JPS6187366A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6187366A
JPS6187366A JP20802484A JP20802484A JPS6187366A JP S6187366 A JPS6187366 A JP S6187366A JP 20802484 A JP20802484 A JP 20802484A JP 20802484 A JP20802484 A JP 20802484A JP S6187366 A JPS6187366 A JP S6187366A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
magnesium
aluminum
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20802484A
Other languages
Japanese (ja)
Inventor
Masahiro Akitani
昌宏 秋谷
Hiroaki Nakamura
宏明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20802484A priority Critical patent/JPS6187366A/en
Publication of JPS6187366A publication Critical patent/JPS6187366A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device capable of satisfying both conditions of low contact resistance and low resistivity by using a wiring metal containing Mg and Al. CONSTITUTION:A conductive layer formed to the upper surface and the contact hole 5 of an insulating layer 2 is shaped in constitution containing aluminum and magnesium so as to be electrically connected to an internal region in a semiconductor substrate 1 through the contact hole 5 for the insulating layer 2 on the surface of the semiconductor substrate. The conductive layer such as a Mg depositing layer 3 is filled into the contact hole 5 bored to the insulating layer 2, and formed so as to cover the upper surface of the insulating layer 2, and a thicker Al depositing layer 4 is shaped while covering the Mg depositing layer 3, thus shaping the conductive layer having two layer structure. The lower surface of the Mg depositing film 3 filled into the contact hole 5 is brought directly into contact with the surface of the Si substrate as a foundation.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置及びその製造方法に係り、特に、半
導体IC(集積回路)に用いる配線金属の抵抗率を小さ
くすると同時にSi面とのフンタクト抵抗を小さくする
ことを図った半導体装置及びその製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and in particular, to reduce the resistivity of wiring metal used in semiconductor ICs (integrated circuits) and at the same time reduce the direct resistance with the Si plane. The present invention relates to a semiconductor device and a method for manufacturing the same that aim to reduce the size of the semiconductor device.

〔発明の背景〕[Background of the invention]

81基板を用いる半導体1cにおいて配線金属は、Si
面と接触させた時のコンタクト抵抗並びにIC上を引き
廻した時の配線抵抗を減少させるという、両者の条件を
満たすことが必要である。
In the semiconductor 1c using the 81 substrate, the wiring metal is Si
It is necessary to satisfy both conditions of reducing the contact resistance when making contact with a surface and the wiring resistance when being routed over an IC.

第5図に、従来用いられているA!!、 Ti 、 M
o等の配線材料金属のコンタクト抵抗ρC及び抵抗率ρ
を示す。コンタクト抵抗ρ。とじてはこれまでに発表さ
れている文献値を用い、抵抗率ρとしてはTi。
Figure 5 shows the conventionally used A! ! , Ti, M
Contact resistance ρC and resistivity ρ of wiring material metal such as o
shows. Contact resistance ρ. For the final determination, the literature values published so far were used, and the resistivity ρ was Ti.

Moについてはンリサイドの場合について示す。第5図
より、現在量も多く用いられているA/においては、抵
抗率ρとしては最も小さく良好であるが、コンタクト抵
抗ρ。は約10−6Ω・dと高い。一方、Ti、 Mo
においては、コンタクト抵抗ρ。が5XlO−7Ω・d
と十分には低くならず、しかも抵抗率ρがTiにおいて
は30μΩ・(p 、 Moにおいては16μΩ・αと
A/に比べ5倍以上大きな値となっている。
Regarding Mo, the case of non-reside is shown. From FIG. 5, it can be seen that A/, which is currently widely used, has the smallest resistivity ρ, which is good, but the contact resistance ρ. is as high as approximately 10-6 Ω·d. On the other hand, Ti, Mo
In , the contact resistance ρ. is 5XlO-7Ω・d
Moreover, the resistivity ρ is 30 μΩ·(p) for Ti and 16 μΩ·α for Mo, which is more than 5 times larger than that of A/.

