JPS6186459A - Manufacture of hardened body from fluidized bed incinerationash as main raw material - Google Patents

Manufacture of hardened body from fluidized bed incinerationash as main raw material

Info

Publication number
JPS6186459A
JPS6186459A JP59206802A JP20680284A JPS6186459A JP S6186459 A JPS6186459 A JP S6186459A JP 59206802 A JP59206802 A JP 59206802A JP 20680284 A JP20680284 A JP 20680284A JP S6186459 A JPS6186459 A JP S6186459A
Authority
JP
Japan
Prior art keywords
weight
less
particle size
fluidized bed
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59206802A
Other languages
Japanese (ja)
Inventor
宏之 松村
泰典 柴田
高田 友昭
舘林 恂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP59206802A priority Critical patent/JPS6186459A/en
Publication of JPS6186459A publication Critical patent/JPS6186459A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/061Ashes from fluidised bed furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃料である石炭および脱硫剤である石灰石か
ら構成される流動層における流動+4燃焼の際に発生す
る石炭灰および使用済脱硫剤からなる混合粉体を主原料
として硬化体を製造する方法、詳しくは上記混合粉体を
主原料とし、この混合粉本の塑性限界よりも多く液性限
界よりも少ない水を混合粉体に加えて混練することによ
り粒状物とした後、1〜50%aGの圧力で加圧成形し
、この成形体を養生する(具体的には湿空養生後、水蒸
気処理する)ことにより、機械的強度の大きい水利硬化
体を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention consists of coal ash generated during fluidized+4 combustion in a fluidized bed consisting of coal as a fuel and limestone as a desulfurizing agent and a spent desulfurizing agent. A method for producing a cured product using a mixed powder as the main raw material, specifically, using the above mixed powder as the main raw material, adding more water than the plastic limit of the mixed powder and less water than the liquid limit to the mixed powder, and kneading it. After forming a granular material by doing this, it is pressure-molded at a pressure of 1 to 50% aG, and this molded product is cured (specifically, after moist air curing, it is treated with steam) to obtain a material with high mechanical strength. The present invention relates to a method for producing a water-conserving body.

従来の技術 近年我国においては、1973年の石油危機以来の国際
的な石油供、治不安によって多大なる石油1論人量の確
床が1しくなり、エネルギ需給状態における石油依存度
で小さくするだめの石油代替エネlレギの開発が国家的
な課題となり、石突エネルギが1つの柱としてクローズ
アップされている。
Conventional technology In recent years, in Japan, due to the international oil supply and security instability since the oil crisis of 1973, the guaranteed availability of a large amount of oil has become 1,000 yen, and it is difficult to reduce the dependence on oil due to the energy supply and demand situation. The development of energy alternatives to petroleum has become a national issue, and stone-based energy is attracting attention as one of the pillars of energy.

石突を燃料とする1務の燃焼方式は、従来鑞扮炭熔焼方
式が中心であったが、最近流動層燃焼方式が圧目されて
いる。この流動層燃焼方式は、通常、炉内脱硫方式が採
用され、燃料である石炭と炉内脱硫のだめの脱硫剤であ
る石灰石を投入しボイラ内にて流動層を構成させる方式
である。流動層燃焼方式は従来の微粉炭燃焼方式に較べ
て、第1に火炉谷漬が小さくて済みボイラ容積が小さく
なること、第2に燃料石炭の品種に関する制、杓が少な
いこと、第3に750〜850°Cの低温燃焼が可能で
あり灰の凝結に関するトラブルがなくサーマ)vNOx
の定生が少ないこと、第4に伝熱水、管表面での総括云
HS41系数が大きいことなどの長所を有している。
Traditionally, the primary combustion method that uses stone as fuel has been the charcoal sintering method, but recently the fluidized bed combustion method has gained attention. This fluidized bed combustion method usually employs an in-furnace desulfurization method, in which coal as a fuel and limestone as a desulfurizing agent for in-furnace desulfurization are input to form a fluidized bed in a boiler. Compared to the conventional pulverized coal combustion method, the fluidized bed combustion method has the following advantages: firstly, the furnace trough is smaller and the boiler volume is smaller; secondly, there are fewer restrictions on the type of fuel coal and fewer ladles; Low-temperature combustion of 750 to 850°C is possible, and there is no problem with ash condensation.
Fourthly, the heat transfer water has the advantage that the overall HS41 series on the tube surface is large.

一方、流動i・ご燃焼波射の実用化の課題として灰処理
上の問題がある。流動層燃焼の際に発生する灰は、いわ
ゆる石炭灰と使用済脱硫剤からなり、使用済脱硫剤は脱
硫生成物である醒型無水石こうと未反応の生石灰から構
成されている。石炭燃焼ガス中の硫黄酸化物の除去効率
、すなわち脱硫率を大きくするため、通常Ca/Sのモ
ル比が3〜6となるように石灰石の投入量が設定されて
おり、750〜850°Cにおける硫黄酸化物との反応
により石灰石が生石灰および■型態水石こうとな9、石
炭灰とともに排出される。流動層燃焼灰の発生量は使用
石炭の品種、脱硫率、ボイラの運転条件などによシ相当
に異なるが、通常、石炭灰、■型態水石こう、生石灰の
発生量はそれぞれ使用石炭量のほぼ15〜20重量%、
1−10重量%、1〜10重量%である。
On the other hand, there is a problem with ash treatment in the practical application of fluid i/combustion wave radiation. The ash generated during fluidized bed combustion is composed of so-called coal ash and a spent desulfurization agent, and the spent desulfurization agent is composed of anhydrous gypsum, which is a desulfurization product, and unreacted quicklime. In order to increase the removal efficiency of sulfur oxides in coal combustion gas, that is, the desulfurization rate, the amount of limestone input is usually set so that the Ca/S molar ratio is 3 to 6, and the temperature is 750 to 850 °C. Upon reaction with sulfur oxides, limestone is discharged together with quicklime and type 1 water gypsum9, and coal ash. The amount of fluidized bed combustion ash generated varies considerably depending on the type of coal used, desulfurization rate, boiler operating conditions, etc., but normally, the amount of coal ash, type hydrogypsum, and quicklime generated is proportional to the amount of coal used. Approximately 15-20% by weight,
1-10% by weight, 1-10% by weight.

