効果は第1図Bに示される圧力が10〜20
Kgf/cm2の場合と比較してはるかに大きくなる。
このためとくに圧力を30〜100Kg/cm2にした場合
には、気体のマツシユルームへの冷却効果は火点
からの輻射や溶鋼からの対流熱伝達よりも大きく
なつて、安定したマツシユルームが羽口先端に適
切に生成される。 これに反し圧力を10〜15Kg/cm2にした場合、マ
ツシユルームへの冷却効果は、火点からの輻射と
溶鋼からの対流熱伝達よりも小さくなつて羽口先
端における満足なマツシユルームは生成され得な
い。 一般に底吹き羽口より酸素を吹込む場合、その
先端にマツシユルームが安定に生成されないと、
火点からの輻射や火点で生成される酸化鉄によつ
て羽口近傍の耐火物が他の部分の耐火物よりも早
く溶損することとなり、そのため羽口自体の溶損
も早められてしまうこととなる。 第3に、羽口から溶鉄中に吹き込まれる酸素を
含む気体の噴出流の挙動の違いに起因し、吹込み
ガスの圧力を高くした方が、羽口の溶損が少なく
なる。 すなわち、既に述べたホツトモデル実験から圧
力が30〜100Kgf/cm2の場合と、10〜15Kgf/cm2
の場合とでは第2図A及びBに見られるように、
酸素を吹きこんだときの火点からの輻射による羽
口への熱流束に、違いが生じることがわかつた。 第2図Aに示されるように圧力が30〜100Kg
f/cm2の場合は、火点からの輻射による羽口への
熱流束はガスジエツト領域が長いために火点の位
置が遠ざかり、一方圧力が10〜15Kgf/cm2の場合
にはガスジエツト領域が短くなり第2図Bに示す
ように火点からの輻射による羽口への熱流束がよ
り多くなる。 したがつて羽口の溶損は、圧力が30〜100Kg
f/cm2の場合に比べて圧力が10〜15Kgf/cm2の場
合には、早められてしまうことになる。 第1図Aにおけるマツシユルームへの冷却効果
および第2図Aに示す底吹き羽口への熱流束低減
の効果はともに酸素又は酸素を含む気体の圧力が
高い程、有効であるが、一般に上記の実験結果に
従い、上記冷却効果が上記熱流束を上まわつて、
羽口先端に適切なマツシユルームの生成を確保す
るためには、酸素を含む気体の供給圧力を、少く
とも30Kgf/cm2とすることが必要で、このとき底
吹き羽口が酸素を含む気体に対しこれを外包する
クーラントとの同心状噴出を行う、いわゆる2重
管羽口に代表される多重管方式であれば、とくに
上記の最低圧力限界においてすらより十分な羽口
保護が達せられる。ここに羽口冷却ガスとしては
炭化水素、一酸化炭素、二酸化炭素および不活性
ガスなどが適合するが上記の高圧吹込みの下でそ
の流量は従来それに羽口冷却を全面依存した場合
と比べて大幅に節減できる。 底吹き羽口が金属製パイプよりなる単管方式の
ときは、他に羽口冷却の助成手段を欠くことを考
慮して、酸素を含む気体の供給圧力を少くとも50
Kgf/cm2とすることが、多重管方式の場合と同等
の効果を得るために必要である。 一般に、転炉底部からの撹拌ガス(時として酸
素ガスも含む)の吹込みは、次の(1)〜(3)を目的と
して行なわれる。 (1) 溶鉄の炭素濃度が低くなつても、鉄の酸化に
優先して脱炭反応を生じさせ、鉄の過剰な酸化
を防止して鉄歩留を向上させる。 (2) スラグと溶鉄との間の脱硫・脱燐反応を促進
し、不純物の除去効果を増大する。 (3) 吹錬前半におけるスロツピングの防止を図
る。 ところで転炉底部からの酸素を含む気体の吹込
みについては、酸素自体によつて溶鉄の脱炭反応
を進める。 ためにも行われる。 ここで、転炉底部からの吹込みについては、上
記(1)を目的とする場合には、吹錬後半における流
量を増大する必要がある。一方、逆に上記(2)の脱
P反応の促進を目的とする場合には、吹錬後半に
おいて流量を絞る必要があり、それというのは吹
錬後半において流量が多いと鉄の酸化が少なくな
り、スラグ中の酸化鉄濃度が低下して、脱燐が良
好に行なわれなくなるからである。 したがつて、上記(2)を目的とする場合には、上
記(3)の場合と同じく、吹錬前半において多量に吹
込み、後半には吹込み流量を減少させる必要があ
る。 この発明の方法によれば、多重管においては上
記(2)および(3)を目的とした吹き込みガス流量の調
整も、酸素のガスに対する流量比を変えれば容易
に行える。すなわち、従来の大径ノズルを用い、
低圧ガスを吹き込む方法では、吹錬の途中で吹き
込みガスの流量を大幅に減らすと、羽口が溶鉄に
よつて閉塞する恐れがあつたのに反し、この発明
の方法によればそのような恐れは全くなく、吹錬
の途中で流量を大幅に減らすことができる。 以上のことを明らかにするために、ステンレス
鋼パイプを用いて、内径が2.0mm,4mmおよび6
mmの羽口をつくり、実際の転炉において羽口から
吹き込まれる圧力と、流量との関係を測定した。
その結果を第4図に示す。 図からも明らかなように、内径が2mmと4mmと
の羽口においては圧力を多くしてもガス流量が過
剰に増大するようなことはなく、逆に、溶鉄が逆
流して、底吹き羽口の閉塞を生じない圧力を維持
したまま流量を絞ることができる。 これに対して、内径が6mmの羽口においては、
圧力を高くすると流量が過剰に増大し、また、流
量を一定以下に減らすためには、圧力を大きく減
圧しなければならず、そのため溶鉄が逆流し、羽
口が閉塞してしまう。 (実施例) さて第4図AおよびBには、この発明の実施に
供される底吹き羽口の構造を例示した。 第4図Aでは、転炉の底部鉄皮1内側を被覆す
る炉底レンガ2に羽口レンガ3を介してステンレ
ス鋼パイプ4を配設し、このステンレス鋼パイプ
4の下端部に、酸素を含む気体の送給配管5を連
結する。 また、第4図Bでは、転炉の底部鉄皮1内側を
被覆する炉底レンガ2に羽口レンガ3を介して二
重管6を配設し、この二重管6の下端部で内管に
は酸素送給配管7、外管にはクーラント送給配管
8をそれぞれ連結する。 このような構造の2種類の底吹き羽口を用い、
これらの底吹き羽口を転炉底部に配設する数と、
第4図Aの場合では、ステンレス鋼パイプ4の内
径、また、第4図Bの場合では、二重管6の内径
をそれぞれ各様に設定した。 第1実施例においては、ステンレス鋼パイプ4
の内径を2.0mm、その配設本数を8本、第2,第
3実施例においては、ステンレス鋼パイプ4の内
径を4.0mmその配設本数を3本とした何れも単管
方式、また第4実施例では、二重管6の内径を
2.0mm、その配設本数を8本、第5,第6各実施
例においては、二重管6の内径を4.0mm、その配
設本数を5本とそれぞれ設定した多重管方式とし
て、以下の精錬を行つた。なお各実施例とも、ス
テンレス鋼パイプ4および二重管6の外管の材質
にはSUS 304を、二重管6の内の材質には銅パ
イプを用いた。 一方、第1,第2比較例としてSUS 304を用
いおのおの内径4.0mmとしたステンレス鋼パイプ
4を、転炉底部に10本また、第3比較例として二
重管6の内管の内径4.0mmとしたものを転炉底部
に10本設置し、上記各実施例と同様に溶銑に対す
る吹錬に供した。 各実施例及び比較例において、精錬を行つた溶
銑の温度は1250℃〜1330℃、吹錬時間は13〜16
分、出鋼温度は1650〜1730℃であつた。 吹錬の条件を表1にまとめて示す。
