JPS6187379A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6187379A
JPS6187379A JP20942184A JP20942184A JPS6187379A JP S6187379 A JPS6187379 A JP S6187379A JP 20942184 A JP20942184 A JP 20942184A JP 20942184 A JP20942184 A JP 20942184A JP S6187379 A JPS6187379 A JP S6187379A
Authority
JP
Japan
Prior art keywords
film
gate electrode
active layer
mask
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20942184A
Other languages
Japanese (ja)
Inventor
Kohei Nagata
幸平 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP20942184A priority Critical patent/JPS6187379A/en
Publication of JPS6187379A publication Critical patent/JPS6187379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0891Source or drain regions of field-effect devices of field-effect transistors with Schottky gate

Abstract

PURPOSE:To reduce the diffusion of ions from the end surface of a gate electrode, and to obtain an element operating at high speed and having low power consumption by applying a film having small implantation stopping power onto an active layer and the surface of a gate electrode and implanting ions while using the film as a mask to form source-drain regions. CONSTITUTION:An active layer 2 is shaped to a semiconductor substrate 1, a Schottky barrier type gate electrode 3 on the active layer is formed, a film 7 having small implantation stopping power is applied onto the active layer 2 and the gate electrode 3, and ions are implanted while employing the film 7 as a mask to shape source-drain regions. A film such as a photo-resist film is used as said film 7 having small implantation stopping power. Consequently, ions are implanted sufficiently up to the central section of a semiconductor through the film thickness of a mask material even when the film thickness of the mask material is thickened while a distance from a gate end is taken in long size because of the thick mask material, thus minimally inhibiting an extent in the lateral direction. Accordingly, a semiconductor device operating at high speed and having low power consumption is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法であり、特に電界効果ト
ランジスタ(FF、T)のセルフアライメントによる製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a field effect transistor (FF, T) by self-alignment.

従来、セルフアライメント方式によるショットキー障壁
型ゲート電極FETでは、ソース領域とドレイン領域を
ゲート電極をマスクにしてセルフアライメントのイオン
注入方法により形成するのが一般的である。
Conventionally, in a self-alignment Schottky barrier type gate electrode FET, the source region and drain region are generally formed by a self-alignment ion implantation method using the gate electrode as a mask.

然しなから、高速動作で且つ低消費電力で動作するFB
Tの構造では、ゲート電極、lを1μm以下にする必要
があり、この場合には従来のソース、ドレイン電極を形
成するイオン注入法では、イオンの横方向の拡がりがあ
って、しきい値電圧の低下を来し、又ゲート電極を形成
後に酸化膜を形成してマスクとしてイオン注入を行うこ
とも考處されるが、この場合も成る程度の横方向の拡が
りは抑止されるが直列抵抗が増加するなどの欠点があり
、これの改善が要望されている。
However, an FB that operates at high speed and with low power consumption
In the T structure, the gate electrode, l, needs to be 1 μm or less, and in this case, in the conventional ion implantation method for forming source and drain electrodes, the ions spread in the lateral direction, causing the threshold voltage to decrease. It is also considered to form an oxide film after forming the gate electrode and use it as a mask for ion implantation, but in this case as well, the lateral spread is suppressed to a certain extent, but the series resistance is There are drawbacks such as an increase in the amount of energy used, and improvement of this is desired.

〔従来の技術〕[Conventional technology]

第3図fa)〜第3図(C)は従来のセルフアライメン
ト方式によるショットキーゲート電界効果トランジスタ
の製造方法を説明するための断面図を示している。
FIGS. 3fa) to 3(C) show cross-sectional views for explaining a method of manufacturing a Schottky gate field effect transistor using a conventional self-alignment method.

第3図ta>は、半絶縁性ガリウム砒素(GaAs)基
板lの表面に矢印のように、シリコンイオンを加速電圧
60Kevでドーズ量8xlO” /−を注入して活性
化を行い、活性層2を形成したものである。
Figure 3 shows activation by injecting silicon ions into the surface of a semi-insulating gallium arsenide (GaAs) substrate l at an acceleration voltage of 60 Kev and a dose of 8xlO''/- as shown by the arrow, and forming an active layer 2. was formed.

