JPS60186038A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS60186038A JPS60186038A JP4158584A JP4158584A JPS60186038A JP S60186038 A JPS60186038 A JP S60186038A JP 4158584 A JP4158584 A JP 4158584A JP 4158584 A JP4158584 A JP 4158584A JP S60186038 A JPS60186038 A JP S60186038A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- resistance
- wiring
- wiring layer
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(a) 発明の技術分野
不発BAに半導体装置に係り、特に半導体装置に於ける
金属配線層の構造に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor device, and particularly to the structure of a metal wiring layer in a semiconductor device.
(b)技術の背景
半導体集積回路装置(TC)に於て高集積化を図ること
は回路機能の同上、#作速度の向上等の而から極めてN
要な課題でおる。そのため半導体累子な大幅に微細化さ
れ、その配設密度も非常に高密匿化されて米ている。(b) Background of the technology Aiming for high integration in semiconductor integrated circuit devices (TC) is extremely important because it improves circuit function and speed of operation.
This is an important issue. For this reason, semiconductor components have been significantly miniaturized and their arrangement density has become extremely high.
力為たる状況に於て、半導体素子の機能領域から電極配
線全導出するために、絶縁膜に形成される電極コンタク
ト窓の大きさも非常に微細化されて来ている。しかしな
がら絶縁膜の厚さは所定の絶縁耐圧を得るために余り薄
くは形成されないので、電極コンタクト窓は深さが開口
寸法にはぼ近づくような奥渫い形状になって米でいる。In order to completely lead out the electrode wiring from the functional area of the semiconductor element under difficult circumstances, the size of the electrode contact window formed in the insulating film has become extremely fine. However, since the thickness of the insulating film is not formed very thin in order to obtain a predetermined dielectric strength voltage, the electrode contact window has a deep shape with a depth almost approaching the opening size.
(e) 従来技術と問題点
従来咳半導体ICに於て金属配線層は一般にアルミニラ
A (At)若しくはアルミニウム・シリコン(At−
8i)等のAt合金層によって形成されていた。しかし
該At若しくはAt合金よりなる配線層は蒸着法若しく
なスパッタリング法により堆積形成されるのでステツブ
・カバレッジカ良くないため、上記のよりに果深い電極
コンタクト窓内の配線層が極めて薄(なり、これによる
抵抗の増大、ffイグレーシlン効果等によりて該電極
コンタクト窓部に於ける断線が非常に発生し易くなる0
第1図は上記従来の電極Jンタクト1!部の断面を模式
的に示したもので、図中1は半導体基板、2は機能領域
、3はIl!1縁膜、4は電極コンタクト窓、IJAt
配線層、6はAt島が薄くて断線が発生し易い部分を表
わしている。(e) Prior art and problems In conventional semiconductor ICs, the metal wiring layer is generally made of aluminum A (At) or aluminum silicon (At-
8i) or the like. However, since the wiring layer made of At or At alloy is deposited by vapor deposition or sputtering, the step coverage is not good, so the wiring layer in the deeper electrode contact window is extremely thin. Due to this increase in resistance, the ff gracing effect, etc., disconnection at the electrode contact window is very likely to occur.
Figure 1 shows the conventional electrode J contact 1! In the figure, 1 is a semiconductor substrate, 2 is a functional area, and 3 is Il! 1 membrane, 4 electrode contact window, IJAt
The wiring layer 6 represents a portion where the At island is thin and disconnection is likely to occur.
なお余り高集積化されない半導体ICに於ては、電極コ
ンタクト窓の側面を斜面状になだらかに形成して断線の
防止がなされるが、素子が微細化され高密度に配設され
る高集積度ICに於ては集積度の低下を招くため十分開
口部を大きくとった上記処置はと9得にくい。In semiconductor ICs that are not highly integrated, the sides of the electrode contact windows are formed in a gently sloped manner to prevent wire breakage. In ICs, it is difficult to take the above-mentioned measure of making the opening sufficiently large, since this leads to a decrease in the degree of integration.