(Industrial application field) Blowing gas containing oxygen into a bath of molten iron received into the inside of a smelting vessel such as a converter through a tuyere (hereinafter referred to as bottom blowing tuyere) placed at the bottom of the vessel. The technical contents described in this specification regarding the progress of the refining reaction of the molten iron and the effective suppression of melting loss of the bottom blowing tuyere during this process propose the results of development research on the usefulness of high-pressure blowing of the gas. It's there. Recently, from the bottom of a refining vessel such as a converter,
The combined blowing method, in which Ar or N 2 gas is blown from the bottom while oxygen is blown from the top of the furnace using a top-blowing lance, is widely used industrially. According to this composite blowing method, even if the molten iron is decarburized to a low carbon concentration, the iron will not be excessively oxidized, and since there is little splash, iron retention is good. The slag-metal reaction is promoted by the stirring effect of the molten iron by the bottom-blown inert gas, and various benefits such as a good refining effect are obtained. (Prior art) Metal pipes and so-called porous plugs made of porous refractories have been used as the bottom blowing tuyere, which is essential for carrying out this composite blowing method. I had a problem like this. In other words, while metal pipes have the advantage of being inexpensive, there is a risk that, especially when the flow rate is reduced, molten iron in the converter may enter the hollow hole of the pipe and clog the tuyeres, making it difficult to change the flow rate. The disadvantage is that the range in which it can be adjusted is narrow. On the other hand, the porous plug shown in Japanese Patent Application Laid-Open No. 57-200533 has the advantage that there is no risk of clogging the tuyere even if the flow rate is restricted, and the flow rate can be adjusted over a wide range, but it is expensive. There is a drawback that it sticks. In addition, all of these tuyeres have a shorter service life when compared to the bottom refractory of a converter, and even though the bottom refractory is still sound, the lifespan of the bottom blowing tuyere is In addition to uneconomically replacing the furnace body, the tuyeres are blocked to stop the injection of bottom-blown inert gas, which causes unsatisfactory oxygen flow only from the top-blowing run. I am forced to continue refining. The inventors found that the method is effective in preventing erosion of the bottom blowing tuyere,
In addition, we previously proposed in Japanese Patent Application No. 1982-61482 a method for blowing gas into molten iron in a steelmaking vessel, which allows the blowing flow rate to be adjusted over a wide range. This method is
Use a tuyere pipe with an inner diameter of 3 mm or less, and inject a gas such as an inert gas so that the gas pressure at the inlet of the tuyere pipe is 50 Kgf/cm 2 or more during at least a part of the entire blowing period. It is something to be instilled. In this method, the gas blowing flow rate can be adjusted over a wide range, and therefore blowing can be carried out according to the purpose, such as improving the dephosphorization and desulfurization rate or iron yield. It has the advantage of preventing melting of the bottom blowing tuyeres for blowing active gas, etc., and extending the service life of the tuyere, but on the other hand, it is similar to the conventional blowing of inert gas from the bottom of the converter. Compared to the method of blowing oxygen into the steelmaking vessel from the