さらに、コンタクト抵抗増大の一要因となっているSi
面と配線金属との間の障壁電位差φBも、N型Siとの
接触の場合、AI、 MoではφB=o、7eV、また
TiにおいてもφB=0.5eVtif後で大きな値で
ある。このため積層化により上部に厚いA/Iliを堆
積して配線抵抗の減少を図ったとしても、51面と接触
している部分のコンタクト抵抗を大幅に低減させること
はできなかったつ 〔発明の目的〕 本発明は、従来技術での上記した問題点を解決するため
になされたもので、抵抗率の特に小さいAtを母体とし
、これに十分少さな障壁電位差(φB二0.37eV)
を持ち、かつ抵抗率(ρ=54μΩ・cm)の小さいマ
グネ/ラム(Mg)を一部に含ませる構造及び製造方法
としたもので、これにより微細化配線で要求される、低
コンタクト抵抗並びに低抵抗率の両者条件を満足させる
ことのできる半環ti装置δ及びその製造方法を提供す
ることにある。
Furthermore, Si, which is a factor in increasing contact resistance,
The barrier potential difference φB between the surface and the wiring metal is also a large value in case of contact with N-type Si, φB=o, 7 eV for AI and Mo, and also after φB=0.5 eVtif for Ti. For this reason, even if we tried to reduce the wiring resistance by depositing thick A/Ili on the top by layering, it was not possible to significantly reduce the contact resistance of the part in contact with the 51st surface. ] The present invention was made in order to solve the above-mentioned problems in the conventional technology, and uses At as a base material, which has a particularly low resistivity, and a sufficiently small barrier potential difference (φB2 0.37 eV).
It has a structure and manufacturing method that partially contains magneto/ram (Mg), which has a low resistivity (ρ = 54 μΩ・cm) and has a low resistivity (ρ = 54 μΩ・cm). The object of the present invention is to provide a half-ring Ti device δ that can satisfy both conditions of low resistivity and a method for manufacturing the same.

ここで、上記したMgの小さな障壁電位差値と小さな抵
抗率値の特性を考慮すると、Mを用いずにMgのみを用
いても本発明の目的が達成できるようにも考えられる。
Here, in consideration of the above-mentioned characteristics of Mg having a small barrier potential difference value and a small resistivity value, it is possible to achieve the object of the present invention even if only Mg is used without using Mg.

しかし、Mgは化学反応において活性度が比較的大きな
金属であるためMgのみを用いるとMgが大気中にさら
されている構造となりAI!の場合に比べて不安定とな
る。従って、本発明では、Mgの上をさらにAI!をも
って覆う構造、もしくはMgとAI!とを合金化した金
属で全体を覆う(,14造の半導体装置及びその製造方
法を採用する。
However, Mg is a metal with relatively high activity in chemical reactions, so if only Mg is used, a structure in which Mg is exposed to the atmosphere results in AI! It is unstable compared to the case of . Therefore, in the present invention, AI! Structure that covers with Mg and AI! The entire device is covered with a metal alloyed with the semiconductor device and its manufacturing method.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、半導体基板表面に絶縁層を有し、この
絶縁層に開口部を有し、この開口部を介して上記半導体
基板の内部領域と電気的に連接すべく、上記絶縁層の上
面及び上記開口部に形成される導電性層を有する半導体
装置において、導電性層がアルミニウムとマグネシウム
とを含む構成とすることにある。
The present invention is characterized by having an insulating layer on the surface of the semiconductor substrate, having an opening in the insulating layer, and connecting the insulating layer electrically to an internal region of the semiconductor substrate through the opening. In a semiconductor device having a conductive layer formed on the upper surface and the opening, the conductive layer contains aluminum and magnesium.