そこでAt配線層の下部に気相成長させたステ、プ争カ
バレッジの良い即ち電極コンタクト窓部に於ても一様な
厚さの多結晶シリコン層を設け、たとえA4層が断線し
てもこの多結晶シリコン層によって該配線層が導通する
ようにする方法もこうじられたが、この方法では多結晶
シリコン層の比抵抗がAtに比べて2桁程度太きいため
に、At層が断線した際に配線抵抗が大幅に増大する、
成るいに熱履歴によって81がAt層中に大量に拡散し
これによってAt層の抵抗が上昇する等の現象によって
配線抵抗が大幅に増大し、該ICの動作速度の低下を招
くという問題があった。Therefore, under the At wiring layer, a polycrystalline silicon layer grown in a vapor phase with good coverage, that is, even in the electrode contact window part, is provided, so that even if the A4 layer is disconnected, A method of making the wiring layer conductive using a polycrystalline silicon layer has also been proposed, but in this method, the resistivity of the polycrystalline silicon layer is about two orders of magnitude higher than that of At, so when the At layer is disconnected, wiring resistance increases significantly,
Furthermore, due to thermal history, a large amount of 81 diffuses into the At layer, which increases the resistance of the At layer, resulting in a significant increase in wiring resistance and a problem in that the operating speed of the IC decreases. Ta.
(中 発明の目的
本発明は上記問題点に鑑み、高密度高集積化される半導
体ICに於て、微細化された電極コンタクト窓部に於け
る配線層の断線及び抵抗増加全防止する配線構造を提供
する目的でなされたものであり、この目的は下記要旨に
示す構造を持ったアルミニウム若しくはアルミニウム合
金配線1−ヲ有する半導体装置によって達成される。(Middle Purpose of the Invention In view of the above-mentioned problems, the present invention provides a wiring structure that completely prevents disconnection of the wiring layer and increase in resistance in the miniaturized electrode contact window portion in semiconductor ICs that are becoming highly integrated. This object is achieved by a semiconductor device having an aluminum or aluminum alloy wiring 1-w having the structure shown below.
(e) 発明の構成
即ち本発明は半導体装置に於て、化学気相成長された高
融点金属若しくはその珪化物の層上に、アルミニウム若
しくはアルミニウム合金よりなる層が積層された21i
1構造の金属配線層を有することを特徴とする0
(f) 発明の実施例
以下不発明を実施例について、図を用いて説明する0
第2図は一実施例に於ける配線層の構造を模式的に示す
電極コンタクト窓部の上面図[)、A−A矢視断面図(
c9及びB−B矢視断面図ビラで、第3図け)乃至(ホ
)は不発明の構造を有する半導体装置に於ける製造方法
の一実施例を示す模式1程断面図である。(e) Structure of the Invention That is, the present invention provides a semiconductor device in which a layer made of aluminum or an aluminum alloy is laminated on a layer of a high melting point metal or its silicide grown by chemical vapor deposition.
(f) Embodiments of the Invention Hereinafter, embodiments of the invention will be explained with reference to the drawings. 0 Figure 2 shows the structure of the interconnect layer in one embodiment. A top view of the electrode contact window schematically showing [), a sectional view taken along the line A-A (
c9 and BB cross-sectional views; FIGS. 3) to 3(e) are schematic cross-sectional views showing an embodiment of a manufacturing method for a semiconductor device having an uninvented structure; FIG.
第2図は本発明の半導体装置が特徴とする金属配線層の
構造に於ける一実施例を、その効果が最も顕著な電極コ
ンタクト窓部について模式的に示した上面図1)、A−
A矢視断面図(ロ)及びB−B矢視断面図?−)である
。同図に於て、11は半導体基体、12に例えばバイポ
ーラICに於けるベース領域、エミ、り領域、コレクタ
コンタクト領域等の機能領域、13は二酸化シリコン(
Slot)、5ん珪酸ガラス(PSG)等よりなる厚さ
1〔μm〕程度の絶縁膜、14は例えば1辺が1.5〔
μm)程度の電極コンタクト窓、15は金属配線層、1
5Wは例えば厚さ2000〜3ooo(A)程度の化学
気相成長タングステン層、15A/、は例えばスバ。FIG. 2 is a top view 1) schematically showing an example of the structure of the metal wiring layer, which is a feature of the semiconductor device of the present invention, with respect to the electrode contact window portion where the effect is most noticeable.