bottom of the converter, which also helps to enhance the stirring effect, this method was economically inferior because the inert gas that merely controls stirring does not react with the molten iron. In addition, when blowing oxygen that reacts with the molten iron in the refining vessel while enhancing the stirring effect, a cooling gas (hereinafter referred to as coolant) is required to cool the bottom blowing tuyere and prevent its melting. From an economical perspective, it is desirable to use a small amount of this coolant. (Problems to be Solved by the Invention) The present invention provides a method for appropriately blowing oxygen or a gas containing oxygen into molten iron charged into a smelting vessel, which is effective in preventing erosion of the bottom blowing tuyeres. The purpose is to give. (Means for Solving the Problems) The above objectives are advantageously achieved by the following methods. 1. When bottom-blowing a gas containing 60 vol% or more of oxygen into the molten iron bath in the refining container from the tuyere installed at the bottom of the container, the tuyere is used to cool the tuyere and the oxygen-containing gas surrounding it. Gas blowing into molten iron in a refining vessel characterized by supplying oxygen-containing gas under high pressure of at least 30 Kgf/cm 2 at the tuyere inlet using a multi-tube tuyere serving for concentric ejection of molten iron. 2. When bottom-blowing a gas containing 60 vol% or more of oxygen into the molten iron bath in the refining container from the tuyere arranged at the bottom of the container, the gas is A method for blowing gas into molten iron in a smelting vessel, characterized in that a high pressure of at least 50 Kgf/cm 2 is maintained at the inlet of the molten iron through a smelting vessel during substantially the entire blowing period. (Second invention) Here, the gas containing oxygen means that at least 60 vol% of pure oxygen or O2 is present, and the remainder is, for example,
Refers to a highly concentrated oxygen-containing gas consisting of a mixture of inert gases such as N 2 and Ar. Regarding the mixing ratio of O 2 and inert gas, it is advantageous for the proportion of O 2 to exceed 60 vol % in the total blown gas as follows. In other words, as the O 2 ratio increases, even at the same flow rate, it reacts with C in the steel bath and becomes CO gas with twice the amount of oxygen, so the stirring power increases. Furthermore, since it is cheaper than inert gas, it is advantageous in terms of cost. On the other hand, it is generally disadvantageous to increase the amount of O 2 because the reaction heat of O 2 increases the amount of erosion in the tuyere. The gas pressure on the side was set to high pressure. Although this high-pressure injection increases equipment costs and running costs, considering the above advantages and disadvantages, it is desirable that the proportion of O 2 in the total blown gas exceeds 60 Vol%. be. The inventors have conducted various experimental studies and found that it is possible to suppress the erosion of the tuyere by reducing the diameter of the bottom blowing tuyere and increasing the pressure of oxygen or oxygen-containing gas. I found out. Possible reasons for this are as follows. First, when the pressure of the oxygen-containing gas sent to the tuyere is increased, the heat absorption effect due to the expansion of the oxygen-containing