発明が解決しようとする問題点 従来、我国における発生石突灰の大部分はfa扮炭燃焼
によるものであり、そのうち約10〜20重量%はフラ
イアッシュとしてセメント混和材、セメント原料などに
再利用され残りは埋立地K 、Q棄されていた。しかし
ながら、セメント原料への再1=lI用合よび」里立地
への1尾粱のいずれにおいても、将来の6炭灰の大量発
生に充分対処し得ることは明侍できないのがL見状であ
る。このようにa粉炭欲・曳灰においても、石炭灰の処
理方法が大きな間:副になりつつちり、流動I・4燃焼
灰についても石炭火力発゛ぼ所などにおける流動層燃焼
による本格的な石炭利用の1祭にきわめて多量の流動層
燃焼灰が余生することを考慮すると、流動1奮燃焼灰と
して独自の処分方式を確立することが流動層燃焼技術の
実用(ヒにとってきわめて重要な課題となっている。ま
た流動層燃焼灰の大量処分方式の確立には、資源として
の有効再f’l用が必須である。これはまず第1に国産
資源の乏しい我国においては、単なる廃棄ではない再利
用が省資源・省エネルギに直接結びつくこと、第2に環
境破壊がきわめて少ないことに基づくものである。
Problems to be Solved by the Invention Conventionally, most of the stone ash generated in Japan has come from charcoal combustion, and about 10 to 20% by weight of it has been recycled as fly ash for cement admixtures, cement raw materials, etc. The rest was abandoned in landfills K and Q. However, it is clear that it is not possible to adequately deal with the large amount of coal ash generated in the future, either by using it as a raw material for cement or by feeding it to village sites. be. In this way, even in the case of powdered coal and ash-pulling, the processing method for coal ash has changed significantly. Considering that an extremely large amount of fluidized bed combustion ash remains after one use of coal, establishing a unique disposal method for fluidized bed combustion ash is an extremely important issue for the practical application of fluidized bed combustion technology. In addition, in order to establish a mass disposal method for fluidized bed combustion ash, it is essential to effectively reuse it as a resource.First of all, in Japan, where domestically produced resources are scarce, this is not just a matter of disposal. This is based on the fact that reuse directly leads to resource and energy conservation, and secondly on the fact that there is extremely little environmental destruction.

本発明は上記の1渚点に鑑み、流動層燃焼灰を土木・建
築分野にて資源として大量に活用すべく、流動′・1a
7祢焼灰を原料として機賊的布iXEの大きいセメント
状硬化体を作製することを1」的としてなされたもので
ある。
In view of the above point, the present invention aims to utilize fluidized bed combustion ash in large quantities as a resource in the civil engineering and construction fields.
This work was done with the aim of producing a large cement-like hardened body of Kikutai Cloth iXE using 7-me incinerated ash as a raw material.

問題点を解決するだめの手段および作用本発明の流動)
・4燃焼灰を主原料とする硬fヒ1本の製造方法は、燃
料としての石炭および脱硫剤としての石灰石からWe!
成される流動層における流動・Z燃焼の際に発生する石
炭灰および使用済1悦硫4jに、石炭灰分60〜85重
量%、石灰分10〜25重量%、石こう分5〜25重量
%の配合割合となるように、生石灰または/および消石
灰、ならびに■型壓水石こう、半水石こうまたは/およ
び2水石こうを必要に応じて添加して混合粉本を調製し
、この混合粉本に水を加えて混練した後、養生する方法
において、混合粉本の塑性限界よシも多く液性・眼界よ
りも少ない水を混合粉本に加えて混練して、粒径20朋
以下100重量%、粒径10.曹以下60〜100重量
%、粒径5朋以下40〜100重量′l!名、粒径1 
myn以下5〜50重量%、粒径0.1朋以下10重量
%以下の゛粒度分布を有する混練物にした後、1〜50
1Gの圧力で加圧成形することを特徴としている。加圧
成形した後、通常は、常温〜60°C1相対i!! 1
80%以上で5〜25時間ja生し、さらに65〜90
°Cの比較的抵温の常圧水蒸気にて処理する。まだ常圧
水蒸気にて処理することによシ得られる硬化体を、粒径
40羽以下の泣状硬化体に粉砕することもある。
Means and action for solving the problems (Flow of the present invention)
・The manufacturing method for one hard carbon fiber using 4 combustion ash as the main raw material is We!
The coal ash and spent sulfur 4j generated during fluidized/Z-combustion in the fluidized bed are mixed with 60 to 85% by weight of coal ash, 10 to 25% by weight of lime, and 5 to 25% by weight of gypsum. Prepare a mixed powder by adding quicklime and/or slaked lime, as well as ■-type hydrated gypsum, hemihydrated gypsum, or/and dihydrated gypsum as needed, and add water to this mixed powder to match the mixing ratio. In the method of adding and kneading, and then curing, the plasticity limit of the mixed powder is exceeded, and water is added to the mixed powder, which is less than the liquid level and the eye level, and the particle size is 100% by weight or less, Particle size 10. 60-100% by weight of carbon dioxide or less, particle size of 5 mm or less, 40-100% by weight! name, particle size 1
After kneading into a kneaded material having a particle size distribution of 5 to 50% by weight below my, and a particle size of 0.1 to 10% by weight, 1 to 50
It is characterized by pressure molding with a pressure of 1G. After pressure molding, it is usually kept at room temperature to 60°C1 relative i! ! 1
More than 80% live for 5 to 25 hours, and 65 to 90 hours.
Treatment is performed with atmospheric pressure steam at a relatively low temperature of °C. The cured product obtained by treatment with steam at normal pressure may be pulverized into tear-like cured products with a particle size of 40 grains or less.