A sectional view (b) and B-B sectional view? −). In the figure, 11 is a semiconductor substrate, 12 is a functional region such as a base region, an emitter region, a collector contact region, etc. in a bipolar IC, and 13 is a silicon dioxide (
Slot), an insulating film made of pentasilicate glass (PSG), etc., with a thickness of about 1 [μm], 14 has a side of 1.5 [μm], for example.
μm) electrode contact window, 15 is a metal wiring layer, 1
5W is, for example, a chemical vapor deposition tungsten layer with a thickness of about 2000 to 300 (A), and 15A/ is, for example, a submerged layer.
クリング法で形成された厚さ8000〜7000 (A
)程度のアルミニウム(At)層、16はAt層(15
At)が薄く形成された領域金示している。Thickness 8000-7000 (A
) layer of aluminum (At), 16 is an At layer (15
At) indicates a thinly formed area.
上記実施例に於て金属配線層15を構成するタングステ
ン(W)層15Wは化学気相成長法で形成されるので、
上記のように開口寸法1.5〔μm〕、探さ1〔μm)
程度の奥深い電極コンタクト窓14に於ても、その内面
にほぼ一様な厚さに形成される。そして上記w+*xs
wの形成を終ってAt層15AAt−形成する際の電極
コンタクト窓14は開口寸法1〔μmL深さ1〔μm〕
程度になるのでAL層15Atは図に示すような断面形
状に形成され断線につながるような極めて薄い層に形成
される領域16t−生ずる。しかしその下層には厚さ2
000〜3000〔人〕程度の低い抵抗値を有するW層
15Wが配設されているので、該IC17)動作時即ち
通電時に電流は該W層15Wを介して流れ咳配A[15
がAt層15Atの薄い領域16で発熱することがなく
、従ってAI−WRx5htの断線は防止される0又た
とえAt層15Atが断線した際に於てもW層15Wが
充分に低い抵抗であるので配線抵抗の大幅な増大はもた
らされないθここで参考のために配線層材料の比抵抗を
示すと、Atが2.7X1σ’ (Q−cm〕、 Wが
5.7 X 10’ [:、Q−譚〕、タングステン嗜
シリサイド(WShJが8〜9X10−’ Cn、−c
m)、 多結晶シリコンが10−8〔Ω−釧〕程度であ
る。この値から上記W層の代わりにws i、層を用い
ても同様の効果があることは明らかである。In the above embodiment, the tungsten (W) layer 15W constituting the metal wiring layer 15 is formed by chemical vapor deposition;
As above, opening size is 1.5 [μm], depth is 1 [μm]
Even the electrode contact window 14, which is relatively deep, is formed to have a substantially uniform thickness on its inner surface. And the above w+*xs
After the formation of w, the electrode contact window 14 when forming the At layer 15AAt has an opening size of 1 [μm] and a depth of 1 [μm].
Therefore, the AL layer 15At is formed in a cross-sectional shape as shown in the figure, and a region 16t is formed in an extremely thin layer that may lead to disconnection. However, the underlying layer has a thickness of 2
Since the W layer 15W having a low resistance value of about 000 to 3000 [persons] is disposed, current flows through the W layer 15W when the IC 17) is in operation, that is, when it is energized.
does not generate heat in the thin region 16 of the At layer 15At, and therefore disconnection of the AI-WRx5ht is prevented.Also, even if the At layer 15At is disconnected, the resistance of the W layer 15W is sufficiently low. No significant increase in wiring resistance θHere, the specific resistance of the wiring layer material is shown for reference: At is 2.7X1σ' (Q-cm), W is 5.7X10' [:, Q-tan], tungsten silicide (WShJ is 8~9X10-' Cn, -c
m), polycrystalline silicon has a resistance of about 10-8 [Ω-Kushi]. From this value, it is clear that the same effect can be obtained even if a ws i layer is used instead of the W layer.
次に上記構造の金属配線層を形成する方法を、高密度高
集積化に際して多く用いられるインプレーナ晃バイポー
ラ半導体装置について、第3図(イ)乃至(ホ)に示す
工程断面図を参照して説明する。Next, a method for forming a metal wiring layer with the above structure will be explained with reference to the process cross-sectional diagrams shown in FIGS. explain.
