JPS6185704A - Manufacture of metalized paste for ceramics - Google Patents

Manufacture of metalized paste for ceramics

Info

Publication number
JPS6185704A
JPS6185704A JP20600484A JP20600484A JPS6185704A JP S6185704 A JPS6185704 A JP S6185704A JP 20600484 A JP20600484 A JP 20600484A JP 20600484 A JP20600484 A JP 20600484A JP S6185704 A JPS6185704 A JP S6185704A
Authority
JP
Japan
Prior art keywords
powder
weight
paste
solvent
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20600484A
Other languages
Japanese (ja)
Inventor
堀部 芳幸
宮 好宏
上山 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP20600484A priority Critical patent/JPS6185704A/en
Publication of JPS6185704A publication Critical patent/JPS6185704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は緻密でセラミックスとの接着強度が高く、かつ
表面平滑な金属化層を提供するセラミックス用メタライ
ズペーストの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a metallized paste for ceramics that provides a metallized layer that is dense, has high adhesive strength to ceramics, and has a smooth surface.

半導体集積回路用基板、電子回路用基板等に用いられる
セラミック基板の表面に微細な配線を形成又は各種部品
をとりつける丸めには、セラミックスとの接着強度が高
く、緻密で表面平滑な金属化層が必要である。
For forming fine wiring or attaching various parts to the surface of ceramic substrates used for semiconductor integrated circuit boards, electronic circuit boards, etc., a metalized layer with high adhesive strength to ceramics and a dense and smooth surface is used. is necessary.

(従来技術とその問題点) このような金属化層の形成法としては、従来からM□、
 M□−pJIH金属化法、W金属化法、 Ag、 P
d。
(Prior art and its problems) Conventionally, methods for forming such a metallized layer include M□,
M□-pJIH metallization method, W metallization method, Ag, P
d.

Au等の貴金属粉末とガラス粉とを混合した厚膜ペース
トを用いる厚膜法などがある。これらの方法では、 M
o、W、 Ag、 Pd、 Au等の金属粉末にMn。
There is a thick film method that uses a thick film paste that is a mixture of noble metal powder such as Au and glass powder. In these methods, M
Mn in metal powders such as o, W, Ag, Pd, and Au.

ガラス粉等の無機結合剤粉末、有機結合剤及び溶剤を添
加し、らいかい機や三本ロールミルでペースト化して用
いるのが一般的である。しかしペースト化は高粘度の条
件下で行なわれるため、凝集した粉末を十分に一次粒子
化することが困難であり、また、金属粉末と硬さや比重
9粒径の異なる無機結合剤粉末との均一な混合分散も得
難い。このような混合分散の不十分なペーストを用いて
金属化層を形成し九場合、緻密で表面平滑な金属化層が
得られず、また接着強度も低く、ばらつきも大きくなる
という欠点があった。
It is common to add an inorganic binder powder such as glass powder, an organic binder, and a solvent, and make it into a paste using a sieve machine or a three-roll mill. However, since pasting is carried out under conditions of high viscosity, it is difficult to sufficiently convert the agglomerated powder into primary particles. It is also difficult to obtain a good mixing dispersion. When a metallized layer is formed using such a paste with insufficient mixing and dispersion, there are disadvantages in that a dense metallized layer with a smooth surface cannot be obtained, and the adhesive strength is low and variations are large. .

(発明の1的) 本発明の目的は上記した従来技術の欠点を解消し、金属
粉末及び無機結合剤粉末を有機結合剤溶液中で単一粒子
にまで十分に解粒し、これらの粉末を均一分散させたセ
ラミックス用メタライズペーストの製造方法を提供する
ものである。
(Objective of the Invention) It is an object of the present invention to solve the above-mentioned drawbacks of the prior art, to fully disintegrate metal powder and inorganic binder powder into single particles in an organic binder solution, and to The present invention provides a method for producing a uniformly dispersed metallizing paste for ceramics.

(発明の構成) 本発明は、金属粉末、無機結合剤粉末、有機結合剤及び
溶剤を混合するセラミックス用メタライズペーストの製
造方法において、金属粉末無機結合剤粉末、有機結合剤
及び溶剤を混合した混合物の粘度が、金属粉末及び無機
結合剤粉末の解粒を妨げない程度以下で、かつ解粒した
粒子が直接接触するのを妨げる量の有機結合剤を添加、
混合して金属粉末及び無機結合剤粉末が単一粒子になる
まで解粒し、その後溶剤を除去して金属粉末及び無機結
合剤粉末の表面を有機結合剤で被覆した混合粉体とし9
次いでペースト化に必要な量の溶剤を添加、混合するセ
ラミックス用メタライズペーストの製造方法に関する。
(Structure of the Invention) The present invention provides a method for producing a metallizing paste for ceramics in which a metal powder, an inorganic binder powder, an organic binder, and a solvent are mixed. The viscosity of the metal powder and the inorganic binder powder are below the level that does not prevent the disintegration of the metal powder and the inorganic binder powder, and an amount of the organic binder is added that prevents the disaggregated particles from coming into direct contact with each other.
Mix and disintegrate the metal powder and inorganic binder powder until they become single particles, and then remove the solvent to obtain a mixed powder in which the surfaces of the metal powder and inorganic binder powder are coated with an organic binder9.
Next, the present invention relates to a method for producing a metallizing paste for ceramics, which involves adding and mixing a solvent in an amount necessary for forming a paste.

本発明において、金属粉末としては、Mo、Wlの高融
点金属粉、Ag@ pa l Au等の貴金属粉。
In the present invention, metal powders include high melting point metal powders such as Mo and Wl, and noble metal powders such as Ag@pal Au.

Cu、N1等の卑金属粉などが用いられ特に制限はない
が、Mo、W等の比較的硬く延性の小さい高融点金属粉
を用いるのが好ましい。また無機結合剤粉末としては、
 Mn粉末、アルミナ、シリカ、マグネシア、カルシア
今の酸化物やこれら酸化物の一種又は二種以上からなる
ガラス粉末、はう硅酸系。
Powders of base metals such as Cu and N1 are used, and there are no particular limitations, but it is preferable to use powders of relatively hard and low ductile high-melting metals such as Mo and W. In addition, as an inorganic binder powder,
Mn powder, alumina, silica, magnesia, calcia oxides, glass powders made of one or more of these oxides, and silicic acid-based oxides.

亜鉛−鉛系ガラスであってもよく特に制限はなく。Zinc-lead glass may be used, and there are no particular limitations.

用いる金属粉の種類及び金属化層を形成するセラミック
スの種類に応じて選定すれば良い。
The selection may be made depending on the type of metal powder used and the type of ceramic forming the metallized layer.

本発明において有機結合剤としては、エチルセルロース
、ニトロセルロース、アクリル樹脂、ブチラール樹脂等
が用いられ、さらに必要に応じてフタル酸エステル、ト
リエチレングリコール等の可麗剤を加えても曳い。溶剤
としては酢酸エチル。
In the present invention, ethyl cellulose, nitrocellulose, acrylic resin, butyral resin, etc. are used as the organic binder, and if necessary, a beautifying agent such as phthalate ester or triethylene glycol may be added. Ethyl acetate as the solvent.

hH7’fル、トI)クロールエチレン、トルエン。hH7'fl, tI) Chlorethylene, toluene.

キシレン、メチルエチルケトン、エタノール、メタノー
ル等の一種又は二種以上の混合溶剤が用いられる。
One or more mixed solvents such as xylene, methyl ethyl ketone, ethanol, and methanol are used.

金属粉末、無機結合剤粉末、有機結合剤及び溶剤を混合
した混合物の粘度は、最大20P(ボイズ)であること
が好ましく、IP〜5Pの範囲であればさらに好ましい
。また有機結合剤の添加量は、金属粉末100重量部に
対し0.5〜6重量部であることが好ましく、1〜4重
量部であればさらに好ましい。
The viscosity of the mixture of metal powder, inorganic binder powder, organic binder, and solvent is preferably 20P (voids) at maximum, and more preferably in the range of IP to 5P. Further, the amount of the organic binder added is preferably 0.5 to 6 parts by weight, more preferably 1 to 4 parts by weight, per 100 parts by weight of the metal powder.

(実施例→ 以下実施例により本発明を説明する。(Example → The present invention will be explained below with reference to Examples.

実施例1 金属粉末として平均粒径0.63μmのMo粉末100
重量部に対し、無機結合剤粉末として平均粒径1.5μ
mのMn粉末1重量部及びアルミナ、シリカ、マグネシ
ア、カルシアから成るガラス粉末3重量部、有機結合剤
として、エチルセルロース2重量部及びニトロセルロー
ス2重量部、溶剤として酢酸エチルとトルエンの1:1
の混合溶液を200重量部秤量し、これらをボールミル
にて20時間混合して金属粉末及び無機結合剤粉末を単
一粒子に1で十分解粒し、均一に分散した粘度が25P
のスラリーを得た。次に前記スラリーをらいかい機で一
加熱混合しながら乾燥し、溶剤を除去して全域粉末及び
無機結合剤粉末の表面を有機結合剤で被覆した混合粉体
を得た。
Example 1 Mo powder 100 with an average particle size of 0.63 μm as metal powder
Average particle size of inorganic binder powder is 1.5μ per part by weight.
1 part by weight of Mn powder, 3 parts by weight of glass powder consisting of alumina, silica, magnesia, and calcia, 2 parts by weight of ethyl cellulose and 2 parts by weight of nitrocellulose as organic binders, and 1:1 of ethyl acetate and toluene as solvents.
200 parts by weight of the mixed solution were mixed in a ball mill for 20 hours to fully disintegrate the metal powder and inorganic binder powder into single particles.
of slurry was obtained. Next, the slurry was dried while being heated and mixed in a sieve machine, and the solvent was removed to obtain a mixed powder in which the surfaces of the whole area powder and the inorganic binder powder were coated with an organic binder.

次に上記で得た混合粉体108重量部に対し。Next, based on 108 parts by weight of the mixed powder obtained above.

溶剤としてテルピネオールを40重量部添加し。40 parts by weight of terpineol was added as a solvent.

らいかい機にて2時間混合後、三本ロールミルにてペー
スト化してセラミックス用メタライズペーストを得た。
After mixing for 2 hours in a milling machine, the mixture was made into a paste in a three-roll mill to obtain a metallized paste for ceramics.

得られたセラミックス用メタライズペーストをSiC基
板(日立製作所製、商品名5C−101)上にスクリー
ン印刷し、ついで弱還元雰囲気中で1300℃で焼成し
、 8iC基板上に金属化層を形成した。得られた金属
化層の表面粗さは3. OpmBxで、 SiC基板と
の接着強度は4.Okgf/am1以上であった。
The obtained metallized paste for ceramics was screen printed on a SiC substrate (manufactured by Hitachi, Ltd., trade name 5C-101), and then fired at 1300° C. in a weakly reducing atmosphere to form a metallized layer on the 8iC substrate. The surface roughness of the obtained metallized layer was 3. With OpmBx, the adhesive strength with the SiC substrate is 4. It was more than Okgf/am1.

これに対し比較例として前記実施例1で使用したMo粉
末100重量部に対して、前記実施例1で使用しfC,
Mn粉末及びガラス粉末をそれぞれ1重量部、3重量部
、有機結合剤としてエチルセルロース2重量部及びニト
ロセルロース2重量部、溶剤としてテルピネオール40
重量部を秤量し、これらをらいかい機で5時間混合した
だけで金員粉末及び無機結合剤粉末を単一粒子にまで解
粒しない状態で三本ロールミルにてペースト化した。得
られたペーストを用い前記実施例1と同様の工程を経て
SiC基板(日立製作所製、商品名5C−101)上に
金属化層を形成した。得られた金属化層の表面粗さは6
μm RZと粗< 、 SiC基板との接着強度FiZ
Okgf/am″と前記実施例1に比べ低く、ばらつき
も大きいものであった。
On the other hand, as a comparative example, fC,
1 part by weight and 3 parts by weight of Mn powder and glass powder, 2 parts by weight of ethyl cellulose and 2 parts by weight of nitrocellulose as organic binders, and 40 parts of terpineol as a solvent.
Parts by weight were weighed, mixed for 5 hours using a sieve machine, and then made into a paste using a three-roll mill without disintegrating the Kinmen powder and the inorganic binder powder into single particles. Using the obtained paste, a metallized layer was formed on a SiC substrate (manufactured by Hitachi, Ltd., trade name 5C-101) through the same steps as in Example 1. The surface roughness of the obtained metallized layer was 6
μm Adhesion strength FiZ between RZ and rough < , SiC substrate
Okgf/am'' was lower than that of Example 1, and the variation was large.

実施例2 金員粉末として平均粒径1.2μmのW粉末100重量
部に対し、無機結合剤粉末として実施例1で使用したガ
ラス粉末1重量部、有機結合剤としてエチルセルロース
11[1部及びニトロセルロース1重量部、溶剤として
酢酸エチルとトルエンの1;1の混合塔剤を150重量
部秤量し、これらを実施例1と同様の方法で混合、解粒
し、均一に分散した粘度が4Pのスラリーを得た。次に
前記スラリーを実施例1と同様の方法で乾燥し、溶剤を
除去して金属粉末及び無機結合剤粉末の表面を有機結合
剤で液種した混合粉体を得た。
Example 2 To 100 parts by weight of W powder with an average particle size of 1.2 μm as gold powder, 1 part by weight of the glass powder used in Example 1 as inorganic binder powder, 1 part of ethyl cellulose 11 and nitro as organic binder. Weighed 1 part by weight of cellulose and 150 parts by weight of a 1:1 mixture of ethyl acetate and toluene as a solvent, mixed and granulated in the same manner as in Example 1, and obtained a uniformly dispersed viscosity of 4P. Got slurry. Next, the slurry was dried in the same manner as in Example 1, and the solvent was removed to obtain a mixed powder in which the surfaces of the metal powder and inorganic binder powder were seeded with an organic binder.

さらに上記で得た混合粉体102重量部に対し。Further, based on 102 parts by weight of the mixed powder obtained above.

溶剤としてテルピネオール35重量部添加し実施例1と
同様の方法でペースト化してセラミックス用メタライズ
ペーストを得た。
35 parts by weight of terpineol was added as a solvent and the mixture was made into a paste in the same manner as in Example 1 to obtain a metallized paste for ceramics.

一方、アルミナ96重量部、焼結助剤としてマグネシア
粉末1.5重量部、ノリ力25重量部、有機結合剤とし
てブチラール樹脂6型景部、可塑剤としてブチルベンジ
ルフタレート3重量部及び溶剤としてエタノールとトリ
クロルエチレンとの共沸混合物40重量部を加え、ボー
ルミルにて24時間混合を行なった後、テープキャステ
ィング法   。
On the other hand, 96 parts by weight of alumina, 1.5 parts by weight of magnesia powder as a sintering aid, 25 parts by weight of glue, 6 parts of butyral resin as an organic binder, 3 parts by weight of butylbenzyl phthalate as a plasticizer, and ethanol as a solvent. After adding 40 parts by weight of an azeotropic mixture of and trichlorethylene and mixing in a ball mill for 24 hours, tape casting was performed.

により、セラミノクグリーンンートを得た。Ceraminoku green root was obtained.

得られたセラミックグリ−/シート上に上記で得たセラ
ミックス用メタライズペーストを印刷し。
The ceramic metallization paste obtained above was printed on the obtained ceramic green/sheet.

弱還元雰囲気中で1,540℃で焼成し、アルミナセラ
ミックス上に金鼾1化層を形成した。得られた金属化層
の表面粗さはz5μm几2で、アルミナセラミ、ノクス
との接着強度は7.0kgf/an’以上であった。
It was fired at 1,540° C. in a weakly reducing atmosphere to form a metallurgical layer on the alumina ceramics. The surface roughness of the obtained metallized layer was z5 μm 2, and the adhesive strength with alumina cerami and Nox was 7.0 kgf/an' or more.

これに対し比較例として前記実施例2で使用したW粉末
100重麓部に対して、実施例1で使用したガラス粉末
1重量部、有機結合剤としてエチルセルロース11.を
部、ニトロセルロース1重量部及び溶剤としてテルピネ
オール35i量部を秤量し、これらをらいかい機で5時
間混合したたけて金属粉末及び無機結合剤粉末を単一粒
子にまで解粒しない状態で三本ロールにてペースト化し
た。
In contrast, as a comparative example, 100 parts by weight of the W powder used in Example 2, 1 part by weight of the glass powder used in Example 1, and 11 parts by weight of ethyl cellulose as an organic binder. 1 part by weight of nitrocellulose and 35 parts by weight of terpineol as a solvent were mixed in a sieve machine for 5 hours to dissolve the metal powder and inorganic binder powder without disintegrating them into single particles. It was made into a paste using this roll.

得られたペーストを前記実施例2と同様の工程を経てア
ルミナセラミックス上に金属化層を形成した。得られた
金属化層の表面粗さは7μm Rzと粗く、アルミナセ
ラミックスとの接着強度も2.5 kg f10!In
′と低く、ばらつきも太きいものであった。
The obtained paste was subjected to the same steps as in Example 2 to form a metallized layer on alumina ceramics. The surface roughness of the obtained metallized layer is as rough as 7 μm Rz, and the adhesive strength with alumina ceramics is 2.5 kg f10! In
', and the variation was wide.

なお本発明の実施例ではボールミルにて混合し解粒した
ものについて説明したが、らいかい機その他の混合法号
によっても同様の効果が得られる。
In the embodiments of the present invention, the materials were mixed and pulverized using a ball mill, but similar effects can be obtained by using a miller or other mixing methods.

(発明の効果) 本発明は金属粉末、無機結合剤粉末、有機結合剤及び溶
剤を混合した混合物の粘度が、金属粉末及び無機結合剤
粉末の解粒を妨げ々い程度以下で。
(Effects of the Invention) The present invention provides a method in which the viscosity of a mixture of metal powder, inorganic binder powder, organic binder and solvent is below a level that impedes disintegration of the metal powder and inorganic binder powder.

かつ解粒した粒子が直接接触するのを妨げる量の有機結
合剤を添加、混合して金属粉末及び無機結合剤粉末が単
一粒子になるまで解粒し、その後溶剤を除去して、金属
粉末及び無機結合剤粉末の表面を有機結合剤で被覆した
混合粉体とし1次いでペースト化に必要な量の溶剤を添
加、混合するので、緻密でセラミックスとの接着強度が
高く、かつ表面平滑な金属化層を提供するセラミックス
用メタライズペーストを製造することができる。
Add and mix an organic binder in an amount that prevents direct contact between the disintegrated particles, disintegrate the metal powder and inorganic binder powder until they become single particles, and then remove the solvent to form the metal powder. The surface of the inorganic binder powder is coated with an organic binder to form a mixed powder, and then the necessary amount of solvent is added and mixed to form a paste, resulting in a dense metal with high adhesive strength to ceramics and a smooth surface. A metallizing paste for ceramics can be produced that provides a hardening layer.

Claims (1)

【特許請求の範囲】[Claims] 1、金属粉末、無機結合剤粉末、有機結合剤及び溶剤を
混合するセラミックス用メタライズペーストの製造方法
において、金属粉末、無機結合剤粉末、有機結合剤及び
溶剤を混合した混合物の粘度が、金属粉末及び無機結合
剤粉末の解粒を妨げない程度以下で、かつ解粒した粒子
が直接接触するのを妨げる量の有機結合剤を添加、混合
して金属粉末及び無機結合剤粉末が単一粒子になるまで
解粒し、その後溶剤を除去して、金属粉末及び無機結合
剤粉末の表面を有機結合剤で被覆した混合粉体とし、次
いでペースト化に必要な量の溶剤を添加、混合すること
を特徴とするセラミックス用メタライズペーストの製造
方法。
1. In the method for producing metallized paste for ceramics, which mixes metal powder, inorganic binder powder, organic binder, and solvent, the viscosity of the mixture of metal powder, inorganic binder powder, organic binder, and solvent is that of metal powder. The metal powder and the inorganic binder powder are combined into single particles by adding and mixing an organic binder in an amount that does not interfere with the disintegration of the inorganic binder powder and prevents direct contact between the disintegrated particles. After that, the solvent is removed to obtain a mixed powder in which the surface of the metal powder and inorganic binder powder is coated with an organic binder, and then the amount of solvent necessary for making a paste is added and mixed. Features: A method for producing metallized paste for ceramics.
JP20600484A 1984-10-01 1984-10-01 Manufacture of metalized paste for ceramics Pending JPS6185704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20600484A JPS6185704A (en) 1984-10-01 1984-10-01 Manufacture of metalized paste for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20600484A JPS6185704A (en) 1984-10-01 1984-10-01 Manufacture of metalized paste for ceramics

Publications (1)

Publication Number Publication Date
JPS6185704A true JPS6185704A (en) 1986-05-01

Family

ID=16516312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20600484A Pending JPS6185704A (en) 1984-10-01 1984-10-01 Manufacture of metalized paste for ceramics

Country Status (1)

Country Link
JP (1) JPS6185704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218089A (en) * 1988-02-26 1989-08-31 Toshiba Corp Manufacture of surface conductive ceramic substrate
JPH08141929A (en) * 1994-11-11 1996-06-04 Takakazu Daimatsu Edge plate piece pulling-out device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01218089A (en) * 1988-02-26 1989-08-31 Toshiba Corp Manufacture of surface conductive ceramic substrate
JPH08141929A (en) * 1994-11-11 1996-06-04 Takakazu Daimatsu Edge plate piece pulling-out device

Similar Documents

Publication Publication Date Title
EP0552522B1 (en) Low dielectric, low temperature fired glass ceramics
JPH0632355B2 (en) Ceramic wiring board and manufacturing method thereof
JPS6185704A (en) Manufacture of metalized paste for ceramics
JP2598872B2 (en) Glass ceramic multilayer substrate
US5932326A (en) Ceramic wiring boards and method for their manufacture
JPS6183693A (en) Manufacture of metallized powder for ceramics
JPS6184092A (en) Manufacture of ceramic circuit board
JPH06196831A (en) Manufacture of conductive pattern for aln substrate
JPS63256291A (en) Material for adhesion
JPH05156303A (en) Metallizing metal powder composition and production of metallized substrate using the composition
JPH08186049A (en) Composition of terminal electrode for multilayer capacitor
JPS63232201A (en) Conductor paste composition
JPS6115522B2 (en)
JP2009143766A (en) Metallized substrate, and method of manufacturing the same
JPS63201079A (en) Metallizing paste for ceramic sintered body and metallization therefor
JP2611290B2 (en) Manufacturing method of high thermal conductive ceramic substrate
JPS59164687A (en) Metallizing composition for non-oxide ceramics
JPS63109050A (en) Ceramic substrate
JP3433260B2 (en) Metallized substrate and manufacturing method thereof
JPS62237605A (en) Thick film paste
JPS63168904A (en) Copper paste composition for inner layer
JPH0725690A (en) Formation of metallized layer on the aln base
JPH0346706A (en) Copper paste
JPH04334803A (en) Conductor paste composite and ceramic substrate
JPH10340622A (en) Conductor paste