gas at the tuyere outlet is large, and the cooling effect of the tuyere is improved. In other words, by reducing the diameter of the tuyere and applying high pressure, the mass flow rate per unit cross-sectional area of the tuyere increases, which improves the cooling effect of the tuyere by oxygen-containing gas, and the high-pressure gas has a high flow rate. Therefore, the heat transfer coefficient between the gas and the inner wall of the tube of the bottom blowing tuyere increases, which also improves the effectiveness of the gas in cooling the tuyere. Second, when the pressure of the oxygen-containing gas sent to the tuyere is increased, solidified iron, called pine room, is generated at the tuyere tip due to the endothermic effect caused by the expansion of the oxygen-containing gas at the tuyere tip. It is noteworthy that That is, the inventors conducted a hot model experiment using molten steel and found that the pressure of oxygen-containing gas
When we investigated the effects on pine room formation in the case of 100 Kgf/cm 2 and in the case of 10 to 15 Kgf/cm 2 , we found that the sensible heat of the gas mentioned above affects the pine room, as seen in Figure 1 A and B. It was found that there was a significant difference in the cooling effect. As shown in Figure 1A, the pressure is 30~100Kg.
The cooling effect of the above gas on the pine room in the case of f/cm 2 is as shown in Figure 1B when the pressure is 10 to 20.
It is much larger than the case of Kgf/cm 2 .
For this reason, especially when the pressure is set to 30 to 100 kg/ cm2 , the cooling effect of the gas on the pine room becomes greater than the radiation from the fire point or the convective heat transfer from the molten steel, and a stable pine room forms at the tip of the tuyere. properly generated. On the other hand, when the pressure is set to 10 to 15 Kg/ cm2 , the cooling effect on the pine room becomes smaller than the radiation from the fire point and the convective heat transfer from the molten steel, and a satisfactory pine room cannot be generated at the tip of the tuyere. do not have. Generally, when blowing oxygen from the bottom blowing tuyere, if a pine room is not stably generated at the tip,
The radiation from the fire point and the iron oxide produced at the fire point cause the refractory near the tuyere to erode faster than the refractory in other parts, and as a result, the tuyere itself erodes faster. That will happen. Thirdly, due to the difference in the behavior of the jet flow of oxygen-containing gas blown into the molten iron from the tuyere, the higher the pressure of the blown gas, the less the erosion of the tuyere. That is, from the hot model experiment already mentioned, there are cases where the pressure is 30 to 100 Kgf/ cm2 and cases where the pressure is 10 to 15 Kgf/ cm2.
As seen in Figure 2 A and B,
It was found that there is a difference in the heat flux to the tuyere due to radiation from the fire point when oxygen is blown into the tuyere. As shown in Figure 2A, the pressure is 30~100Kg.
f/cm 2 , the heat flux to the tuyeres due to radiation from the fire point moves away from the fire point due to the long gas jet area, while when the pressure is 10-15 Kgf/cm 2 , the gas jet area is As shown in Figure 2B, the heat flux to the tuyere due to radiation from the fire point increases. Therefore, the erosion of the tuyeres occurs when the pressure is 30 to 100 kg.