第3図U)参照
読図に示すインプレーナ構造のバイポーラQトランジス
タは通常の方法により形成される。即ち例えばp型シリ
コン基板21面に通常の不純物導入法により選択的にn
型コレクタ領域22を形成した役、通常の選択酸化法に
より該基板上にトランジスタ形成領域al及び該トラン
ジスタ形成領域に於けるコレクタコンタクト形成領域a
!とベース形成領域83を分離する1〔μm〕程度の厚
さの第1の二酸化シリコン(Sin、)絶縁膜23′l
i−形成し、次いで該第1の絶縁膜23に整合させてコ
レクタコンタクト形成領域atに選択的にn型不純物を
高濃度に導入してn+型コレクタコンタクト領域24を
形成し、該第1の絶縁膜23に整合させてベース形成領
域a8に選択的にp壓不純物を高濃度に導入してp型ベ
ース領域25全形成する。The bipolar Q transistor of in-planar structure shown in FIG. 3U) is formed by conventional methods. That is, for example, selectively n
After forming the type collector region 22, a transistor formation region al and a collector contact formation region a in the transistor formation region are formed on the substrate by a normal selective oxidation method.
! A first silicon dioxide (Sin) insulating film 23'l having a thickness of about 1 μm separates the base forming region 83 from the base forming region 83.
i- is formed, and then an n-type impurity is selectively introduced at a high concentration into the collector contact formation region at in alignment with the first insulating film 23 to form an n+-type collector contact region 24. A p-type impurity is selectively introduced at a high concentration into the base formation region a8 in alignment with the insulating film 23, thereby forming the entire p-type base region 25.
第3図(り参照
次いで通常の方法に従い、該基板上に化学気相成長(C
VD)等の方法により例えば厚さ1〔μm〕程度の第2
のSiへ絶縁膜26全形成し、次いで通常のりソグラフ
ィ技術により該第2のS i 02絶縁膜26に、例え
ば開口寸法1.5〔μm〕角程度のコレクタコンタクト
窓27.エミッタコンタクト窓28及びベースコンタク
ト窓29f:形成し、次いでベースコンタクト窓29上
をマスクして該第2の8102絶縁膜26のコレクタコ
ンタクト窓27及びエミッタコンタクト窓28からこれ
らのコンタクト窓に整合させて選択的にn型不純物を高
濃度に導入し。+生型基板コンタクト領域3o及びn+
型エミッタ領域31全形成する。以上の工程は通常のイ
ンプレーナ型バイポーラ牛導体装置の製造方法に従う。Referring to FIG. 3, chemical vapor deposition (C) is then deposited on the substrate according to a conventional method.
For example, a second layer with a thickness of about 1 [μm] is formed by a method such as VD).
The insulating film 26 is entirely formed on the Si substrate, and then a collector contact window 27. having an opening size of, for example, about 1.5 [μm] square is formed on the second Si02 insulating film 26 by ordinary lithography. Emitter contact window 28 and base contact window 29f: are formed, and then the base contact window 29 is masked to align the collector contact window 27 and emitter contact window 28 of the second 8102 insulating film 26 to these contact windows. Selectively introduce n-type impurities at a high concentration. + Green substrate contact areas 3o and n+
The entire mold emitter region 31 is formed. The above steps follow the usual method of manufacturing an in-planar bipolar conductor device.
第3図(ハ)参照
次いで本発明に係る前記実施例に示したWとktの2層
構造の金属配線層全形成するに当って、先ず上記トラン
ジスタの形成全完了し表面に前記コンタクト窓27,2
8.29ffi有する第2のSin。Referring to FIG. 3(C) Next, in forming the entire metal wiring layer of the two-layer structure of W and kt shown in the embodiment according to the present invention, first, the formation of the transistor is completely completed, and the contact window 27 is formed on the surface. ,2
2nd Sin with 8.29ffi.