第3図山)は、その後工程でスパッタリング法により高
融点金属として、例えばタングステンシリサイド(WS
i)を被着し、ドライエツチングを行ってゲート電極3
を形成する。
For example, tungsten silicide (WS
i) is deposited and dry etched to form the gate electrode 3.
form.

第3図(C)は、前記活性層よりも深い部分に、シリコ
ンイオンを加速電圧175KeV、 ドーズ量1.8x
lO13/、Jで注入を行い、ソース領域4とドレイン
領域5を形成する。
In FIG. 3(C), silicon ions are accelerated at a voltage of 175 KeV and at a dose of 1.8x in a part deeper than the active layer.
Implantation is performed with lO13/, J to form source region 4 and drain region 5.

第4図はゲート幅が20μmで、ゲート長を変化させた
場合に、FETのしきい値電圧(Vth)が変化する関
係を示したものであるが、従来の場合は第4図のa線で
あるが、ゲート長が1μm以下になるとvthが急激に
低下するが、これはソース、ドレイン電極を形成するた
めにイオン注入を行ったことにより、ゲート端面の横方
向の拡がりの影響が強くなったことにより、実効ゲート
長が実際のゲート長よりも極端に短くなったためにvt
hが低下したものであり、これはFETにおける短ゲー
ト効果が強く現れたことによる。
Figure 4 shows the relationship in which the threshold voltage (Vth) of the FET changes when the gate width is 20 μm and the gate length is changed. However, when the gate length becomes 1 μm or less, vth decreases rapidly, but this is because ion implantation was performed to form the source and drain electrodes, and the influence of the lateral spread of the gate end face becomes stronger. As a result, the effective gate length became extremely shorter than the actual gate length.
h has decreased, and this is due to the strong short gate effect in the FET.

第5図はゲート電極3のゲート長が1μmで、従来方法
によるソース4とドレイン5の領域を注入で形成した場
合の注入イオン濃度を等濃度線で図示したものであるが
、図から横方向の拡がりによりイオン濃度1015/c
I11の等濃度線の場合の実効ゲート電極長は、ゲート
電極の長さが約1μmでも実効ゲート長はLは約0.4
 μmに短くなる。
Figure 5 shows the implanted ion concentration using isoconcentration lines when the gate length of the gate electrode 3 is 1 μm and the source 4 and drain 5 regions are formed by implantation using the conventional method. Due to the spread of the ion concentration 1015/c
The effective gate electrode length in the case of the isoconcentration line of I11 is approximately 1 μm, but the effective gate length L is approximately 0.4
It becomes short to μm.

注入条件が同じであれば、横方向の拡がりは同じである
からゲート長が1μm以下になると実効ゲート長は極端
に短くなることになる。
If the implantation conditions are the same, the lateral spread is the same, so when the gate length is 1 μm or less, the effective gate length becomes extremely short.

第6図は横方向の拡がりを少な(する方法として、前記
と同様に活性層2、ゲート電極3を形成した後、二酸化
シリコン膜6を1500人を形成して、注入マスクとし
、前記同様の注入条件でソース4とドレイン5を形成し
た注入イオンの等濃度線を表示している。
FIG. 6 shows a method for reducing lateral expansion. After forming the active layer 2 and gate electrode 3 in the same manner as described above, a silicon dioxide film 6 of 1,500 layers is formed and used as an implantation mask. Isoconcentration lines of implanted ions forming the source 4 and drain 5 under implantation conditions are displayed.

第6図から、イオン濃度10”’/an!がゲート端か
ら約0.15μm入り込んでいるが、これは前記方法に
比較すると約半分に成っているが、ソース4とドレイン
5の領域の注入bツ度が薄くなるという欠点がある。
From FIG. 6, it can be seen that the ion concentration of 10''/an! penetrates about 0.15 μm from the gate edge, which is about half compared to the method described above, but the implantation in the source 4 and drain 5 regions It has the disadvantage of becoming thinner.