具体的な構成としては、導電性層が、開口部に充填され
かつ絶縁層の上面に形成された薄いマグネシウム膜と、
このマグネ/ラム膜を覆って形成された厚いアルミニウ
ム膜との2層(14造から成る構成、あるいは、開口部
の半導体基板表面と接する側にのみ形成された薄いマグ
ネシウム膜と、このマグネシウム膜の上面及び絶縁層の
上面を覆って形成された厚いアルミニウム膜とから成る
構成、あるいは、導電性層がマグネシウムとアルミニラ
iclの具体的(、“4成を得るために、半桿体JJ:
、仮表面に絶縁層を形成する工程と、この絶縁層の所定
の位置1こ開口部を設ける工程と、この開口部にのぞむ
上記半導体基板表面と、上記絶縁層の上面及び開口側端
部を葭って薄い第1のアルミニウム層を形成する工程と
、この第1のアルミニウム層を覆ってマグネシウム層を
形成する工程と、このマグネシウム層を覆って第2のア
ルミニウム層を形成する工程と、所定の温度でアニール
することにより上記第1及び第2のアルミニウム層及び
マグネシウム層を合金化させて導電性層を形成する工程
とを含む製造方法とするにある。
Specifically, the conductive layer includes a thin magnesium film filled in the opening and formed on the top surface of the insulating layer;
A two-layer structure with a thick aluminum film formed covering this Magne/RAM film, or a thin magnesium film formed only on the side of the opening in contact with the semiconductor substrate surface, and a thin magnesium film formed only on the side of the opening in contact with the semiconductor substrate surface. A structure consisting of a thick aluminum film formed over the top surface and the top surface of an insulating layer, or a structure in which the conductive layer is made of magnesium and aluminum ICl ("4", semi-rod JJ:
, a step of forming an insulating layer on a temporary surface, a step of providing an opening at a predetermined position in this insulating layer, and a step of forming an opening on the surface of the semiconductor substrate looking into the opening, and a top surface and an end of the insulating layer on the side of the opening. a step of forming a thin first aluminum layer by covering the first aluminum layer; a step of forming a magnesium layer covering the first aluminum layer; a step of forming a second aluminum layer covering the magnesium layer; and forming a conductive layer by alloying the first and second aluminum layers and the magnesium layer by annealing at a temperature of .

〔発明の実施例〕[Embodiments of the invention]

以下、第1図〜第4図により、本発明の実施例とその場
合に得られる特性とを説明する。第1図fal 、 f
b)、 lclはそれぞれ実施例構成の断面図を示して
いる。第1図において、1はSi基板、2は絶縁層、3
はMg堆積膜、4はAe堆積膜、5はコンタクトホール
、6はMとMgとの合金薄膜を示す。
Examples of the present invention and characteristics obtained therein will be described below with reference to FIGS. 1 to 4. Figure 1 fal, f
b) and lcl each show a cross-sectional view of the configuration of the embodiment. In FIG. 1, 1 is a Si substrate, 2 is an insulating layer, and 3 is a silicon substrate.
4 is an Mg deposited film, 4 is an Ae deposited film, 5 is a contact hole, and 6 is an alloy thin film of M and Mg.

第1の実施例構成である第1図ta+においては、Mg
堆積膜3が、絶縁層2にあけられたコンタクトホール5
に充填され、かつ、絶縁層2の上面を覆うように形成さ
れ、このMg堆積膜3を覆って、より厚いM堆積膜4が
形成され、2層構造の導電性層となっている。フンタク
トホール5に充填されたMg堆積膜3の下面は、直接、
下地のS1基板面と接触している。Mg堆積膜3及びM
堆積膜4は電子ビーム装置を用いて形成することができ
る。
In FIG. 1 ta+, which is the configuration of the first embodiment, Mg
The deposited film 3 forms a contact hole 5 formed in the insulating layer 2.
A thicker M deposited film 4 is formed to cover the Mg deposited film 3, forming a two-layer conductive layer. The bottom surface of the Mg deposited film 3 filled in the empty hole 5 is directly
It is in contact with the underlying S1 substrate surface. Mg deposited film 3 and M
The deposited film 4 can be formed using an electron beam device.