絶縁膜26が配設されてなる半導悸基板上に、例えば0
5〜1(TorrJ程度で6ぶつ化タングステン(WF
a)と水素(几)、定木(N! )の混合ガス中に於て
300〜400 (℃〕程度の温度で、厚さ200C)
−3000[:入〕程駄のタングステン(W)7缶32
(第2図15Wに対応)會化学気相成長させる。なお該
化学気相成長技術に於ては、タングステンNが基体の坂
出Ifiを核にして成長するので、前述したよりに開孔
寸法1.5〔μm〕、深さ1〔μm〕程度の奥シーいコ
ンタクト窓27,28.29の内面にも該タングステン
層32はぼは一様な厚さに形成される0
第3図に)参照
次いで前記W層32の狭面をふっ酸(HF)り移で縦(
工7手ソング −e jh−二+aj%?’為17Jζ
第11ング法成るいは、蒸着法により該基板上に厚さ
8000〜7000[:又〕程区のA4層33(第2図
15ALに対応)を堆積形成する。ここで前述したよう
に奥深いコンタクト窓27.28.29の内部になAt
層33が薄く被着された領域34(第2図16 a e
16 bに対応)が形成される。For example, 0
5 to 1 (Tungsten hexabutide (WF) at around TorrJ
a), hydrogen (几), and fixed wood (N!) in a mixed gas at a temperature of about 300 to 400 (℃) and a thickness of 200C)
-3000 [: Contains] Hodada Tungsten (W) 7 cans 32
(Corresponding to FIG. 2 15W) Perform chemical vapor deposition. In addition, in this chemical vapor deposition technique, since tungsten N grows using the sloped Ifi of the substrate as a nucleus, the opening size is 1.5 [μm] and the depth is about 1 [μm] as described above. The tungsten layer 32 is also formed on the inner surfaces of the contact windows 27, 28, and 29 to have a uniform thickness. vertically (
7 hand song -e jh-2+aj%? 'Tame17Jζ
An A4 layer 33 (corresponding to FIG. 15AL in FIG. 2) having a thickness of 8,000 to 7,000 degrees is deposited on the substrate by the eleventh ring method or vapor deposition method. Here, as mentioned above, there is an At inside the deep contact window 27, 28, 29.
Region 34 (FIG. 2, 16 a e
16b) is formed.
第3図に)参照
次いで通常の塩素系のガスによるリアクティブイオンエ
ツチング法等を用いるリングラフィ技術によpAt層3
3及びW層32のパターンニングを行い、W層32とA
t層の211#構造よりなるコレクタ配線層35.エミ
ッタ配線層36.ベース配線層37を形成する。(see Fig. 3) Next, the pAt layer 3 is etched by phosphorography technology using reactive ion etching method using ordinary chlorine-based gas.
3 and W layer 32 are patterned, and W layer 32 and A
Collector wiring layer 35 consisting of 211# structure of t layer. Emitter wiring layer 36. A base wiring layer 37 is formed.
そして以後図示しないが通常通り表面保護用の絶縁膜の
形成等がなされて、不発明に係るインプレーナ屋バイポ
ーラ半導体装置が完成する。Thereafter, although not shown, an insulating film for surface protection is formed as usual, and the in-planar bipolar semiconductor device according to the invention is completed.
なお上記配線層に於ける下層の配線材料としてW以外に
タングステンシリサイド(W−8i)も用いられる。こ
の場合該W−8i層に1 (Torr)程度の6ぶつ化
タングステン(WF、 )とモノシラン(Si−H&)
の混合ガス中で300〜400C℃E程度の温度で成長
させる0更に該下層の配線材料には上記以外の高融点金
属及びその珪化物も使用することができる。In addition to W, tungsten silicide (W-8i) is also used as a lower wiring material in the wiring layer. In this case, the W-8i layer contains tungsten hexabutide (WF, ) and monosilane (Si-H&) of about 1 (Torr).
It is grown in a mixed gas at a temperature of about 300 to 400 C.degree.
父上記配線層に於ける上層の配線材料として鉱上記At
K限らずAt合金、全等高電導性を有する金属が用いら
れる。As the upper layer wiring material in the wiring layer above, At
Not only K but also At alloys and all other metals having high conductivity are used.