即ち、直列抵抗が高くなるわけで、従ってこの状態では
、高速動作と低消費電力の素子は得られないという不具
合がある。
That is, the series resistance increases, and therefore, in this state, there is a problem that a device with high speed operation and low power consumption cannot be obtained.

゛(発明が解決しようとする問題点〕 上記の構成のFETの活性領域の形成のためにイオン注
入をする際に、ゲート電極端面からのイオンの拡散が問
題点である。
(Problems to be Solved by the Invention) When ions are implanted to form the active region of the FET having the above structure, diffusion of ions from the end face of the gate electrode is a problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解消した半導体装置の製造方法を
提供するもので、その手段は、半導体基板に活性層を形
成し、該活性層上にショットキー障壁型ゲート電極を形
成した後、前記活性層及びゲート電極の表面を注入阻止
能の小なる膜を被着し、線膜をマスクとしてイオン注入
を行って前記領域を形成することを特徴とする半導体装
置の製造方法によって達成できる。
The present invention provides a method for manufacturing a semiconductor device that solves the above problems, and the method includes forming an active layer on a semiconductor substrate, forming a Schottky barrier type gate electrode on the active layer, and then This can be achieved by a method of manufacturing a semiconductor device characterized in that the regions are formed by depositing a film with a low injection blocking ability on the surfaces of the active layer and the gate electrode, and performing ion implantation using the line film as a mask.

〔作用〕[Effect]

本発明は、上記の構成のFETの活性領域の形成のため
にイオン注入をする際のマスクを二酸化シリコン膜を使
用する代わりに、Rpが大きいホトレジストをマスク膜
に使用することにより、横方向への拡がりを最小にした
セルフアライメントFETを考慮したものである。
In the present invention, instead of using a silicon dioxide film as a mask when performing ion implantation to form the active region of the FET having the above structure, a photoresist with a large Rp is used as a mask film, so that the ion implantation can be performed in the lateral direction. This takes into account a self-alignment FET that minimizes the spread of.

〔実施例〕〔Example〕

従来のイオン注入の方法では、ゲート電極の横方向の拡
がりがあり、二酸化シリコンのマスクを使用した場合で
も、ゲート電極の端面から拡がりが発生しているので、
マスクの膜厚を厚くすれば、ゲートの横方向の拡がりは
抑止できるが、前記のごとくソースとドレイン領域の直
列抵抗が大きくなるが、このことは、マスク材料のイオ
ン平均投影飛程(以後Rpと称する)が半導体のRpと
比較して1.28程度とあまり差がないために、マスク
材料に注入イオンが阻止されることにより、半導体の内
部への注入イオンが小になり、ソース、ドレイン領域る
抵抗が大きくなる。
In the conventional ion implantation method, the gate electrode spreads in the lateral direction, and even when a silicon dioxide mask is used, the spread occurs from the end face of the gate electrode.
If the film thickness of the mask is increased, the lateral expansion of the gate can be suppressed, but as mentioned above, the series resistance of the source and drain regions becomes large. Since the Rp of the semiconductor (referred to as The resistance in the area increases.

そこで、半導体のRpに比較して大きなRpを有するマ
スク材料を用いればよく、そのためにはマスク材料の膜
厚を厚くしても、マスク材料の膜厚を通して半導体の中
心部までイオンが十分に注入され、一方マスク材料が厚
いための利点として、ゲート端からの距離が長く取れる
ので横方向の拡がりを最小限に抑止できることになる。
Therefore, it is sufficient to use a mask material that has a large Rp compared to the Rp of the semiconductor, and for this purpose, even if the film thickness of the mask material is thick, ions can be sufficiently implanted through the film thickness of the mask material to the center of the semiconductor. On the other hand, an advantage of the thick mask material is that it allows a long distance from the gate edge, so lateral spread can be suppressed to a minimum.