第3図の関係曲線は、第1図ia)に示したMg及びM
の堆積膜を4探剣法にて抵抗率ρ(/lΩ・cm)を測
定した結果を示したものである。試料としては、Mg堆
積膜3とAl堆積膜4との全体の厚さを1μm一定とし
、Mg堆積膜3の厚さtMgを変化させて抵抗率を求め
た。第3図より、Mg堆積膜の厚さtMgが03μmの
場合においても、抵抗率ρとしては純Al膜の場合に比
べて10%程度の増加に留っており、TiやMo等に比
べて格段に小さな値であることが判る。
The relationship curve in Figure 3 corresponds to the Mg and Mg shown in Figure 1 ia).
This figure shows the results of measuring the resistivity ρ (/lΩ·cm) of the deposited film using the four-probe method. As a sample, the total thickness of the Mg deposited film 3 and the Al deposited film 4 was kept constant at 1 μm, and the resistivity was determined by varying the thickness tMg of the Mg deposited film 3. From Figure 3, even when the thickness tMg of the Mg deposited film is 0.3 μm, the resistivity ρ only increases by about 10% compared to the case of pure Al film, and compared to Ti, Mo, etc. It can be seen that this value is extremely small.

第1図(blは第2の実施例構成を示し、これは、コン
タクトホール5のSi基板面に接する側にのみMg堆積
膜3が形成され、このMg堆積膜3の上面及び絶縁層2
の上面は全てAI!堆債堆積が形成される構造であり、
絶縁層2の上面にMg堆積膜を形成することによる製造
工程時の不安定さを減少させ得る効果がある。
FIG. 1 (bl shows the configuration of the second embodiment, in which the Mg deposited film 3 is formed only on the side of the contact hole 5 that is in contact with the Si substrate surface, and the upper surface of this Mg deposited film 3 and the insulating layer 2
The top surface is all AI! It is a structure in which a bank deposit is formed,
Forming the Mg deposited film on the upper surface of the insulating layer 2 has the effect of reducing instability during the manufacturing process.

第1図tc]は第3の実施例構成を示し、これは、導電
性層がAll−XMgXの合金薄膜6より成る構造であ
る。
FIG. 1tc] shows the structure of a third embodiment, in which the conductive layer is composed of an alloy thin film 6 of All-XMgX.

第21/1は第1図(C1の合金薄膜6を形成する一実
施例を説明する断面図である。第2図において、まず、
Si 24!i仮1の表面に絶縁層2を形成し、この絶
縁層2にコンタクトポール5を設ケる。次に、このコン
タクトホール5にのぞむ81基板1の表面と、コンタク
トホール5の立ち上がり部(開口側端部)と、絶縁層2
の上面を覆って薄い第1のAl堆積膜4′を形成する。
21/1 is a sectional view illustrating an example of forming the alloy thin film 6 of FIG. 1 (C1). In FIG.
Si 24! An insulating layer 2 is formed on the surface of the i temporary 1, and a contact pole 5 is provided on this insulating layer 2. Next, the surface of the 81 substrate 1 that extends into the contact hole 5, the rising part (opening side end) of the contact hole 5, and the insulating layer 2
A thin first Al deposited film 4' is formed to cover the upper surface of the substrate.

次に、この第1のAl tlli積膜4′を覆ってMg
堆積膜3を形成し、さらに、Mg堆積膜3を覆って第2
のAl堆積膜4を形成する。
Next, Mg is applied to cover this first Al tlli stack 4'.
A deposited film 3 is formed, and a second deposited film 3 is formed covering the Mg deposited film 3.
An Al deposited film 4 is formed.

次いで、所定の温度でアニールして上記第1のM堆積膜
4′、Mg#1積膜3、第2のAl堆積膜4を合金化し
て、第1図(C)に示す合金薄1摸6を形成する。
Next, the first M deposited film 4', the Mg#1 deposited film 3, and the second Al deposited film 4 are alloyed by annealing at a predetermined temperature to form the alloy thin film 1 shown in FIG. 1(C). form 6.

なお、上記実施例製造方法は、堆vi膜を3層構造に形
成しておいてアニールするとしたが、これは必らずしも
3層構造とする必要はな(,2f−構造Iこ形成してか
らアニールする方法でも合金薄膜6を形成することは可
能であり、また、スパッタリング装置により形成するこ
とも可能である。スパッタリンク装置による時は、Al
 トx M gxの合金組成比Xは、ターゲットのAt
とMgの割合によって決定される。
In addition, in the manufacturing method of the above embodiment, the deposited VI film is formed into a three-layer structure and then annealed, but this does not necessarily have to be a three-layer structure. It is possible to form the alloy thin film 6 by a method in which Al
The alloy composition ratio X of the target At
and the ratio of Mg.