翰ン 発明の効果
上記実施例に示したように、本発明の構造に於ては金属
配線層の下層部に、化学気相成長法によって形成された
例えば金槁配線層全体の20〜30〔チ〕程度の厚さe
!する低抵抗の高融点金属若しくはその珪化物よりなる
層が配設される0そして該化学気相成長層に前述したよ
うにその性質上奥深いコンタクト窓の円面にもほぼ一様
な厚さに形成されるので、該高融点金属若しく鉱その珪
化物よりなる層上に主たる配線材料であるアルミニウム
等の高電導性金属層が通常通りスパッタリング成るいは
蒸着法によってステ、プカバレッジの悪い状態で被着さ
れ、コンタクト窓の内部に非常に薄くて抵抗の高い領域
が形成された際にも、該領域に於て電流扛下層の高融点
金属若しく欽その珪化物よりなる低抵抗の層を介して流
れるので、該領域に於て発熱や!イグレーシ、/によっ
て従来生じていた配線層の断線は防止される。Effects of the Invention As shown in the above embodiments, in the structure of the present invention, for example, 20 to 30% of the entire metal wiring layer is formed by chemical vapor deposition in the lower layer of the metal wiring layer. Thickness of about
! A layer made of a low-resistance, high-melting-point metal or its silicide is disposed, and as described above, the chemical vapor deposition layer has a substantially uniform thickness even on the circular surface of the contact window, which is deep due to its nature. Therefore, a highly conductive metal layer such as aluminum, which is the main wiring material, is normally deposited on the layer made of the high melting point metal or its silicide by sputtering or evaporation, and the step coverage is poor. Even when a very thin, high-resistance region is formed inside the contact window using As it flows through the area, heat is generated in the area! The disconnection of the wiring layer, which conventionally occurs, is prevented by the ignition.
従って本発明によれば、高密度高集積化される半導体集
積回路装置の製造歩留まり及び信頼性が向上する。Therefore, according to the present invention, the manufacturing yield and reliability of semiconductor integrated circuit devices that are highly integrated and highly dense are improved.
第1図は従来の半導体装置に於ける電極コンタクト窓部
の模式断面図、第2図は不発明の一実施例に於ける配線
層の構造を模式的に示す電極コンタクト窓部の上面図れ
+、A−A矢視Wlr面図(C’)及びB−B矢視断面
図ρうで、第3図け)乃至(…は本発明の構造を有する
半導体装置に於ける製造方法の一実施例を示す模式1程
断面図である。
図に於て、11は半導体基板、12は機能領域、13拡
絶縁膜、14は電極コンタクト窓、15は金属配線層%
15Wはりyゲステン層、15Atはアルミニウム層、
16はアルミニウム層が薄く形成・された領域、21は
p型シリコン基板、22なn型コレクタ領域、23は第
1の?3縁膜、24はn++コレクタコンタクト領域、
25はp型ベース領域、26に第2の絶縁膜、27はコ
レクタフンタクト窓、28はエミッタコンタクト窓、2
9はベース;ンタクト窓、30はn+十梨型コレクタコ
ンタクト領域31にn+型エミ、り領域、32はタング
ステン層、33はアルミニウム層、34鉱アルミニウム
ノーが薄く被着された領域、35はコレクタ配線層、3
6はエミッタ配線層、37はベース配線層、aIはトラ
ンジスタ形成領域、a!鉱コレクタコンタクト形成領域
、a3はベース形成領域を示す〇
第1 g
蓼2図FIG. 1 is a schematic cross-sectional view of an electrode contact window in a conventional semiconductor device, and FIG. 2 is a top view of an electrode contact window schematically showing the structure of a wiring layer in an embodiment of the invention. , A-A arrow Wlr sectional view (C') and B-B arrow sectional view ρ; This is a cross-sectional view of a schematic 1 showing an example. In the figure, 11 is a semiconductor substrate, 12 is a functional area, 13 is an expanded insulating film, 14 is an electrode contact window, and 15 is a metal wiring layer.