第1図は本発明の詳細な説明するための断面図であり、
第2図は本発明を用いてイオン注入した場合の注入イオ
ンの等濃度線である。
FIG. 1 is a sectional view for explaining the present invention in detail,
FIG. 2 shows isoconcentration lines of implanted ions when ions are implanted using the present invention.

注入条件は、前記と同様であり、マスク材料として、半
導体のRpとの比でフォトレジスト膜を選定したが、こ
れのマスク材料と半導体とのRpとの比は5.24であ
る。
The implantation conditions were the same as above, and a photoresist film was selected as the mask material based on the ratio of Rp of the semiconductor to 5.24.

従ってフォトレジスト7を3000人の膜厚でマスクと
じて形成した場合であるが、第1図でわかるようにゲー
ト端からの横方向の注入イオンの拡がりは殆どなく、又
ソース4、ドレイン5領域も従来方法と比較して殆ど差
が認められない。
Therefore, when the photoresist 7 is formed with a mask to a thickness of 3000, as can be seen in FIG. There is almost no difference compared to the conventional method.

第4図に本発明を用いた、ゲート長を変化した場合のv
th依存性をbで示しているが、従来方法に比較して実
効ゲート長が長いために、vthの急激な低下がない。
Figure 4 shows v when the gate length is changed using the present invention.
The th dependence is indicated by b, and since the effective gate length is longer than in the conventional method, there is no sudden drop in vth.

第2図はフォトレジスト膜のマスク膜厚を3000人と
して注入条件を前記同様に加速電圧を175KeV、ド
ーズ量1.8xlO” / crAにした場合の、横軸
ニマスク材料と半導体とのRpの比率であり、縦軸はマ
スクがない状態で注入した際のソース、ドレイン領域の
直列抵抗を100%とした場合のRpを変化と直列抵抗
の変化の割合を示しているが、Rp比が5以上になると
直列抵抗が90%以上になり、Rp比が5以上が最適で
あることが判る。
Figure 2 shows the ratio of Rp between the mask material and the semiconductor on the horizontal axis when the mask thickness of the photoresist film is 3000, and the implantation conditions are the acceleration voltage of 175KeV and the dose of 1.8xlO''/crA as described above. The vertical axis shows the change in Rp and the ratio of change in series resistance when the series resistance of the source and drain regions when implanted without a mask is taken as 100%. It can be seen that the series resistance becomes 90% or more, and the optimum Rp ratio is 5 or more.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の製造方法を採用す
ることにより、高速動作、低消費電力の半導体装置を供
し得るという効果大なるものがある。
As described in detail above, by employing the manufacturing method of the present invention, there is a great effect that a semiconductor device with high speed operation and low power consumption can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のイオン注入方法を説明するための断面
図、 第2図はRpと直列抵抗との関係図、 第3図は従来の製造方法を説明するための断面図、 第4図はゲート長としきい値電圧との関係図、第5図、
第6図は従来のイオン注入方法を説明するための断面図
、 図において、1は半絶縁性基板、2は活性領域、。 3はゲート電極、4はソース領域、5はドレイン領域、
6は二酸化シリコン膜、7はフォトレジスト膜をそれぞ
れ示す。 第1図 第2図 Rp比 第3図 第4閃 プ″ニド長(pm) 第5図 第6ryl
Fig. 1 is a cross-sectional view for explaining the ion implantation method of the present invention, Fig. 2 is a diagram of the relationship between Rp and series resistance, Fig. 3 is a cross-sectional view for explaining the conventional manufacturing method, Fig. 4 is a relationship diagram between gate length and threshold voltage, Figure 5.
FIG. 6 is a cross-sectional view for explaining the conventional ion implantation method. In the figure, 1 is a semi-insulating substrate, 2 is an active region. 3 is a gate electrode, 4 is a source region, 5 is a drain region,
Reference numeral 6 indicates a silicon dioxide film, and reference numeral 7 indicates a photoresist film. Figure 1 Figure 2 Rp ratio Figure 3 Figure 4 Flash length (pm) Figure 5 Figure 6 Ryl

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板に活性層を形成し、該活性層上にショ
ットキー障壁型ゲート電極を形成した後、前記活性層及
びゲート電極の表面上に注入阻止能の小なる膜を被着し
た後、該膜をマスクとしてイオン注入を行ってソース、
ドレイン領域を形成することを特徴とする半導体装置の
製造方法。
(1) After forming an active layer on a semiconductor substrate and forming a Schottky barrier type gate electrode on the active layer, a film with low injection blocking ability is deposited on the surfaces of the active layer and gate electrode. , Ion implantation is performed using the film as a mask to form a source,
A method of manufacturing a semiconductor device, comprising forming a drain region.
(2)前記半導体装置の製造方法において、サブミクロ
ンのゲート長を形成する場合に、活性層及びゲート電極
の表面を被着する膜と、半導体基板のイオン平均投影飛
程の比が5以上であることを特徴とする特許請求の範囲
第1項記載の半導体装置の製造方法。
(2) In the method for manufacturing a semiconductor device, when forming a submicron gate length, the ratio of the ion average projected range of the film covering the surfaces of the active layer and gate electrode to that of the semiconductor substrate is 5 or more. A method for manufacturing a semiconductor device according to claim 1, characterized in that:
(3)前記半導体装置の製造方法において、注入阻止能
の小なる膜としてフォトレジスト膜を使用することを特
徴とする特許請求の範囲第1項記載の半導体装置の製造
方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein a photoresist film is used as the film having a small injection blocking ability.
JP20942184A 1984-10-04 1984-10-04 Manufacture of semiconductor device Pending JPS6187379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20942184A JPS6187379A (en) 1984-10-04 1984-10-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20942184A JPS6187379A (en) 1984-10-04 1984-10-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6187379A true JPS6187379A (en) 1986-05-02

Family

ID=16572590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20942184A Pending JPS6187379A (en) 1984-10-04 1984-10-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6187379A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267982A (en) * 1975-12-03 1977-06-06 Sanyo Electric Co Ltd Manufacture of schottky barrier type field effect transistor
JPS57143868A (en) * 1981-03-03 1982-09-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS5851572A (en) * 1981-09-22 1983-03-26 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267982A (en) * 1975-12-03 1977-06-06 Sanyo Electric Co Ltd Manufacture of schottky barrier type field effect transistor
JPS57143868A (en) * 1981-03-03 1982-09-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of field-effect transistor
JPS5851572A (en) * 1981-09-22 1983-03-26 Fujitsu Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP3223329B2 (en) Method of manufacturing MOSFET
US5001077A (en) Method of producing an asymmetrically doped LDD MESFET
JP2510599B2 (en) Field effect transistor
JPS6187379A (en) Manufacture of semiconductor device
JPS59144175A (en) Manufacture of field effect transistor
JPH02138752A (en) Field-effect transistor
JPH01212470A (en) Mos transistor and manufacture thereof
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH01283944A (en) Manufacture of semiconductor device
JP3432043B2 (en) Method for manufacturing semiconductor device
JPS63132478A (en) Surface superlattice mis type fet
KR101026373B1 (en) Semiconductor device having low voltage recessed gate and method of fabricating the same
JPH0474441A (en) Semiconductor device
JPS60234374A (en) Manufacture of semiconductor device
KR940006683B1 (en) Structure nand type rom cell and fabricating method thereof
JPS6159881A (en) Semiconductor device and manufacture thereof
JPH02121369A (en) Mis type field effect transistor
JPS61152079A (en) Manufacture of schottky gate type fet
JPS63302574A (en) Manufacture of schottky barrier gate field effect transistor
JPS61222176A (en) Schottky gate field effect transistor and manufacture thereof
JPS6261370A (en) Gaas field effect semiconductor device
JP2004047621A (en) Semiconductor device and manufacturing method thereof
KR19980066418A (en) Method of manufacturing semiconductor device with improved performance in cell region and peripheral region
JPH06132524A (en) Manufacture of semiconductor device