第4図に示す関係曲線は、矩形の平面形状を持つフンタ
クトホールにおいて、同じSi基板を用いて純A/とM
g −A/合金薄膜をそれぞれ堆積し、コンタクト長d
(第1図及び第2図断面図におけるコンタクトホール5
の図面左右方向での寸法)を1〜10μmの範囲で変化
させ、コンタクト幅W(第1図及び第2図断面図におけ
るコンタクトホール5の図面表裏方向での寸法)を34
μm一定とした場合の、コンタクト抵抗RCOのコンタ
クト長d依存性を比較したものである。Si基板にはP
型、抵抗率ρが40〜60Ω・印のものを用い、これに
コンタクトホールを含むアイランド部にPhospho
rusを100に■、4X1016//cm−2の条件
でイオン注入し、1000c。
The relationship curve shown in Fig. 4 shows that pure A/ and M
g-A/alloy thin film is deposited, and the contact length d
(Contact hole 5 in the cross-sectional views of Figures 1 and 2)
The contact width W (the dimension in the front and back directions of the contact hole 5 in the cross-sectional views of FIGS. 1 and 2) was changed from 1 to 10 μm.
This is a comparison of the dependence of contact resistance RCO on contact length d when μm is constant. P on the Si substrate
A mold with a resistivity ρ of 40 to 60 Ω is used, and Phospho is used in the island portion including the contact hole.
rus to 100, ion implantation was performed under the conditions of 4X1016//cm-2, and 1000c.

1時間のアニールを行なった。配線形成には、リフトオ
フ工程を用い、電子ビーム装置により、純At?の場合
もMg−A/合金薄1模の場合も全体(漢厚を1μmと
した。Mg−Ae8合金薄膜おいては、それぞれの堆積
厚さがtM、 =o、3 p m + tAl−0−7
p m& 2層+fli造に形成してから230℃のン
/タリングを行なった。
Annealing was performed for 1 hour. For wiring formation, a lift-off process is used and an electron beam device is used to form pure At? In the case of Mg-A/alloy thin 1 model, the total thickness is 1 μm.In the case of Mg-Ae8 alloy thin film, each deposited thickness is tM, = o, 3 p m + tAl-0 -7
After forming a p m & 2 layer + fli structure, it was subjected to printing/taring at 230°C.

第4図を見て明らかなように、Mg−Al合金薄膜はd
)5.7zmにおいて純Mの場合に比べてコンタクト抵
抗値RCOは%以下と小さく、電1ん集中を考iW L
だ分布定数解法により求めた以下の(1)〜(3)式。
As is clear from Figure 4, the Mg-Al alloy thin film is d
) At 5.7zm, the contact resistance value RCO is as small as % or less compared to the case of pure M, and considering the concentration of current iW L
The following equations (1) to (3) were obtained using the distributed constant solution method.

Rc(、==Zo−cothけ、 d )     ・
・−・= mγ−(「zば     ・・・・・・・・
(3)より、面積換算のコンタクト抵抗ρ。は、第4図
の実測値を代入して。
Rc(,==Zo-cothke, d) ・
・−・= mγ−(``zba ・・・・・・・・・
From (3), the contact resistance ρ in terms of area. By substituting the measured values in Fig. 4.

Alの場合  ρ。、、 = 2 X 10−6Ω・d
Mg  Alの場合ρ。lilg−Az::2.5 X
 10−7Ω・dとなり、Mに比べMg−Al合金薄膜
の方が約1桁小さくなり、10−7Ω・4台の値を得る
ことができる。
In case of Al, ρ. ,, = 2 x 10-6Ω・d
For MgAl, ρ. lilg-Az::2.5X
The resistance value of the Mg-Al alloy thin film is about one order of magnitude smaller than that of M, and a value in the order of 10-7Ω·4 can be obtained.