When the pressure is 10 to 15 kgf/cm 2 , the speed is accelerated compared to when the pressure is 10 to 15 kgf/cm 2 . The cooling effect on the pine room shown in Figure 1A and the effect of reducing the heat flux to the bottom blowing tuyere shown in Figure 2A are both more effective as the pressure of oxygen or oxygen-containing gas is higher; According to the experimental results, the cooling effect exceeds the heat flux,
In order to ensure the formation of an appropriate pine room at the tip of the tuyere, the supply pressure of the oxygen-containing gas must be at least 30 kgf/ cm2 , and at this time, the bottom blowing tuyere must be supplied with the oxygen-containing gas. On the other hand, in the case of a multi-tube system represented by a so-called double-tube tuyere, which performs concentric jetting with the surrounding coolant, more sufficient tuyere protection can be achieved even at the above-mentioned minimum pressure limit. Hydrocarbons, carbon monoxide, carbon dioxide, and inert gases are suitable as the tuyere cooling gas, but under the above-mentioned high-pressure injection, the flow rate is lower than in the conventional case where tuyere cooling was completely dependent on it. Significant savings can be made. When the bottom blowing tuyere is a single-pipe type consisting of a metal pipe, the supply pressure of the oxygen-containing gas should be set to at least 50°C, taking into account the lack of other means to assist in cooling the tuyere.
Kgf/cm 2 is necessary in order to obtain the same effect as the multi-tube system. Generally, stirring gas (sometimes also containing oxygen gas) is injected from the bottom of the converter for the following purposes (1) to (3). (1) Even when the carbon concentration of molten iron is low, decarburization takes precedence over iron oxidation, preventing excessive oxidation of iron and improving iron yield. (2) Promotes desulfurization and dephosphorization reactions between slag and molten iron, increasing the effect of removing impurities. (3) Aim to prevent slopping in the first half of blowing. By the way, regarding the injection of gas containing oxygen from the bottom of the converter, the decarburization reaction of the molten iron is promoted by the oxygen itself. It is also done for the sake of Here, regarding the blowing from the bottom of the converter, if the above objective (1) is to be achieved, it is necessary to increase the flow rate in the latter half of the blowing. On the other hand, if the purpose is to promote the dephosphorization reaction in (2) above, it is necessary to reduce the flow rate in the latter half of blowing, because if the flow rate is high in the latter half of blowing, oxidation of iron will be reduced This is because the iron oxide concentration in the slag decreases and dephosphorization cannot be performed satisfactorily. Therefore, when aiming at the above (2), it is necessary to blow a large amount in the first half of the blowing and reduce the blowing flow rate in the second half, as in the case of the above (3). According to the method of the present invention, in a multiple pipe, the flow rate of the blown gas for the purposes of (2) and (3) above can be easily adjusted by changing the flow rate ratio of oxygen to gas. In other words, using a conventional large diameter nozzle,
In the method of blowing low-pressure gas, there was a risk that the tuyere would be clogged with molten iron if the flow rate of the blowing gas was significantly reduced during blowing, but the method of the present invention eliminates this risk. There is no flow rate at all, and the flow rate can be significantly reduced during blowing. In order to clarify the above, we used stainless steel pipes with inner diameters of 2.0 mm, 4 mm and 6 mm.
A tuyere of mm was made, and the relationship between the pressure injected from the tuyere and the flow rate in an actual converter was measured.
The results are shown in FIG. As is clear from the figure, even if the pressure is increased in the tuyeres with inner diameters of 2 mm and 4 mm, the gas flow rate does not increase excessively; on the contrary, the molten iron flows backwards and The flow rate can be reduced while maintaining a pressure that does not cause oral obstruction. On the other hand, for a tuyere with an inner diameter of 6 mm,
If the pressure is increased, the flow rate increases excessively, and in order to reduce the flow rate below a certain level, the pressure must be greatly reduced, which causes molten iron to flow backwards and clog the tuyere. (Example) Now, FIGS. 4A and 4B illustrate the structure of a bottom blowing tuyere used for carrying out the present invention. In FIG. 4A, a stainless steel pipe 4 is installed through a tuyere brick 3 to a hearth brick 2 covering the inside of the bottom shell 1 of the converter, and oxygen is supplied to the lower end of the stainless steel pipe 4. A gas supply pipe 5 containing the gas is connected. In addition, in FIG. 4B, a double pipe 6 is installed through a tuyere brick 3 to the hearth brick 2 that covers the inside of the bottom shell 1 of the converter, and the lower end of this double pipe 6 is connected to the inside of the bottom shell 1. An oxygen supply pipe 7 is connected to the pipe, and a coolant supply pipe 8 is connected to the outer pipe. Using two types of bottom blowing tuyere with such a structure,
The number of these bottom blowing tuyeres arranged at the bottom of the converter,
In the case of FIG. 4A, the inner diameter of the stainless steel pipe 4, and in the case of FIG. 4B, the inner diameter of the double pipe 6 were set variously. In the first embodiment, the stainless steel pipe 4
In the second and third embodiments, the inner diameter of the stainless steel pipe 4 was 4.0 mm and the number of pipes was 3. In the fourth embodiment, the inner diameter of the double pipe 6 is
2.0 mm, and the number of pipes arranged is 8. In the fifth and sixth embodiments, the inner diameter of the double pipe 6 is set to 4.0 mm, and the number of pipes arranged is 5. I did some refining. In each of the examples, SUS 304 was used as the outer tube material of the stainless steel pipe 4 and the double tube 6, and copper pipe was used as the inside material of the double tube 6. On the other hand, as first and second comparative examples, 10 stainless steel pipes 4 each made of SUS 304 were installed at the bottom of the converter, and as a third comparative example, the inner diameter of the double pipe 6 was 4.0 mm. Ten of them were installed at the bottom of the converter, and the hot metal was subjected to blowing in the same manner as in each of the above examples. In each example and comparative example, the temperature of the hot metal that was refined was 1250°C to 1330°C, and the blowing time was 13 to 16°C.
