JPS6186405A - Preparation of silicon nitride - Google Patents

Preparation of silicon nitride

Info

Publication number
JPS6186405A
JPS6186405A JP20717384A JP20717384A JPS6186405A JP S6186405 A JPS6186405 A JP S6186405A JP 20717384 A JP20717384 A JP 20717384A JP 20717384 A JP20717384 A JP 20717384A JP S6186405 A JPS6186405 A JP S6186405A
Authority
JP
Japan
Prior art keywords
powder
slurry
silicon nitride
reaction
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20717384A
Other languages
Japanese (ja)
Other versions
JPH0416402B2 (en
Inventor
Atsuo Nakamoto
中本 敦夫
Mutsuo Hayashi
睦夫 林
Senjo Yamagishi
山岸 千丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Nihon Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Cement Co Ltd filed Critical Nihon Cement Co Ltd
Priority to JP20717384A priority Critical patent/JPS6186405A/en
Publication of JPS6186405A publication Critical patent/JPS6186405A/en
Publication of JPH0416402B2 publication Critical patent/JPH0416402B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prepare fine Si3N4 having high alpha-phase content with high productivity by adding a specified dispersant and a specified nucleating material for the reaction to a slurry prepd. by adding water to silicon powder, carbon powder and/or resin powder, adjusting then the pH, drying, and nitriding by reduction. CONSTITUTION:A slurry is prepd. by adding water to silica powder (e.g. white carbon having <=3 micron particle size), carbon powder (e.g. carbon black having <=2 micron particle size), and/or resin powder (e.g. powdery phenol resin having <=30 micron particle size). Ammonium oxalate and nonionic surfactant are added as dispersant to the slurry, and at least one among Al2O3, sialon, oxide powder of the Group IIIA elements (e.g. Y2O3) as nucleating agent for reaction are also added. Then, the pH of the slurry is adjusted to 8-10, and the slurry is dried and nitrided by reduction. Thus, the productivity is improved remarkably, and Si3N4 having high content of alpha-phase and fine particle size is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリカ還元法による窒化けい素の製造方法に関
し、さらに詳しくはα相の含有率が高く、かつ収量の高
い微細な窒化けい素の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing silicon nitride by a silica reduction method, and more specifically, to a method for producing silicon nitride with a high content of α phase and a high yield. Regarding the manufacturing method.

〔従来の技術〕[Conventional technology]

窒化けい素セラミックスは高温度における高強度性から
ガスタービンプレート材やノズル材等のエンジニアリン
グセラミック材料として着目されており、実用化に向け
て各方面で研究開発がなされている。
Silicon nitride ceramics are attracting attention as engineering ceramic materials for gas turbine plate materials, nozzle materials, etc. due to their high strength at high temperatures, and research and development is being conducted in various fields toward practical application.

窒化けい素セラミックスの原料である窒化けい素粉末の
製造方法は種々提案されているが。
Various methods have been proposed for producing silicon nitride powder, which is a raw material for silicon nitride ceramics.

シリカ粉末とカーボン粉末や樹脂粉末を窒素あるいはア
ンモニア雰囲気中で加熱して製造する。
It is manufactured by heating silica powder, carbon powder, or resin powder in a nitrogen or ammonia atmosphere.

いわゆるシリカ還元法が量産可能な方法として注目され
ている。しかしこのシリカ還元法は有用なα相の含有率
が低いため、それを改善する方法として反応核を用いる
方法が提案されている。すなわち原料に反応核として窒
化けい素。
The so-called silica reduction method is attracting attention as a method that can be mass-produced. However, since this silica reduction method has a low content of useful α phase, a method using reaction nuclei has been proposed as a method to improve this. In other words, silicon nitride is used as a reaction nucleus in the raw material.

炭化けい素、酸窒化けい素などを添加する方法(特公昭
54−23917)が開発されている。
A method of adding silicon carbide, silicon oxynitride, etc. (Japanese Patent Publication No. 54-23917) has been developed.