15W beam y Gesten layer, 15At aluminum layer,
16 is a region where a thin aluminum layer is formed, 21 is a p-type silicon substrate, 22 is an n-type collector region, and 23 is a first ? 3 is the edge film, 24 is the n++ collector contact region,
25 is a p-type base region, 26 is a second insulating film, 27 is a collector contact window, 28 is an emitter contact window, 2
9 is a base; contact window; 30 is an n+ type emitter contact region 31; 32 is a tungsten layer; 33 is an aluminum layer; 34 is a region where aluminum ore is thinly deposited; 35 is a collector. Wiring layer, 3
6 is an emitter wiring layer, 37 is a base wiring layer, aI is a transistor formation region, a! The ore collector contact formation area, a3 indicates the base formation area 〇1st g Figure 2
Claims (1)
上に、アルミニウム若しくはその合金の層が積鳩された
2層構造の金属配線層を有することを特徴とする半導体
装置。1. A semiconductor device comprising a metal wiring layer having a two-layer structure in which a layer of aluminum or an alloy thereof is laminated on a layer of a high melting point metal or its silicide grown by chemical vapor deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4158584A JPS60186038A (en) | 1984-03-05 | 1984-03-05 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4158584A JPS60186038A (en) | 1984-03-05 | 1984-03-05 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60186038A true JPS60186038A (en) | 1985-09-21 |
Family
ID=12612507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4158584A Pending JPS60186038A (en) | 1984-03-05 | 1984-03-05 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60186038A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6436024A (en) * | 1987-07-31 | 1989-02-07 | Nec Corp | Formation of wiring of semiconductor device |
US5071789A (en) * | 1985-08-02 | 1991-12-10 | Kabushiki Kaisha Toshiba | Method for forming a metal electrical connector to a surface of a semiconductor device adjacent a sidewall of insulation material with metal creep-up extending up that sidewall, and related device |
US5571752A (en) * | 1992-07-27 | 1996-11-05 | Sgs-Thomson Microelectronics, Inc. | Method of forming a planar contact with a void |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240969A (en) * | 1975-09-29 | 1977-03-30 | Toshiba Corp | Process for production of semiconductor device |
-
1984
- 1984-03-05 JP JP4158584A patent/JPS60186038A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240969A (en) * | 1975-09-29 | 1977-03-30 | Toshiba Corp | Process for production of semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5071789A (en) * | 1985-08-02 | 1991-12-10 | Kabushiki Kaisha Toshiba | Method for forming a metal electrical connector to a surface of a semiconductor device adjacent a sidewall of insulation material with metal creep-up extending up that sidewall, and related device |
JPS6436024A (en) * | 1987-07-31 | 1989-02-07 | Nec Corp | Formation of wiring of semiconductor device |
US5571752A (en) * | 1992-07-27 | 1996-11-05 | Sgs-Thomson Microelectronics, Inc. | Method of forming a planar contact with a void |
US5578872A (en) * | 1992-07-27 | 1996-11-26 | Sgs-Thomson Microelectronics, Inc. | Planar contact with a void |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4502210A (en) | Method for manufacturing semiconductor device | |
KR950000866B1 (en) | Semiconductor device and fabricating method thereof | |
US5093710A (en) | Semiconductor device having a layer of titanium nitride on the side walls of contact holes and method of fabricating same | |
JPS5866359A (en) | Manufacture of semiconductor device | |
JPH01202841A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPS6364057B2 (en) | ||
JPS60186038A (en) | Semiconductor device | |
JPH02239665A (en) | Semiconductor device and manufacture thereof | |
JPS60193337A (en) | Manufacture of semiconductor device | |
JPH04355951A (en) | Semiconductor device and manufacture thereof | |
JPS6381948A (en) | Multilayer interconnection semiconductor device | |
JP2874216B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH04296041A (en) | Semiconductor device and manufacture thereof | |
JPH01270333A (en) | Manufacture of semiconductor device | |
JPS5961147A (en) | Manufacture of semiconductor device | |
JPS5873136A (en) | Method of producing semiconductor device | |
JPS582065A (en) | Manufacture of semiconductor device | |
JPS6125217B2 (en) | ||
JPH0714833A (en) | Manufacture of semiconductor device | |
JPH0922941A (en) | Manufacturing for semiconductor device | |
JPH04307757A (en) | Semiconductor device and manufacture thereof | |
JPH04340713A (en) | Manufacture of semiconductor device | |
JPH03196632A (en) | Semiconductor device | |
JPS61224415A (en) | Manufacture of semiconductor device | |
JPH08274168A (en) | Manufacture of semiconductor device |