The tapping temperature was 1650-1730℃. The blowing conditions are summarized in Table 1.

【表】 各実施例及び比較例とも所定のチヤージ間隔に
て羽口の残長さの測定を行い、羽口の溶損速度を
求めた。その結果も表1にあわせ示した。表1中
のバーンバツクは、羽口材が酸素と反応して急速
溶損する現象をいう。 以上の結果から明らかなように、単管羽口は50
Kgf/cm2以上、二重管羽口は30Kgf/cm2以上とす
れば比較例の溶損速度に較べ、各実施例における
溶損速度は、はるかに低く、しかもそのばらつき
も少なくなる。 特に二重管における第4実施例、第5実施例は
単管における第1,第2実施例よりもさらに溶損
速度は小さくばらつきも小さい。従つて単管同様
の溶損速度を期待するなら全吸込み全期間中30Kg
f/cm2とする必要はなく一部の期間でよい。また
単管における第1実施例、第2実施例も同じく単
管である比較例1,3よりも溶損速度ははるかに
小さく、とくに外管よりクーラントを流している
二重管で行つた比較例2に比べても小さくなつて
いる。 上記各実施例で実証したように、この発明に従
い、単管方式では溶鉄中へ吸込む気体の羽口管内
圧力を実質的に全吸込み期間中50Kgf/cm2以上と
なるように設定し、一方、多重管にあつては溶鉄
中に気体を吹込む羽口管内圧力を30Kgf/cm2以上
とする期間は、その目的に応じて任意に設定する
ことができる。 次に羽口の径、配設本数などの吹錬の条件は、
前記した第4実施例と同じく主として、スラグ・
メタル間の脱りん反応の促進と、スロツピングの
防止とを目的とする吹錬を次のように実施した。 対象となる溶銑の成分は、C 4.2%〜4.4%,
Si 0.15%〜0.38%,Mn 0.31%〜0.48%,P
0.09%〜0.11%,S 0.02%〜0.04%であり、吹
錬終了後の溶鋼成分のC濃度は0.05%〜0.11%、
温度は1690℃〜1720℃であつた。 この発明の方法を実施した吹錬においては、吹
錬開始時から吹錬終了後までの全期間のうち、吹
錬開始時から7割の時間における圧力を60〜90Kg
f/cm2、ガス流量を平均0.05Nm3/min・tとし、
その後の圧力を10〜15Kgf/cm2に減圧し、また流
量を0.003〜0.005Nm3/min・tに減量した。一
方、比較方法としては、吹錬開始時から7割の時
間における圧力を10〜20Kgf/cm2において流量を
上記実施例と同様平均0.05Nm3/min・tとし、
その後圧力を3〜5Kgf/cm2に減圧して、羽口が
閉塞しないようにするために必要な最小の流量で
ある0.01〜0.02Nm3/min・tに減量した。 吹錬終了時の溶鋼の成分を分析し、炭素濃度と
燐濃度との関係を求めた。その結果を第5図に示
す。図に示されるように、この発明により比較方
法に較べ燐濃度を低くできこの発明の方法が脱燐
特性に優れていることがわかる。 なお、この発明の方法の対象となるのは転炉の
みに限らず、例えば取鍋精錬を行う場合について
もこの発明の方法を実施することができる。 (発明の効果) 精錬容器内の溶鉄浴中へ酸素を含む気体を高圧
下に吹き込むことによつて、それによる溶鉄の脱
炭反応に寄与させるほか羽口の溶損をクーラント
の使用の有無に拘わらず有効に抑制し、とくに第
2発明により、クーラント不使用の場合において
より有効な溶損防止の下に羽口の耐用寿命を長く
することができる。
[Table] In each Example and Comparative Example, the remaining length of the tuyere was measured at a predetermined charge interval, and the erosion rate of the tuyere was determined. The results are also shown in Table 1. Burnback in Table 1 refers to a phenomenon in which the tuyere material reacts with oxygen and is rapidly eroded. As is clear from the above results, the single pipe tuyere is 50
Kgf/cm 2 or more, and the double pipe tuyere is 30 Kgf/cm 2 or more, the erosion rate in each example is much lower than that of the comparative example, and its variation is also reduced. In particular, the fourth and fifth embodiments using double pipes have a lower melting rate and less variation than the first and second embodiments using single pipes. Therefore, if you expect the same erosion rate as a single pipe, 30 kg during the entire suction period.