しかしこの方法で得られる窒化けい素は高α相含有率で
あるが2反応核の使用量が3θ〜40チに及ぶため、得
られる製品の1部を反応核として使用するので生産性が
著しく低い。
However, although the silicon nitride obtained by this method has a high alpha phase content, the amount of 2 reaction nuclei used ranges from 3θ to 40cm, so a part of the product obtained is used as reaction nuclei, resulting in a significant increase in productivity. low.

そこで生産性を高めるため、少量の非晶質窒化けい素を
用いる方法が開発された(特開昭59−97508)。
Therefore, in order to increase productivity, a method using a small amount of amorphous silicon nitride was developed (Japanese Patent Laid-Open No. 59-97508).

この方法は量産には優れた方法であるが、生成した窒化
けい素のα相含有率が約90チと低く、かつその粒径は
数μmと粗いため実用性に欠けたものであった。
Although this method is excellent for mass production, it is impractical because the alpha phase content of the silicon nitride produced is as low as about 90 cm, and the grain size is coarse, several μm.

〔解決しようとする問題点〕[Problem to be solved]

このように窒化けい素を反応核として用いた従来のシリ
カ還元法はα相含有率と生産性のいずれか一方が不満足
な方法であり1両者とも優れた製造方法は未だ開発され
ていない。従ってかかる優れた製造方法の出現が強く要
望されていた。
As described above, the conventional silica reduction method using silicon nitride as a reaction nucleus is a method that is unsatisfactory in either the α phase content or the productivity, and a manufacturing method that is excellent in both has not yet been developed. Therefore, the emergence of such an excellent manufacturing method has been strongly desired.

すなわち本発明は高α相含有率で、かつ高生産性の微細
な窒化けい素の製造方法を提供するものである。
That is, the present invention provides a method for producing fine silicon nitride with a high alpha phase content and high productivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはシリカ還元法において反応核を用いる製造
方法について鋭意研究した結果、特定の酸化物を反応核
として用い、さらに分散剤を使用することによって高生
産性と微細な窒化けい素の高α相含有率が得られるとの
知見を得。
The inventors of the present invention have conducted intensive research on a manufacturing method using reaction nuclei in the silica reduction method, and have found that by using a specific oxide as a reaction nucleus and further using a dispersant, high productivity and high production of fine silicon nitride can be achieved. Obtained knowledge that alpha phase content can be obtained.

それに基いて本発明を完成した。すなわち本発明は主原
料であるシリカ粉末および炭素質粉末(カーボン粉末お
よび/または樹脂粉末を総称する)に水を加えた泥漿物
に1分散剤としてシュウ酸アンモニウムおよびノニオン
系界面活性剤を加え、さらに反応核として酸化アルミニ
ウム、サイアロン、周期律表のI[[A族の酸化物粉末
のうち1種または2種以上を加え、しかる後泥漿物のp
Hを8〜10に調整した後乾燥し、還元窒化することを
特徴とする窒化けい素の製造方法である。
Based on this, the present invention was completed. That is, the present invention adds ammonium oxalate and a nonionic surfactant as a dispersant to a slurry made by adding water to silica powder and carbonaceous powder (collectively carbon powder and/or resin powder), which are the main raw materials, and Further, one or more of the oxide powders of aluminum oxide, sialon, and group I [[A of the periodic table] are added as reaction nuclei, and then the slurry p
This method of producing silicon nitride is characterized by adjusting H to 8 to 10, drying, and reducing and nitriding.

本発明において反応核として用いる物質は酸化Ttv 
ミニラム(A1203) 、 +イT ロア (5i6
−2A1□02Ns−z)および周期律表のIIIA族
の酸化物。
The substance used as a reaction nucleus in the present invention is oxidized Ttv
Miniram (A1203), +iT Roa (5i6
-2A1□02Ns-z) and oxides of group IIIA of the periodic table.

たとえばイツトリウムネオジムオキサイド(YNdO3
)。
For example, yttrium neodymium oxide (YNdO3
).

酸化ランタン(La203)、セリア(CeO2)等の
酸化物粉末が挙げられる。これら酸化物粉末の中から適
宜1種あるいは2種以上を前記泥漿物に添加するが、泥
漿物にする前の原料に加えておくこともさしつかえない
。その添加割合はシリカ粉末100重量部に対して0,
05〜20重量部であり、好ましくは0.1〜3重量部
である。
Examples include oxide powders such as lanthanum oxide (La203) and ceria (CeO2). One or more of these oxide powders may be added to the slurry as appropriate, but it may also be added to the raw material before it is made into a slurry. The addition ratio is 0 to 100 parts by weight of silica powder.
The amount is 0.05 to 20 parts by weight, preferably 0.1 to 3 parts by weight.

添加量が0.05重量部未満では反応核として添加した
効果が小さいうえに微細な窒化けい素が得られず、逆に
20重量部を超えて添加しても添加量の割には効果が小
さく不経済である。反応核の粒径は5μm以下が好まし
く、それ以上の粒径では反応核として窒化反応促進効果
が非常に小さくなる。
If the amount added is less than 0.05 parts by weight, the effect of adding it as a reaction nucleus is small and fine silicon nitride cannot be obtained.On the other hand, even if it is added in excess of 20 parts by weight, there is no effect considering the amount added. It is small and uneconomical. The particle size of the reaction nucleus is preferably 5 μm or less; if the particle size is larger than that, the effect of promoting the nitriding reaction as a reaction nucleus becomes very small.

次に1本発明に使用するシュウ酸アンモニウム((NH
4)2c204)およびノニオン系界面活性剤は泥漿物
中で原料粉末などの分散剤として作用するもので、ノニ
オン系界面活性剤は通常用いられるもの、たとえばアル
キルフェノールエチレンオキサイド付加物、ポリプロピ
レンクリコールエチレンオキサイド付加物等が挙げられ
る。
Next, ammonium oxalate ((NH
4) 2c204) and nonionic surfactants act as dispersants for raw material powders in slurry, and nonionic surfactants include commonly used ones such as alkylphenol ethylene oxide adducts and polypropylene glycol ethylene oxide. Examples include additives.

これらの添加割合は、シュウ酸アンモニウムの場合、シ
リカ粉末100重量部に対して0.1重量部以上、好ま
しくは0.3〜6.0重量部である。またノニオン系界
面活性剤の場合は炭素質粉末100重量部に対して0.
2重量部以上、好ましくは0.3〜2.0重量部である
。上記2種の分散剤のそれぞれ0.1重量部、0.2重
量部未満では分散効果が弱く、原料粉末が均質にならな
いため還元窒化反応によって得られる生成物中に酸窒化
けい素などの不純物が残存するので好ましくない。一方
好ましい上限値であ″る60重量部、2.0重量部を超
えて添加することは特に技術的問題はないが、添加量に
対応した効果はないので、それ以上の添加は不経済であ
る。
In the case of ammonium oxalate, the addition ratio is 0.1 part by weight or more, preferably 0.3 to 6.0 parts by weight, based on 100 parts by weight of silica powder. In addition, in the case of nonionic surfactant, 0.00% per 100 parts by weight of carbonaceous powder.
The amount is 2 parts by weight or more, preferably 0.3 to 2.0 parts by weight. If the above two types of dispersants are less than 0.1 part by weight or 0.2 parts by weight, respectively, the dispersion effect will be weak and the raw material powder will not be homogeneous, resulting in impurities such as silicon oxynitride in the product obtained by the reductive nitriding reaction. remains, which is not desirable. On the other hand, there is no particular technical problem in adding more than the preferable upper limit of 60 parts by weight or 2.0 parts by weight, but there is no effect corresponding to the amount added, so adding more than that is uneconomical. be.

原料調整した後乾燥の前に本発明の1つの特徴である泥
漿物のpH調整を行なう。その泥漿物のpHA整にはア
ンモニア水が用いられ、泥葉物がpH8〜10になるよ
うに添加混合することによって分散効果を一層高め、か
つ安定させる効果がある。
After adjusting the raw materials and before drying, the pH of the slurry is adjusted, which is one of the features of the present invention. Ammonia water is used to adjust the pH of the slurry, and by adding and mixing the slurry to a pH of 8 to 10, it has the effect of further enhancing the dispersion effect and stabilizing the slurry.

本発明において主原料は常法におけるものが用いられ、
たとえばシリカ粉末としては粒径3μm以下のホワイト
カーボン、シリカゲル等が。
In the present invention, the main raw materials used are those obtained by conventional methods,
For example, examples of silica powder include white carbon and silica gel with a particle size of 3 μm or less.

カーホン粉末としては粒径211m以下のカーボンフラ
ノク、コークス粉等が、また樹脂粉末としては粒径30
μm以下のフェノール樹脂粉末。
Carbon powder, coke powder, etc. with a particle size of 211 m or less are used as carphone powder, and carbon powder with a particle size of 30 m or less is used as resin powder.
Phenol resin powder of less than μm.

ユリア樹脂粉末、メラミン樹脂粉末、ポリカーホネート
樹脂粉末等が用いられる。これら炭素質原料粉末である
カーボン粉末と樹脂粉末は単独で、あるいは併用して用
いられる。その配合ぎす合はシリカ粉末100重量部に
対し、これら炭素質原料粉末は40重量部以上である。
Urea resin powder, melamine resin powder, polycarbonate resin powder, etc. are used. These carbonaceous raw material powders, carbon powder and resin powder, may be used alone or in combination. If too much is mixed, the amount of these carbonaceous raw material powders is 40 parts by weight or more per 100 parts by weight of silica powder.

次に本発明にしたがった製造方法の一例を説明する。Next, an example of the manufacturing method according to the present invention will be explained.

上記主原料の配合物にその重量の2〜10倍の水を添加
し、泥漿物を得る。この泥漿物を強制攪拌しながら反応
核として所要量の前記酸化物粉末および分散剤としてシ
ュウ酸アンモニウムおよびノニオン系界面活性剤を添加
し、さらにアンモニア水を滴下してpHを調整する。こ
れらの添加順位は限定されるものではなく、最終的に原
料粉末および各種添加剤が十分に分散された状態の調整
済泥漿物になっておればよい。
Water in an amount of 2 to 10 times its weight is added to the blend of the above main raw materials to obtain a slurry. While forcibly stirring this slurry, a required amount of the oxide powder as a reaction nucleus, ammonium oxalate and a nonionic surfactant as a dispersant are added, and aqueous ammonia is added dropwise to adjust the pH. The order of these additions is not limited, as long as the final prepared slurry has the raw material powder and various additives sufficiently dispersed therein.

かくして得られた調整済泥漿物は場合によって脱水分離
したのち、慣用の設備で乾燥する。
The prepared slurry thus obtained is optionally dehydrated and then dried using conventional equipment.

この乾燥物を窒素および/またはアンモニア雰囲気中で
1850〜1550℃、0.5時間以上加熱処理するこ
とによってα相が多く、かつ1.2μm以下の微細な窒
化けい素が高生産性をもって得られる。
By heat-treating this dried product at 1850 to 1550°C for 0.5 hours or more in a nitrogen and/or ammonia atmosphere, silicon nitride containing a large amount of α phase and having a size of 1.2 μm or less can be obtained with high productivity. .

〔作 用〕[For production]

本発明で用いられる反応核は加熱処理して得られる窒化
けい素の一部を構成している。従って本発明の反応核は
原料の一部であるのに対し。
The reaction nucleus used in the present invention constitutes a part of silicon nitride obtained by heat treatment. Therefore, whereas in the present invention the reaction nucleus is part of the raw material.

従来法の反応核は製品の窒化けい素の80〜40チを常
に循環使用するため加熱処理用の炉の有効容積をはじめ
、その他の装置についてもその循環使用する分だけ生産
能力を落していることになり、同一有効容積の炉等を用
いて製造すれば2本発明の方法の生産性はそれだけ高く
なる。
The reaction nucleus of the conventional method constantly cycles through 80 to 40 inches of silicon nitride, which reduces the effective capacity of the heat treatment furnace and other equipment by the amount that is recycled. Therefore, if a furnace or the like having the same effective volume is used for manufacturing, the productivity of the method of the present invention will be correspondingly higher.

しかして本発明において反応核として用いる酸化物が窒
化反応を促進し、α相含有率を高め。
However, in the present invention, the oxide used as a reaction nucleus promotes the nitriding reaction and increases the α phase content.

さらに微細な窒化けい素とするのは下記の作用によるも
のと考えられる。
The reason why silicon nitride is made even finer is considered to be due to the following effect.

S IO2遣元窒化反応は 5I02+C(または樹脂)→ Si O+ Co  
 (1)SiO−+ C(または樹脂)十N2(樹脂中
のN)→S i s N4+ Co   +2)による
ものと考えられるが、この反応系に反応核としてSi3
N、粉末を添加した場合、それを中心にSi3N、結晶
が漸次成長すると考えられるが。
S IO2 radical nitriding reaction is 5I02+C (or resin) → Si O+ Co
(1) SiO−+ C (or resin) + N2 (N in resin → Si s N4+ Co +2), but this reaction system also contains Si3 as a reaction nucleus.
When N powder is added, it is thought that Si3N crystals will gradually grow around it.

その速度は非常にゆるやかでα相含有率は低い。The speed is very slow and the α phase content is low.

また結晶質513N4を添加したときはα相含有率は改
善されるが、その結晶の大きさはまだ十分に細かいもの
とは言えない。
Furthermore, when crystalline 513N4 is added, the α phase content is improved, but the crystal size is still not sufficiently fine.

本発明のように1反応核としてサイアロン。Sialon as one reaction nucleus as in the present invention.

Y2O3,YNd03等の酸化物を添加すると反応初期
に生成するMe −8i −0(Me :反応核を構成
する金属元素)のガラス相が系全体に生成分布して活性
化し、 (1) 、 +2)の反応を促進し、微細な8
 i 5 N 4結晶を多数生成させることによって、
微細で。
When oxides such as Y2O3 and YNd03 are added, the glass phase of Me -8i -0 (Me: a metal element constituting the reaction nucleus) generated at the initial stage of the reaction is generated and distributed throughout the system and activated, (1), +2 ) promotes the reaction of fine 8
By producing a large number of i 5 N 4 crystals,
In minute detail.

かつα相の多い5L3N4ができると思われる。It is thought that 5L3N4 with a large amount of α phase can be produced.

また本発明におけるシュウ酸アンモニウム等の分散剤は
原料の混合をよくすることはもとより、多量の原料中に
少量添加される反応核物質を均一に分散させるためであ
り、pHの調整はそれを一層効果的にするものである。
In addition, the dispersant such as ammonium oxalate in the present invention is used not only to improve the mixing of raw materials, but also to uniformly disperse the reaction core material added in a small amount into a large amount of raw materials, and the pH adjustment further improves this. It is what makes it effective.

そうすることにより調整済原料はむらなく窒化反応が促
進され、生成物のα相含有率を高め、かつ微細にするも
のと思われる。
It is believed that by doing so, the nitriding reaction of the prepared raw material is promoted evenly, the α phase content of the product is increased, and the product is made fine.

実施例1〜12.比較例1〜8 下記主原料 1)シリカ粉末 ホワイトカーボン    100重量
部(平均粒径0.7μm) 2)カーボンブラック            35重
量部(平均粒径1.I Jim 、吸油量11 zrn
4/i00 、li’ )3)ユリア樹脂粉末(20μ
m以下)    100重量部の配合物に対し800重
量部の水を加え1表]。
Examples 1-12. Comparative Examples 1 to 8 Main raw materials below 1) Silica powder White carbon 100 parts by weight (average particle size 0.7 μm) 2) Carbon black 35 parts by weight (average particle size 1.I Jim, oil absorption 11 zrn)
4/i00, li') 3) Urea resin powder (20μ
m or less) 800 parts by weight of water was added to 100 parts by weight of the formulation in Table 1].

に示す酸化物(粒径1〜3μm)、シーウ酸アンモニウ
ム1重量部およびポリエチレングリコールアルキルエー
テル0.3重量部を強制攪拌機に投入し、混合しながら
アンモニア水を滴下してp H9,0の調整済泥漿物を
製造した。
Add the oxide shown in (particle size 1 to 3 μm), 1 part by weight of ammonium oxalate, and 0.3 part by weight of polyethylene glycol alkyl ether into a forced stirrer, and adjust the pH to 9.0 by adding aqueous ammonia dropwise while mixing. A liquid slurry was produced.

この泥漿物を噴霧乾燥して得られた乾燥物を電気炉に導
入し、窒素ガス雰囲気中で1480’C。
The dried product obtained by spray drying this slurry was introduced into an electric furnace and heated at 1480'C in a nitrogen gas atmosphere.

3時間還元窒化反応をさせた。この反応物を720℃、
空気中で脱炭素処理を行い、得られたそれぞれの生成物
についてX線回折および電子顕微鏡観察により粒径測定
を行い、その結果を同表に掲げた。
The reductive nitriding reaction was carried out for 3 hours. This reaction product was heated at 720°C.
Decarbonization treatment was carried out in air, and the particle size of each product obtained was measured by X-ray diffraction and electron microscopic observation, and the results are listed in the same table.

表  1 1)ノリ力粉末に対する添加量(外割係)実施例13.
比較例4〜6 実施例1〜12の主原料に対し、 Y2O3を0.5重
量部添加した後、水1分散剤、アンモニアを表2に従っ
て加え1強制攪拌機に投入して混合した。それぞれの泥
漿物について噴霧乾燥を行い、調整済原料とした。ただ
し比較例4は主原料のみによる粉末状の調整済原料であ
る。得られた原料を実施例1〜12と同様な操作で還元
窒化反応をさせ、それぞれの生成物についてX線回折お
よび電子顕微鏡観察により粒径測定を行い、その結果を
同表に掲げた。
Table 1 1) Amount added to Noriyoku powder (external ratio) Example 13.
Comparative Examples 4 to 6 After adding 0.5 parts by weight of Y2O3 to the main raw materials of Examples 1 to 12, 1 part of water and a dispersant and ammonia were added according to Table 2, and the mixture was put into a forced stirrer and mixed. Each slurry was spray-dried to obtain a prepared raw material. However, Comparative Example 4 is a powdered prepared raw material made of only the main raw material. The obtained raw materials were subjected to a reductive nitridation reaction in the same manner as in Examples 1 to 12, and the particle size of each product was measured by X-ray diffraction and electron microscopy, and the results are listed in the table.

〔発明の効果〕〔Effect of the invention〕

本発明による窒化けい素の製造方法は従来法に比し、そ
の生産性は著しく改善され、かつα相含有率が高く1粒
径の微細なものを得ることができた。従って本発明は従
来法の欠点をすべて解消し、実効性の高い窒化けい素の
製造方法を提供するものである。
The method for producing silicon nitride according to the present invention has significantly improved productivity as compared to the conventional method, and has been able to obtain silicon nitride with a high α phase content and a fine particle size of 1 particle. Therefore, the present invention eliminates all the drawbacks of the conventional methods and provides a highly effective method for producing silicon nitride.

Claims (2)

【特許請求の範囲】[Claims] (1)シリカ粉末とカーボン粉末および/または樹脂粉
末に水を加えた泥漿物を乾燥し、還元窒化して窒化けい
素を製造する方法において、前記泥漿物に分散剤として
シュウ酸アンモニウムおよびノニオン系界面活性剤を加
え、さらに反応核として酸化アルミニウム、サイアロン
および周期律表のIIIA族の酸化物粉末のうち1種また
は2種以上を加え、しかる後、前記泥漿物をpH8〜1
0に調整したのち乾燥し、還元窒化することを特徴とす
る窒化けい素の製造方法。
(1) In a method of producing silicon nitride by drying a slurry obtained by adding water to silica powder, carbon powder and/or resin powder, and reducing and nitriding the slurry, ammonium oxalate and a nonionic compound are added to the slurry as a dispersant. A surfactant is added, and one or more of aluminum oxide, sialon, and oxide powder of group IIIA of the periodic table are added as reaction nuclei, and then the slurry is adjusted to pH 8 to 1.
1. A method for producing silicon nitride, which comprises adjusting the silicon nitride to 0, followed by drying and reducing and nitriding.
(2)反応核の添加量がシリカ粉末100重量部に対し
て0.05〜20重量部である特許請求の範囲第(1)
項記載の窒化けい素の製造方法。
(2) Claim No. 1, wherein the amount of reaction nuclei added is 0.05 to 20 parts by weight per 100 parts by weight of silica powder.
A method for producing silicon nitride as described in Section 1.
JP20717384A 1984-10-04 1984-10-04 Preparation of silicon nitride Granted JPS6186405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20717384A JPS6186405A (en) 1984-10-04 1984-10-04 Preparation of silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20717384A JPS6186405A (en) 1984-10-04 1984-10-04 Preparation of silicon nitride

Publications (2)

Publication Number Publication Date
JPS6186405A true JPS6186405A (en) 1986-05-01
JPH0416402B2 JPH0416402B2 (en) 1992-03-24

Family

ID=16535439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20717384A Granted JPS6186405A (en) 1984-10-04 1984-10-04 Preparation of silicon nitride

Country Status (1)

Country Link
JP (1) JPS6186405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256939A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for preparing silicon nitride powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256939A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for preparing silicon nitride powder

Also Published As

Publication number Publication date
JPH0416402B2 (en) 1992-03-24

Similar Documents

Publication Publication Date Title
US7737065B2 (en) Process for producing aluminum nitride sintered compacts
KR910001300B1 (en) Process for production of aluminium nitride
US4957886A (en) Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
JPS61151006A (en) Production of aluminum nitride powder
CA1327453C (en) Aluminum oxide/aluminum oxynitride/group ivb metal nitride abrasive particles derived from a sol-gel process
US4845059A (en) Process for producing α-Sialon powder
JP3290686B2 (en) Method for producing aluminum nitride powder
US4855264A (en) Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US4812298A (en) Method for producing sialon powders
US4500644A (en) Preparation and composition of sialon grain and powder
JPS6186405A (en) Preparation of silicon nitride
US4818733A (en) Silicon nitride sintered bodies and a method of producing the same
JPH03261611A (en) Production of silicon nitride composite powder
JPH0319163B2 (en)
JPS6036312A (en) Production of alpha-type silicon nitride
JPH0425204B2 (en)
JPS61168514A (en) Production of easily sinterable silicon carbide
JPS6362450B2 (en)
JPS6365000A (en) Production of beta-type silicon nitride whisker
JPS6325299A (en) Production of beta-silicon nitride whisker
JPH0573687B2 (en)
JPS60145902A (en) Production of sialon powder
JPS62167208A (en) Production of aluminum nitride powder
JP3461870B2 (en) Silicon aluminum oxynitride
JPH0459609A (en) Production of aluminum nitride powder