なお、(2L (31式中のR8はコンタクト面のノー
ト抵抗である。
Note that (2L (R8 in formula 31 is the note resistance of the contact surface).

〔発明の効果〕〔Effect of the invention〕

以上説明したように、半導体装置にlVigとAtの両
者を含む配線金属を用いることは、配線金属としての必
須条件である低コ/タクト抵抗、低抵抗率の条件を十分
満足するものであり、従来のAI!を単独に用いる場合
に比べ、抵抗率はほぼ同等で、コンタクト抵抗を1桁程
度小さくすることが可能となり、微細化配線、多層配線
等において有用である。
As explained above, using a wiring metal containing both lVig and At in a semiconductor device satisfies the requirements of low co/tact resistance and low resistivity, which are essential conditions for a wiring metal. Conventional AI! The resistivity is almost the same and the contact resistance can be reduced by about an order of magnitude compared to the case of using only one of the two, making it useful for miniaturized wiring, multilayer wiring, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例図で(a)はMgとAj’の2
重溝造の、+b)はMgをコンタクトホール中へ埋込む
iia造の、icl It Mg−At合金膜構造の断
面図、第膜厚依存性を示す曲線図、第4図は純AI!及
びMg−AJ金合金コンタクト抵抗の比較曲線図、第5
1z1は従来の配線金属の抵抗率とコンタクト抵抗との
関連説明図である。 く符号の説明〉 l・・・Si基板 2・・絶縁層 3・・Mg堆積膜 4 、4’−AI!It膜 5・・コンタクトホール
Fig. 1 is an embodiment of the present invention, and (a) shows the 2 of Mg and Aj'.
+b) is a cross-sectional view of the ICL It Mg-At alloy film structure of IIA construction, in which Mg is buried in the contact hole, and a curve diagram showing the dependence on film thickness. Figure 4 is pure AI! and Mg-AJ gold alloy contact resistance comparison curve diagram, No. 5
1z1 is an explanatory diagram of the relationship between the resistivity of a conventional wiring metal and the contact resistance. Explanation of symbols> l...Si substrate 2...Insulating layer 3...Mg deposited film 4, 4'-AI! It film 5...contact hole

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板表面に絶縁層を有し、この絶縁層に開
口部を有し、この開口部を介して上記半導体基板の内部
領域と電気的に連接すべく、上記絶縁層の上面及び上記
開口部に形成される導電性層を有する半導体装置におい
て、導電性層がアルミニウムとマグネシウムを含むこと
を特徴とする半導体装置。
(1) An insulating layer is provided on the surface of the semiconductor substrate, an opening is provided in the insulating layer, and the upper surface of the insulating layer and the A semiconductor device having a conductive layer formed in an opening, the conductive layer containing aluminum and magnesium.
(2)前記導電性層が、前記開口部に充填されかつ前記
絶縁層の上面に形成された薄いマグネシウム膜と、この
マグネシウム膜を覆って形成された厚いアルミニウム膜
との2層構造から成ることを特徴とする特許請求の範囲
第1項記載の半導体装置。
(2) The conductive layer has a two-layer structure including a thin magnesium film filled in the opening and formed on the upper surface of the insulating layer, and a thick aluminum film formed to cover this magnesium film. A semiconductor device according to claim 1, characterized in that:
(3)前記導電性層が、前記開口部の半導体基板表面と
接する側にのみ形成された薄いマグネシウム膜と、この
マグネシウム膜の上面及び前記絶縁層の上面を覆って形
成された厚いアルミニウム膜とから成ることを特徴とす
る特許請求の範囲第1項記載の半導体装置。
(3) The conductive layer includes a thin magnesium film formed only on the side of the opening in contact with the semiconductor substrate surface, and a thick aluminum film formed covering the upper surface of the magnesium film and the upper surface of the insulating layer. A semiconductor device according to claim 1, characterized in that the semiconductor device comprises:
(4)前記導電性層が、マグネシウムとアルミニウムと
の合金から成ることを特徴とする特許請求の範囲第1項
記載の半導体装置。
(4) The semiconductor device according to claim 1, wherein the conductive layer is made of an alloy of magnesium and aluminum.
(5)半導体基板表面に絶縁層を形成する工程と、この
絶縁層の所定の位置に開口部を設ける工程と、この開口
部にのぞむ上記半導体基板表面と、上記絶縁層の上面及
び開口側端部を覆って薄い第1のアルミニウム層を形成
する工程と、この第1のアルミニウム層を覆ってマグネ
シウム層を形成する工程と、このマグネシウム層を覆っ
て第2のアルミニウム層を形成する工程と、次に所定の
温度でアニールすることにより上記第1のアルミニウム
層と上記マグネシウム層と上記第2のアルミニウム層と
を合金化させてアルミニウムとマグネシウムの合金から
なる導電性層を形成する工程とを含むことを特徴とする
半導体装置の製造方法。
(5) a step of forming an insulating layer on the surface of the semiconductor substrate; a step of providing an opening at a predetermined position in the insulating layer; and a step of forming an opening on the surface of the semiconductor substrate looking into the opening, an upper surface of the insulating layer, and an end on the side of the opening. forming a thin first aluminum layer over the first aluminum layer; forming a magnesium layer over the first aluminum layer; forming a second aluminum layer over the magnesium layer; Next, by annealing at a predetermined temperature, the first aluminum layer, the magnesium layer, and the second aluminum layer are alloyed to form a conductive layer made of an alloy of aluminum and magnesium. A method for manufacturing a semiconductor device, characterized in that:
JP20802484A 1984-10-05 1984-10-05 Semiconductor device and manufacture thereof Pending JPS6187366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20802484A JPS6187366A (en) 1984-10-05 1984-10-05 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20802484A JPS6187366A (en) 1984-10-05 1984-10-05 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6187366A true JPS6187366A (en) 1986-05-02

Family

ID=16549407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20802484A Pending JPS6187366A (en) 1984-10-05 1984-10-05 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6187366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159064A (en) * 1988-12-13 1990-06-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117665A (en) * 1974-08-05 1976-02-12 Nippon Telegraph & Telephone Handotaisochino seizohoho
JPS5252368A (en) * 1975-10-24 1977-04-27 Mitsubishi Electric Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117665A (en) * 1974-08-05 1976-02-12 Nippon Telegraph & Telephone Handotaisochino seizohoho
JPS5252368A (en) * 1975-10-24 1977-04-27 Mitsubishi Electric Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159064A (en) * 1988-12-13 1990-06-19 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2915828B2 (en) Semiconductor wiring structure and method of manufacturing the same
KR100339179B1 (en) Copper interconnection structure incorporating a metal seed layer
US4710398A (en) Semiconductor device and manufacturing method thereof
US4987562A (en) Semiconductor layer structure having an aluminum-silicon alloy layer
US6979612B2 (en) Semiconductor devices and manufacturing methods
JPS6187366A (en) Semiconductor device and manufacture thereof
JPS5922364A (en) Semiconductor device and method of producing same
JPH03102819A (en) Manufacture of semiconductor device
JPH0378258A (en) Metal cover for semiconductor device and its manufacture
JPS59161857A (en) Semiconductor device wiring and resistor therefor
JP2570263B2 (en) Semiconductor device and manufacturing method thereof
JPS587889A (en) Resistance element for josephson integrated circuit
JPH06204171A (en) Semiconductor device and its manufacture
JP2623610B2 (en) Josephson junction element
JP2797367B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0422339B2 (en)
KR100217544B1 (en) Process for forming metal wiring with excellent step coverage
JPS63296277A (en) Semiconductor integrated circuit device
JPS6089974A (en) Semiconductor device
JPS60186038A (en) Semiconductor device
JPS62142342A (en) Semiconductor device
JPS625657A (en) Semiconductor integrated circuit device
JPH027543A (en) Connecting electrode formation
JPS5844767A (en) Semiconductor device
JPS60246650A (en) Manufacture of semiconductor element