It is not necessary to set it to f/cm 2 and only a part of the period is sufficient. In addition, the erosion rate of the first and second embodiments, which are single tubes, is much lower than that of Comparative Examples 1 and 3, which are also single tubes.Especially, the comparison made with double tubes in which coolant is flowing from the outer tube. It is also smaller than Example 2. As demonstrated in the above embodiments, according to the present invention, in the single pipe method, the pressure inside the tuyere pipe of the gas sucked into the molten iron is set to be 50 Kgf/cm 2 or more during substantially the entire suction period, and on the other hand, In the case of multiple pipes, the period during which the pressure inside the tuyere pipe for blowing gas into the molten iron is maintained at 30 Kgf/cm 2 or more can be arbitrarily set depending on the purpose. Next, the blowing conditions such as the diameter of the tuyere and the number of tuyeres installed are as follows.
As in the fourth embodiment described above, mainly slag and
Blowing was carried out as follows for the purpose of promoting the dephosphorization reaction between metals and preventing slopping. The target hot metal components are C 4.2% to 4.4%,
Si 0.15%~0.38%, Mn 0.31%~0.48%, P
0.09% to 0.11%, S 0.02% to 0.04%, and the C concentration of the molten steel component after blowing is 0.05% to 0.11%.
The temperature was 1690°C to 1720°C. In blowing using the method of this invention, the pressure during 70% of the time from the start of blowing to the end of blowing is 60 to 90 kg.
f/cm 2 , the average gas flow rate is 0.05Nm 3 /min・t,
Thereafter, the pressure was reduced to 10 to 15 Kgf/cm 2 and the flow rate was reduced to 0.003 to 0.005 Nm 3 /min·t. On the other hand, as a comparison method, the pressure during 70% of the time from the start of blowing was set to 10 to 20 Kgf/cm 2 and the flow rate was set to an average of 0.05 Nm 3 /min·t as in the above example.
Thereafter, the pressure was reduced to 3 to 5 Kgf/cm 2 to reduce the flow rate to 0.01 to 0.02 Nm 3 /min·t, which is the minimum flow rate necessary to prevent the tuyere from clogging. The components of the molten steel at the end of blowing were analyzed, and the relationship between carbon concentration and phosphorus concentration was determined. The results are shown in FIG. As shown in the figure, it can be seen that the method of the present invention can lower the phosphorus concentration compared to the comparative method, and that the method of the present invention has excellent dephosphorization properties. Note that the method of the present invention is applicable not only to converters, but also for ladle refining, for example. (Effect of the invention) By blowing oxygen-containing gas under high pressure into the molten iron bath in the refining vessel, it not only contributes to the decarburization reaction of the molten iron, but also reduces the erosion of the tuyere depending on whether or not coolant is used. In particular, according to the second invention, the service life of the tuyere can be extended while more effectively preventing melting damage when no coolant is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気体顕熱によるマツシユルームへの冷
却効果と吹込み気体流量の関係に及ぼす圧力の影
響を示すグラフ、第2図は火点からの輻射による
羽口への熱流束と吹込み気体流量の関係に及ぼす
圧力の影響を示すグラフ、第3図は底吹き羽口の
内管径をパラメータとする吹込み気体の流量圧力
相関図であり、第4図は底吹き羽口の代表例をあ
らわす断面図、第5図は脱りん特性比較図であ
る。
Figure 1 is a graph showing the influence of pressure on the relationship between the cooling effect on the pine room due to gas sensible heat and the blown gas flow rate, and Figure 2 is a graph showing the heat flux to the tuyere due to radiation from the fire point and the blown gas flow rate. Figure 3 is a graph showing the effect of pressure on the relationship between The cross-sectional view shown in FIG. 5 is a comparison diagram of dephosphorization characteristics.