以下、本発明の構成を詳細に説明する。一般に流動j信
撚暁灰の代表的性状である成分組成は使用する石「大の
品種に大きく依存する。まず第1に石炭の産出池によっ
て燃焼残渣である5in2、Al2O3、C,qO,F
e2O3、Na2O、K2Oなどの成分の湿合割合が異
なシ、第2に石炭中の硫黄含有量によって脱硫生成物で
ある■型訊水石こうおよび未反応の脱硫剤である生石灰
の含有量が異なる。このため流動::・3 P焼灰を主
原料とする水蒸気処理による高強度の水和硬化体の作製
の際には、流動j・Δ・燃焼灰の伐分岨咬によって水和
硬化体の適正製造条件は異なる。主な製造条件は、必要
な際に添加される生石灰などおよび/または■型態水石
こうなどの看、水による・昆練物を適正粒度分布とする
だめの混線条件、1反形条件、水蒸気処理時件(温度、
時間)などである。
Hereinafter, the configuration of the present invention will be explained in detail. In general, the component composition, which is a typical property of fluidized twisted ash, largely depends on the type of stone used.First of all, the combustion residue, 5in2, Al2O3, C, qO, F, depends on the coal production pond.
The wet ratio of components such as e2O3, Na2O, and K2O differs, and secondly, the content of the desulfurization product, type 3-type gypsum, and the unreacted desulfurization agent, quicklime, differs depending on the sulfur content in the coal. . For this reason, when producing a high-strength hydration-hardened body by steam treatment using flow::・3P burnt ash as the main raw material, the hydration-hardened body is Appropriate manufacturing conditions are different. The main manufacturing conditions are: addition of quicklime and/or water gypsum when necessary, mixing conditions with water to give the kneaded product an appropriate particle size distribution, 1-shape conditions, and steam treatment. Time condition (temperature,
time), etc.

流動層燃焼灰を主原料とする水利硬化体の製造条件と水
利便fヒ体の性状との関係は概、洛つぎの通シである。
The relationship between the manufacturing conditions of a water-use hardening body using fluidized bed combustion ash as the main raw material and the properties of the water-use hardening body is generally the same.

水蒸気処理により生成する水利硬(ヒ体の主成分は工)
 !J :/ カイト(8CaO−A1203・8Ca
SO4・32H20)、種々の形態のケイ酸カルシウム
水和物(XCaO−YSj−02−ZH20)であるが
、強度メンノ(−として最も寄与するものはエトリンガ
イトである。
Hydraulic hardening produced by steam treatment (the main component of the human body is water)
! J:/ Kite (8CaO-A1203・8Ca
SO4.32H20), various forms of calcium silicate hydrate (XCaO-YSj-02-ZH20), but the one that contributes the most to the strength (-) is ettringite.

まず原料混合粉体中の■型態水石こう含有量および/ま
たは生石灰含有量が少ない際には、カルシウムモノサル
フォアルミネ−ト A工,03・CaSO4・12H20)が主成分となり
水利硬化体の強度は小さいが、■型態水石こう含有量お
よび/または生石灰含有量が大きくなるにしたがってエ
トリンガイト量が多くなり水和硬化体の強度も大きくな
る。さらに旧型,裾水石こうおよび/または生石灰含有
量が多くなると、水蒸気処理時に反応にあずからない遊
離の石こうおよび/または消石灰が生じ水和硬化体の強
度は低下する。水蒸気処理による水利硬化体の機械的強
度が最も大きくなる最適成汗証合:″i、生石灰および
■型態水石こう以外の石炭灰分60〜85重量%、生石
灰分10〜25扛漬%、11僧無水石こう5〜25重量
%である。生石灰針および/または+15無水石こう分
が最.慴成分配会より少ない際には、生石灰分および/
またば11型供・1・(石こうのl恭加が必要である。
First, when the content of type water gypsum and/or quicklime content in the raw material mixed powder is low, calcium monosulfo aluminate (A, 03, CaSO4, 12H20) becomes the main component of the water hardening material. Although the strength is low, as the content of type (1) water gypsum and/or the quicklime content increases, the amount of ettringite increases and the strength of the hydrated hardened product also increases. Furthermore, when the content of old type, gypsum gypsum and/or quicklime increases, free gypsum and/or slaked lime that does not participate in the reaction occurs during steam treatment, resulting in a decrease in the strength of the hydrated hardened product. Optimal perspiration ratio that maximizes the mechanical strength of the water-cured material by steam treatment: ``i'', coal ash content other than quicklime and ■ type water gypsum: 60-85% by weight, quicklime content: 10-25% by weight, 11 Monk anhydrite is 5 to 25% by weight. When the quicklime needle and/or +15 anhydrite content is less than the maximum.
In addition, type 11 (1) requires addition of plaster.

1茄加の・祭には生石灰の代替として消石灰を用いても
よく、またll型,−#.水石こうの代りに半水石こう
またば/および2水石こうを用いてもよい。なお消石灰
の!配合割合が30重歓%を越えると、水蒸3ぺQル理
後に多くの消石灰が、洩り、乾燥雰囲気下では消石灰が
炭「竣カルシウムになり、その際の反応彰張によりヘア
クラック(ミクロクラック)カ多攻発生し、製品性が劣
化する。
Slaked lime may be used as a substitute for quicklime for the 1-sake festival, and ll type, -#. Hemihydrate gypsum and/or dihydrate gypsum may be used instead of hydrogypsum. In addition, slaked lime! If the blending ratio exceeds 30%, a large amount of slaked lime will leak out after steaming, and in a dry atmosphere, the slaked lime will turn into charcoal and calcium, and the resulting reaction will cause hair cracks ( Microcracks) occur and product quality deteriorates.

一方、混線条件、成形条件も水和硬fヒ体の注状に太さ
な影響ケ及ぼす。混線条件において、添加水が混合樹体
の塑性限界よりも少ないと、成形条件によらずルー6強
度ケ栖現しない。これは流動層燃焼j大の11史rヒJ
i応がスルーソルーションリアクション( TLhrO
ugbSO工ution  reaction )であ
り、充分な間隙水が存在しないと水利反応が充分に進行
しないためである。まだ添加水が混合粉体の液性限界よ
りも多いと加圧成形は困遁で、射出成形か流し込み成形
により高強度硬化体を製造できるが、成形体に流動性が
あるため型枠を必要とし、製造工程が煩雑となり工業規
模での大量製造に欠ける。このため高強度硬化体となり
うる成形体を工業規模で大量製造するには、添加水が混
合粉体の塑性限界よりも多く、液性限界よりも少ない水
でなければならない。さらに混練物の粒度が前記粒度分
布の範囲外であると、1〜50%aGの低圧にて高強度
硬化体となシうる成形体を製造することはできない。す
なわち粒度分布が前記粒度分布より大きい叫にある際に
は、成形体には大きな空隙が多数存在し、高強度を発現
しなく、小さい側にある際には、成形体のカサ密度が小
さく高強度を発現しなく、1〜50%aGの圧力による
成形体が水蒸気処理により高強度を発現するには、混練
物の粒度が20MM以下100重量%、lO朋以下60
〜100重准%、5朋以下40〜100重量%、l M
M以下5〜50重量%、0.1 、am以下10事歌%
以下でなければならない。一方、成形条pt=において
、成形圧が1%Q以下では成形体のカサ密度が小さく、
水蒸気処理により高強度を発現せず、501G以上では
成形可能な添加水量が6混合扮体の塑性限界より少なく
なり、水蒸気処理により高強度を発現せず、かつ工業規
模での大量生産性に欠けるため、成形体が水蒸気処理に
より高強度を発現するには、成形圧が1〜501Gでな
ければならない。
On the other hand, crosstalk conditions and molding conditions also have an effect on the thickness of the hydrated hard body. Under cross-wire conditions, if the added water is less than the plasticity limit of the mixed resin, the Roux 6 strength will not be achieved regardless of the molding conditions. This is the 11th history of fluidized bed combustion.
I response is through solution reaction (TLhrO
This is because the water utilization reaction will not proceed sufficiently unless there is sufficient pore water. If the amount of added water is still higher than the liquid limit of the mixed powder, pressure molding will be difficult; a high-strength cured product can be produced by injection molding or pour molding, but a mold is required because the molded product has fluidity. However, the manufacturing process is complicated and mass production on an industrial scale is not possible. For this reason, in order to mass-produce molded bodies capable of forming high-strength cured bodies on an industrial scale, the amount of water added must be greater than the plastic limit of the mixed powder and less than the liquid limit. Furthermore, if the particle size of the kneaded product is outside the range of the particle size distribution, it is impossible to produce a molded product that can be made into a high-strength cured product at a low pressure of 1 to 50% aG. In other words, when the particle size distribution is larger than the above particle size distribution, the molded product has many large voids and does not exhibit high strength, and when it is on the small side, the bulk density of the molded product is small and high. In order for a molded product under a pressure of 1 to 50% aG to develop high strength by steam treatment without developing strength, the particle size of the kneaded product must be 100% by weight of 20 MM or less, and 10% of lO or less.
~100% by weight, 5 to 40-100% by weight, l M
5 to 50% by weight below M, 0.1% by weight, 10% below AM
Must be less than or equal to On the other hand, in the forming strip pt=, when the forming pressure is 1%Q or less, the bulk density of the formed object is small;
It does not develop high strength by steam treatment, and at 501G or higher, the amount of water added that can be molded is less than the plasticity limit of the 6-mixed body, does not develop high strength by steam treatment, and lacks mass productivity on an industrial scale. Therefore, in order for the molded body to develop high strength through steam treatment, the molding pressure must be between 1 and 501 G.

養生条件は、養生温度および養生時間が主な要因である
。養生処理は水和反応を緩慢に進行させ、65〜90°
Cの水蒸気処理時の水利反応膨張に耐え得る適正強度と
し、水蒸気処理により高強度硬化体を作成することを目
的とする。すなわち養生温度が低いか、養生時間が短い
と養生処理後の硬化体の強度が小さくなり、65〜90
°Cの水蒸気処理によりクラックが多数発生し硬化体強
度が低下する。一方、養生温度が高すぎると養生時にク
ラックが発生し、また養生時間が長ずざると太い結晶の
生成量が多くなって、水蒸気処理によシ生成する斜状晶
の生成物が少なくなって、いずれも硬化体強度が低下す
る。また相対湿度が80%よりも低いと、水が蒸発し水
利反応が充分進行しなくなる。このため高強度硬化体製
造のためKは、常温〜60°C(望ましくは85〜60
°C)、相対湿度80%以上で5〜25時間養生するの
が適切である。また養生温度を高くすることにより、高
強度硬化体製造のだめの養生時間を大幅に短縮化でき、
硬化体の工業的大規模製造時の工程が著しく簡素化され
ることになる。
The main factors for curing conditions are curing temperature and curing time. The curing process allows the hydration reaction to proceed slowly, and the
The purpose is to have an appropriate strength that can withstand the water utilization reaction expansion during steam treatment of C, and to create a high-strength cured body by steam treatment. In other words, if the curing temperature is low or the curing time is short, the strength of the cured product after curing will be low, and the strength will be 65 to 90.
Due to the steam treatment at °C, many cracks occur and the strength of the cured product decreases. On the other hand, if the curing temperature is too high, cracks will occur during curing, and if the curing time is not long, the amount of thick crystals will increase, and the amount of oblique crystals produced by steam treatment will decrease. In both cases, the strength of the cured product decreases. Furthermore, if the relative humidity is lower than 80%, water evaporates and water utilization reactions do not proceed sufficiently. Therefore, in order to produce a high-strength cured product, K should be adjusted to room temperature to 60°C (preferably 85 to 60°C).
°C) and a relative humidity of 80% or higher for 5 to 25 hours. In addition, by increasing the curing temperature, the curing time for producing high-strength cured products can be significantly shortened.
This greatly simplifies the process for industrial large-scale production of cured products.

水蒸気処理条件は処理温度および処理時間が主な要因で
ある。一般に水蒸気処理時間が短いか、水蒸気処理温度
が低い際には、水和硬化体はカルシウムモノサルフォア
ルミネート こう、エトリンガイトの混合物からなり強度は小さく、
水蒸気処理時間が長くなるか、水蒸気処理温度が高くな
るにしたがってエトリンガイトの生成量が多くなシ強度
も大きくなる。水蒸気処理を長時間にわたり実施するか
、水蒸気処理温度を高くしすぎると、エトリンガイトは
:1吋熱・i生に欠けるため、14したエトリンガイト
は無水石こうとカルシウムアルミネート水田物に分解し
、水利硬化体のl強度は低下する。
Steam treatment conditions are the main factors of treatment temperature and treatment time. Generally, when the steam treatment time is short or the steam treatment temperature is low, the hydrated hardened product is composed of a mixture of calcium monosulfoaluminate and ettringite and has low strength.
As the steam treatment time becomes longer or the steam treatment temperature increases, the amount of ettringite produced increases and the strength also increases. If steam treatment is carried out for a long period of time or if the steam treatment temperature is too high, ettringite will lack heat and bioactivity. The l strength of the body decreases.

+14正なる水蒸気処理条件は燃焼灰の水利反応性など
により異なり、流動H,′,1燃焼灰においては65〜
90°Cの温度で、5〜15時間、常圧水蒸気処理する
ことにより高強度硬化体が得られる。
+14 positive steam treatment conditions vary depending on the water reactivity of the combustion ash, etc. For flow H,',1 combustion ash, the steam treatment conditions are 65~
A high-strength cured product can be obtained by treating with normal pressure steam at a temperature of 90°C for 5 to 15 hours.

また本究明は、所定の形状を有する硬化体のみならず、
粉砕によって得られる粒状111)!化体の製造方法を
も提供するものである。すなわち粉砕によって粒状硬化
体を製造する際には、予め特定の形状に成形する必要が
なく大量生産に適している。
In addition, this research covers not only a cured product having a predetermined shape, but also
Granular form obtained by crushing 111)! The present invention also provides a method for producing the compound. That is, when manufacturing a granular hardened body by pulverization, it is not necessary to mold it into a specific shape in advance, making it suitable for mass production.

水蒸気処理後の粉砕の際にはインパクトクラツンヤー、
ショークラッシャーなど通常の粉砕液が適用しうる。な
お粉砕方式については粒状硬化体の用途に適合した粒度
分布、粒子形状となるよう粉砕鏝ならびに操作条件?改
定することが望ましい。
When crushing after steam treatment, use Impact Cratsunya.
A normal crushing liquid such as a show crusher can be applied. Regarding the crushing method, the crushing trowel and operating conditions should be selected so that the particle size distribution and particle shape are suitable for the purpose of the granular hardened product. It is desirable to revise it.

実施例 つさ゛に実施例および比較例について説明する。Example Examples and comparative examples will be briefly described.

実施例および比較例における流動層燃焼灰の化学組成お
よび物性を第1表に、構成化合物割合を第2表に示す。
The chemical composition and physical properties of the fluidized bed combustion ash in Examples and Comparative Examples are shown in Table 1, and the proportions of constituent compounds are shown in Table 2.

(以下余白) 流動14燃焼灰なよび水14fl硬化体の試j倹方法を
つき゛(lζ示す。プレーン比表面1貢測定は、島津製
作所製の勿体比表1′I¥i噴;till定器5S−1
00形をj実用し、空気透1尚法によった。γ&注限界
は、T工S A 1205 (土のZfi性限界試1倹
方法)に基づき測定し、塑性限界i4 J工S A 1
206 (土の塑性限界試論方法)に基づき測定した。
(Leaving space below) The method for testing the hardened body of fluid 14 combustion ash and water 14fl is shown. Plain specific surface 1 ratio measurement is carried out using Shimadzu Corporation's 1'I\i injection; till measuring device. 5S-1
I put the 00 type into practical use and used the air permeability method. γ&Note limit is measured based on T Engineering SA 1205 (Zfi property limit test 1 method of soil), and plastic limit i4 J Engineering SA 1
Measured based on 206 (Method for estimating the plasticity limit of soil).

曲げ強度試1険は、試験片として40×40X160(
#浦)のものを使用し、試倹装置として丸菱科学・諌作
所製のMKS改良型万能強度試験機を使用した。試II
倹方法は3点曲げ法によった。圧縮強度試験は、試験片
として40X40X40(肱)のものを(吏用し、試I
険装置vtとしてインストロン社製の万能試強趨(最大
荷重10トン)を使用した。試験方法は定たわみ速度法
によった。
For bending strength test 1, the test piece was 40 x 40 x 160 (
#Ura) was used, and the MKS improved universal strength testing machine manufactured by Marubishi Kagaku Isasakusho was used as a testing device. Trial II
The thrift method was based on the three-point bending method. For the compressive strength test, a 40x40x40 (arm) test piece was used as the test piece.
As the safety device VT, a universal testing machine (maximum load of 10 tons) manufactured by Instron was used. The test method was the constant deflection rate method.

圧壊強度試1険は、試・険片として10朋〆のものを使
用し、試・・、’iJj装置dとして本屋式硬度計(最
大荷重30 kg )を1史用した。
For the crushing strength test, a 10 mm piece was used as the test piece, and a Honya-style hardness tester (maximum load 30 kg) was used as the test device.

また11午正CBRば、J工5A1210(突固めによ
る土の締固め試・横方法)によって上下方向に3層に分
けて、各ハリ92回製固めたときの最大乾燥密度095
%の、諦固め度に相当する4日水浸後のCBRをいい、
このCBRはJ工5A1211(路床土支持力比拭1倹
方法)によシ、直径5caの貫入棒のば大抵抗より次式
で与えられる。
In addition, at 11 o'clock CBR, the maximum dry density was 095 when it was divided into three layers in the vertical direction and compacted 92 times with J-K5A1210 (soil compaction test/horizontal method).
%, CBR after 4 days of water immersion, which corresponds to the degree of hardening,
This CBR is given by the following formula based on the large resistance of a penetrating rod with a diameter of 5 ca, according to J-K5A1211 (subgrade soil bearing capacity ratio method).

貫入量2.5朋のときの荷重(k” X 100 (%
)CBR”    1370(/Cg) なお実施例および比較例においては、水蒸気は常圧水蒸
気を使用した。
Load when penetration amount is 2.5 mm (k” x 100 (%
) CBR" 1370 (/Cg) Note that in the Examples and Comparative Examples, atmospheric pressure steam was used as the steam.

実施例1 流動層燃焼灰100重量部に水46重量部を添加し、攪
拌容器が3Qrpmで回転し、かつ一本の攪拌翼が40
 Orpmで回転する混練機で1.5分混練し、201
以下100重量%、10朋以下80重量%、5落屑以下
60重量%、1朋以下6重量%、0.1 mttr以下
0市欲%の粒状物にし、この混練物を201Gの圧力に
て加圧成形し、50’C,相対湿度80%以上の湿空下
で15時間養生した後、so’c、常圧水蒸気下で10
時間処理し水利硬化体を得た。水利硬化体の特性は第3
表の如くであった。
Example 1 46 parts by weight of water was added to 100 parts by weight of fluidized bed combustion ash, a stirring vessel was rotated at 3 Q rpm, and one stirring blade was
Knead for 1.5 minutes with a kneader rotating at 201
This kneaded material is made into granules with a content of 100% by weight or less, 80% by weight of 10% or less, 60% by weight of 5% or less, 6% by weight of 1% or less, and 0% by weight of 0.1mttr or less, and this kneaded product is heated at a pressure of 201G. After pressing and curing for 15 hours in a humid atmosphere at 50'C and a relative humidity of 80% or more,
After time treatment, a water-containing cured product was obtained. The characteristics of hydraulic hardening bodies are the third.
It was as shown in the table.

比較例1 流動;Xa燃侃灰100重i、41部に水46重量部を
添加し、攪拌容器が固定され二本の面拌翼が20Orp
mと1100rpで逆方向に回転する混練1幾で2分混
練し、40羽以下100 ff1i4%、20羽以下8
0重量%、10 :smm以下6重量%、5 ;uyt
以下40重量%、171m以下10重・11%、Q、l
 1m以下O屯小量の粒状物にし、以後は実施例1と同
様の実験を行った。
Comparative Example 1 Flow: 46 parts by weight of water was added to 41 parts of 100 parts by weight of Xa combustion ash, the stirring container was fixed, and the two surface stirring blades were set at 20 Orp.
Rotate in the opposite direction at 1100 rpm and knead for 2 minutes, 40 or less 100 ff1i 4%, 20 or less 8
0% by weight, 10: 6% by weight below smm, 5; uyt
Below 40% by weight, below 171m 10% by weight, 11%, Q, l
The same experiment as in Example 1 was carried out using a small amount of granules with a size of 1 m or less.

水利硬化体の特性は第8表の如くであった。The characteristics of the water-containing hardened material were as shown in Table 8.

比較例2 流動層燃焼灰100重量部に水40重電部を添加し、攪
拌容器が固定され、二本の攪拌翼が20Orpmと11
00rpで逆方向に回挺する混合機で3分混練し、20
MIt以下100市世%、IQl11ml以下95重量
%、5間以下75重量%、1間以下40重量%、0.1
朋以下5重量%の粒状物にし、以後は実施例1と同様の
実嘴を行った。水利硬化体の特性は第3表の如くであっ
た。
Comparative Example 2 40 parts by weight of water was added to 100 parts by weight of fluidized bed combustion ash, the stirring container was fixed, and the two stirring blades were set at 20 rpm and 11 rpm.
Knead for 3 minutes with a mixer that rotates in the opposite direction at 00 rpm, and mix for 20 minutes.
MIt or less 100% by weight, IQl 11ml or less 95% by weight, 5 or less 75% by weight, 1 or less 40% by weight, 0.1
The granules were made into 5% by weight granules, and the same beak as in Example 1 was carried out thereafter. The properties of the water-containing hardened material were as shown in Table 3.

比較例3 流動層燃焼灰100改竹部に水35重量部を添加し、門
拌容器が固定され、二本の攪拌翼が20 Orpmと1
100rpで逆方向にI!l!lI伝する混練機で4分
混練し、20朋以下100重量%、10朋以下100重
量%、5間以下80重量%、1間以下45重量%、Q、
l Mm以下5重量%の粒状物にし、この混練物を10
0SGの圧力にて加圧成形し、以後は実施例と同様の実
験を行った。水利硬化体の特注は第3表の如くであった
Comparative Example 3 35 parts by weight of water was added to 100 parts of bamboo ash from fluidized bed combustion, a gate stirring vessel was fixed, and two stirring blades were set at 20 Orpm and 1
I in the opposite direction at 100 rp! l! Knead for 4 minutes with a kneading machine taught by II, 100% by weight of 20 or less, 100% by weight of 10 or less, 80% by weight of 5 or less, 45% by weight of 1 or less, Q,
The kneaded material is made into granules with a concentration of 5% by weight or less.10
Pressure molding was carried out at a pressure of 0SG, and thereafter the same experiment as in the example was conducted. The custom-made hydraulic hardening bodies were as shown in Table 3.

比較例4 実施例1と同じ方法で製造した成形体を、50°C1相
対湿度80%以上の湿空下で40時間養生した後、80
°C1常圧水蒸気下で10時間処理し水和硬化体を得た
。水利硬化体の特性は第3表の如くであった。
Comparative Example 4 A molded article produced in the same manner as in Example 1 was cured for 40 hours in a humid atmosphere at 50°C and a relative humidity of 80% or more.
A hydrated and cured product was obtained by treatment for 10 hours at 1 °C under normal pressure steam. The properties of the water-containing hardened material were as shown in Table 3.

(以下余白) 冥施例2 第3表の実施例1に示す粉砕前の硬化体をショークラッ
シャーにてわ)砕し、20111以下100重世%、1
01R11以下68重量%、5!DI以下46重量%、
1順以下37重量%、Q、 l MM以下2.0重量%
の粒度分布の粒状硬化体金得た。この粒状硬化体の特性
は第4表に示す如くであった。
(Left below) Example 2 The hardened material shown in Example 1 in Table 3 was crushed using a show crusher, and 20111 or less 100%, 1
01R11 or less 68% by weight, 5! 46% by weight below DI,
37% by weight below 1st order, 2.0% by weight below Q, l MM
A granular hardened gold body with a particle size distribution of . The properties of this granular cured product were as shown in Table 4.

第    4    表 発明の詳細 な説明したように、本発明によれば石炭燃焼時の排出物
である流動層燃焼灰を塑性限界よりも多く液性限界より
も少ない水と混練し、所定の粒度針?′1iになるよう
に粒状化して低圧プレス成形した後、常温〜60°Cの
湿空養生の後に常圧水蒸気処理などの養生を施すことに
よって、強度の大きい硬化体ならびに粉砕によって得ら
れる粒状硬イヒ体を短時間にかつ容易に製造することが
可能であり、本発明は流動層燃焼灰を有効利用した土木
・建築の分野における各種建材、構造材、道路材、埋め
戻し材などの製造に寄与する技術としてき4りめて有益
である。
As described in detail in Table 4, according to the present invention, fluidized bed combustion ash, which is an exhaust product during coal combustion, is kneaded with water that is greater than the plastic limit and less than the liquid limit, and is mixed with a predetermined particle size needle. ? After granulating it to 1i and low-pressure press molding, it is cured in a humid air at room temperature to 60°C and then subjected to normal pressure steam treatment to produce a hardened product with high strength and granular hardness obtained by pulverization. It is possible to easily produce Ihi bodies in a short time, and the present invention is applicable to the production of various building materials, structural materials, road materials, backfilling materials, etc. in the fields of civil engineering and construction by effectively utilizing fluidized bed combustion ash. It is extremely useful as a contributing technology.

出願 人 川崎重工業株式会社Applicant: Kawasaki Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】 1 燃料としての石炭および脱硫剤としての石灰石から
構成される流動層における流動層燃焼の際に発生する石
炭灰および使用済脱硫剤に、石炭灰分60〜85重量%
、石灰分10〜25重量%、石こう分5〜25重量%の
配合割合となるように、生石灰または/および消石灰、
ならびにii型無水石こう、半水石こうまたは/および
2水石こうを必要に応じて添加して混合粉体を調製し、
この混合粉体に水を加えて混練した後、養生する方法に
おいて、混合粉体の塑性限界よりも多く液性限界よりも
少ない水を混合粉体に加えて混練して、粒径20mm以
下100重量%、粒径10mm以下60〜100重量%
、粒径5mm以下40〜100重量%、粒径1mm以下
5〜50重量%、粒径0.1mm以下10重量%以下の
粒度分布を有する混練物にした後、1〜50kg/cm
^2Gの圧力で加圧成形することを特徴とする流動層燃
焼灰を主原料とする硬化体の製造方法。 2 養生後の硬化体を粒径40mm以下の粒状硬化体に
粉砕する特許請求の範囲第1項記載の流動層燃焼灰を主
原料とする硬化体の製造方法。
[Scope of Claims] 1 Coal ash generated during fluidized bed combustion in a fluidized bed consisting of coal as a fuel and limestone as a desulfurization agent and spent desulfurization agent contain 60 to 85% by weight of coal ash.
, quicklime or/and slaked lime, so that the blending ratio is 10 to 25% by weight of lime and 5 to 25% by weight of gypsum.
and type II anhydrous gypsum, hemihydrate gypsum or/and dihydrate gypsum as needed to prepare a mixed powder,
In the method of adding water to this mixed powder, kneading it, and then curing it, add water that is more than the plastic limit of the mixed powder and less than the liquid limit, and knead it to reduce the particle size to 100 mm or less. Weight%, particle size 10mm or less 60-100% by weight
After kneading into a kneaded product having a particle size distribution of 40 to 100% by weight with a particle size of 5 mm or less, 5 to 50 weight% with a particle size of 1 mm or less, and 10 weight% or less with a particle size of 0.1 mm or less, 1 to 50 kg/cm
A method for producing a hardened product using fluidized bed combustion ash as a main raw material, characterized by pressure molding at a pressure of ^2G. 2. A method for producing a hardened body using fluidized bed combustion ash as a main raw material according to claim 1, wherein the cured body is pulverized into granular hardened bodies having a particle size of 40 mm or less.
JP59206802A 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material Pending JPS6186459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206802A JPS6186459A (en) 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206802A JPS6186459A (en) 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material

Publications (1)

Publication Number Publication Date
JPS6186459A true JPS6186459A (en) 1986-05-01

Family

ID=16529333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206802A Pending JPS6186459A (en) 1984-10-02 1984-10-02 Manufacture of hardened body from fluidized bed incinerationash as main raw material

Country Status (1)

Country Link
JP (1) JPS6186459A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225349A (en) * 1989-02-23 1990-09-07 Hideo Igami Cured form using coal ash and production thereof
JPH0859311A (en) * 1994-08-19 1996-03-05 Kawasaki Heavy Ind Ltd Production of solidified body from combustion ash and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02225349A (en) * 1989-02-23 1990-09-07 Hideo Igami Cured form using coal ash and production thereof
JPH0859311A (en) * 1994-08-19 1996-03-05 Kawasaki Heavy Ind Ltd Production of solidified body from combustion ash and device therefor

Similar Documents

Publication Publication Date Title
TWI239323B (en) Low density accelerant and strength enhancing additive for cementitious products and methods of using same
Mun et al. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator
CN100475736C (en) High-strength waterproof gypsum brick and method for preparing same
Garg et al. Some aspects of the durability of a phosphogypsum-lime-fly ash binder
CN101314530A (en) Method for producing building material with low-temperature ceramic modified industry by-product gypsum
CN104788063A (en) Unfired and pressing-free sludge brick and preparation method thereof
CN113716927A (en) Phosphogypsum-based soil curing agent, preparation method thereof, cured sample and preparation method thereof
JPS61275153A (en) Pretreatment for pozzolanic enhancement of pozzolan material
JPS6081051A (en) Manufacture of coal ash solidified body
WO2017175240A1 (en) Autoclaved fly ash bricks and method of manufacturing the same
CN101497516A (en) High-strength phosphogypsum wall material and method for making brick using the material
JPS6186459A (en) Manufacture of hardened body from fluidized bed incinerationash as main raw material
KR20040020494A (en) Manufacturing method of cement for solidifying industrial waste using waste concrete and the cement thereby
CZ2013155A3 (en) Treatment process of energy-bearing products
CN1097404A (en) With flyash is that filler is produced the gypsum lightweight brick
KR20160072834A (en) Secondary Products of Soil Concrete
US744432A (en) Process of making artificial stone, &c.
JPS5924749B2 (en) Method for producing hardened material using coal ash as main raw material
KR20190099765A (en) Artificial light weight aggregates composition using cement zero binder and manufacturing method thereof
Onghena Strength development of concrete in prefabricated elements: balancing production requirements and ecological impact
JPH0138069B2 (en)
JPS6125673B2 (en)
JPH0629159B2 (en) Method for producing a cured body using fluidized bed combustion ash as a raw material
JPH10273661A (en) Solidifying material having low alkali content and its production
Ng Utilisation of alum sludge ash in mortar production