Claims (1)

【特許請求の範囲】 1 容器底部に配設した羽口から精錬容器内の溶
鉄の浴中に酸素を60vol%以上含む気体を底吹き
する際、 羽口として、酸素を含む気体とこれを外包する
羽口冷却ガスとの同心状噴出に役立つ多重管羽口
を用いて、酸素を含む気体を羽口入口において少
なくとも30Kgf/cm2の高圧下に供給する ことを特徴とする、精錬容器内の溶鉄中への気体
吹込み方法。 2 容器底部に配設した羽口から精錬容器内の溶
鉄の浴中に60vol%以上の酸素を含む気体を底吹
きする際、 該気体を、単管羽口を通しその入口にて少くと
も50Kgf/cm2の高圧を実質的に全吹込み期間中に
わたり維持しつつ、供給する ことを特徴とする、精錬容器内の溶鉄中への気体
吹込み方法。
[Scope of Claims] 1. When a gas containing 60 vol% or more of oxygen is bottom-blown into a bath of molten iron in a refining container from a tuyere provided at the bottom of the container, the gas containing oxygen and the outer envelope thereof are used as the tuyeres. in the refining vessel, characterized in that the oxygen-containing gas is supplied at the tuyere inlet under a high pressure of at least 30 Kgf/cm 2 by means of a multi-tube tuyere serving for concentric ejection with the tuyere cooling gas. Method of blowing gas into molten iron. 2. When bottom-blowing a gas containing 60 vol% or more oxygen into the molten iron bath in the refining vessel from the tuyere located at the bottom of the vessel, the gas shall be passed through the single-pipe tuyere to a rate of at least 50 kgf at its inlet. 1. A method for blowing gas into molten iron in a refining vessel, the method comprising supplying gas while maintaining a high pressure of /cm 2 during substantially the entire blowing period.
JP20953084A 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel Granted JPS6187810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20953084A JPS6187810A (en) 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20953084A JPS6187810A (en) 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel

Publications (2)

Publication Number Publication Date
JPS6187810A JPS6187810A (en) 1986-05-06
JPH0445564B2 true JPH0445564B2 (en) 1992-07-27

Family

ID=16574314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20953084A Granted JPS6187810A (en) 1984-10-05 1984-10-05 Method for blowing gas into molten iron in refining vessel

Country Status (1)

Country Link
JP (1) JPS6187810A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153818A (en) * 1983-02-21 1984-09-01 Nippon Steel Corp Refining process in top and bottom-blown converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153818A (en) * 1983-02-21 1984-09-01 Nippon Steel Corp Refining process in top and bottom-blown converter

Also Published As

Publication number Publication date
JPS6187810A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
KR101018535B1 (en) Refining ferroalloys
JP4715384B2 (en) Method for dephosphorizing hot metal and top blowing lance for dephosphorization
EP0874060A1 (en) Foamy slag process using multi-circuit top-blowing oxygen lance
TWI333981B (en) Method for producing low carbon steel
US3661560A (en) Manganese control in basic steelmaking process
JPH0445564B2 (en)
JPS5931810A (en) Steel making method with converter
JPH0124855B2 (en)
JPH0440407B2 (en)
JPH0355538B2 (en)
JPS59185718A (en) Method for blowing gas into molten iron in steel manufacture vessel
JP4686873B2 (en) Hot phosphorus dephosphorization method
JP2002285215A (en) Method for dephosphorizing molten iron
JP2746630B2 (en) Melting method of ultra low carbon steel by vacuum degassing
CN1087682A (en) The method of blowing oxidizing gases in the molten metal
JPS6056009A (en) Steel making method
JPS6217463Y2 (en)
JP2561032Y2 (en) Lance for steel making
JP2000119725A (en) Converter steelmaking method with high productivity
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JPH1192815A (en) Converter blowing for restraining generation of dust
SU1289891A1 (en) Method of steel melting in converter
JPS6176608A (en) Method for protecting tuyere of converter for steel making
JP4862860B2 (en) Converter blowing method
JPS60194009A (en) Method for refining stainless steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees