JPS6184548A - Emission analysis method - Google Patents

Emission analysis method

Info

Publication number
JPS6184548A
JPS6184548A JP20633084A JP20633084A JPS6184548A JP S6184548 A JPS6184548 A JP S6184548A JP 20633084 A JP20633084 A JP 20633084A JP 20633084 A JP20633084 A JP 20633084A JP S6184548 A JPS6184548 A JP S6184548A
Authority
JP
Japan
Prior art keywords
sample
atomizer
mist
mists
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20633084A
Other languages
Japanese (ja)
Inventor
Konosuke Oishi
大石 公之助
Kazuo Moriya
森谷 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20633084A priority Critical patent/JPS6184548A/en
Publication of JPS6184548A publication Critical patent/JPS6184548A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/714Sample nebulisers for flame burners or plasma burners

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To obtain an emission analysis instrument provided with an atomizer having good using efficiency of an aq. soln. sample by constituting an atomizer of a liquid reserving part for the aq. soln. sample, gas supply pipe for atomization and capillary to suck up the aq. soln. sample. CONSTITUTION:The aq. sample soln. 10 is sucked up through a capillary 42 when gaseous argon is fed from the gas supply pipe 40 for atomization. The sample collides against a glass ball 44 at the top end and is pulverized to a mist form, by which mists 18 are efficiently generated. The mists consisting of the small grains sized 10-50mum among the formed mists 18 are carried together with the gaseous argon through a mist outlet 46 and enter argon plasma 26. The mists consisting of the large grain sizes fall or collide against the wall cap 48 of the atomizer 20. The mist sticking thereto fall and are again recovered into the sample reservoir 50. The sample 10 filled in the reservoir 50 is not consumed except that said sample is carried out together with the gaseous argon in the form of the mist from the outlet 46.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発光分析装置に係シ、特に水溶液試料の霧化器
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical emission analyzer, and particularly to an atomizer for aqueous solution samples.

〔発明の背景〕[Background of the invention]

例えば、近年開発された誘導結合プラズマ(工nduc
tively (:oupled plasma )発
光分析法は、7000〜8000’にの高温のアルゴン
プラズマを用いて水yg液試料を発光さぞ、各元素個有
の発光スペクトルを観測して分析が行われる。水溶液試
料は、霧化した状態でアルゴンプラズマに導入されるた
め、霧化器を必要としている。
For example, the recently developed inductively coupled plasma
In the tively (:upled plasma) emission spectrometry, analysis is performed by emitting light from a water, yg, and yg liquid sample using argon plasma at a high temperature of 7,000 to 8,000° C., and observing the unique emission spectra of each element. Since the aqueous solution sample is introduced into the argon plasma in an atomized state, an atomizer is required.

第2図は、従来の霧化器を備えた誘導結合プラズマ発光
部を示す図である。
FIG. 2 is a diagram showing an inductively coupled plasma light emitting unit equipped with a conventional atomizer.

水溶液試料10は、霧化用ガス供給管12よシアルボン
ガスを0.51 / m aすことにより、内径0、5
 rmの細管14により吸い上げられ、騰化器16の先
端に於て縁状に粉砕さ几る。発生した霧18のうち、大
粒のもの及び霧化器20の壁に付着したものは、傾斜さ
せた霧化器20の壁を伝わ)落下して排液22として、
排液容器24に入る。
The aqueous solution sample 10 was prepared with an inner diameter of 0.5 mm by supplying sialbone gas through the atomizing gas supply pipe 12 at a rate of 0.51 m/m.
It is sucked up by the thin tube 14 of the rm, and crushed into a rim shape at the tip of the boiler 16. Among the generated mist 18, large particles and those adhering to the wall of the atomizer 20 travel down the inclined wall of the atomizer 20) and fall as waste liquid 22.
It enters the drainage container 24.

発生した霧18のうち、直径が10〜30μmの小粒の
ものはアルゴンガスと共に運ばれアルゴンプラズマ26
に入る。プラズマガス供給管28から0.5t/yti
gのアルゴンガスア;送られ、冷却ガス供給管30から
12t/−のアルゴンガスが送うれる。これらのアルゴ
ンガス泥束に、扁周波誘導コイル32によって周波数2
7.12MHz1出力1500wattの高周技′社力
が印見られるとアルゴ/が電離し、温度5oooxのプ
ラズマ26が形成される。このプラズマ26の中に、霧
18が導入され、水溶液試料10中に溶解していた元素
が発光する。
Among the generated mist 18, small particles with a diameter of 10 to 30 μm are carried along with argon gas and generated in argon plasma 26.
to go into. 0.5t/yti from plasma gas supply pipe 28
g of argon gas is sent, and 12 t/- of argon gas is sent from the cooling gas supply pipe 30. A frequency of 2 is applied to these argon gas mud bundles by the flat frequency induction coil 32.
When the 7.12MHz/1 output power of 1500 watts is seen, Argo/ is ionized and a plasma 26 with a temperature of 500x is formed. A fog 18 is introduced into this plasma 26, and the elements dissolved in the aqueous solution sample 10 emit light.

、!J管2より吸い上げられた水浴液試料10のうち、
アルゴンガス流によりg状でアルゴンプラズマ2Gに運
ばれる試料の量は0.1−7mである。
,! Among the water bath liquid samples 10 sucked up from the J tube 2,
The amount of sample transported in g form to the argon plasma 2G by the argon gas flow is 0.1-7 m.

残りの試料は排液22として、排液容器24に捨てられ
る。即ち、細管14より吸入された水溶液試料10のう
ちわずか5優がプラズマ26に導入され、残りの95俤
が排液とし捨てられてしまう。
The remaining sample is discarded as waste liquid 22 into waste liquid container 24 . That is, only 5 out of the aqueous solution sample 10 sucked through the thin tube 14 is introduced into the plasma 26, and the remaining 95 out of the aqueous solution sample 10 is discarded as waste liquid.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した従来技術の欠点をなくし、水
溶液試料の使用効率の良い霧化器を備えた発光分析装置
を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art described above and to provide an optical emission spectrometer equipped with an atomizer that can efficiently use an aqueous sample.

〔発明の概要〕[Summary of the invention]

上記目的を達成すべく本発明は、水溶液試料を霧化器に
て霧化した後高温部に導入して発光させ、元素個有の発
光スペクトルを観測して分析を行う発光分析装置におい
て、前記霧化器を、前記水溶液試料の液溜め部と、霧化
用ガス供給管と、前記試料液溜め部と霧化用ガス供給管
との間に設置された前記水溶液試料を吸い上げる細管と
より構成したものである。
In order to achieve the above object, the present invention provides an optical emission spectrometer in which an aqueous solution sample is atomized in an atomizer, then introduced into a high temperature section to emit light, and the emission spectra unique to each element are observed and analyzed. The atomizer includes a reservoir for the aqueous solution sample, an atomizing gas supply pipe, and a thin tube installed between the sample reservoir and the atomizing gas supply pipe to suck up the aqueous solution sample. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図において、水溶液試料10は霧化用ガス供給管4
0から0.5t/misのアルゴンガスを送ることによ
p細管42から吸い上げられ先端に於てガラス球44に
衝突し、霧状に粉砕され効阜良く霧18が生成される。
In FIG. 1, an aqueous solution sample 10 is connected to an atomizing gas supply pipe 4
By sending 0 to 0.5 t/mis of argon gas, it is sucked up from the p-tube 42 and collides with the glass bulb 44 at the tip, where it is crushed into a mist and effectively generates the mist 18.

ガラス球44は霧の生成効率を高めるべく、細管42の
先端に設けられている。生成された霧18のうち粒径が
10〜50μmの小さいものは霧出口46からアルゴン
ガスと共に運ばれアルゴンプラズマ26に入る。粒径の
大きいものは落下し、あるいは霧化器20の壁ふた48
に衝突し付着したものは落下し再び試料液溜め50に回
収される。従って試料液溜め50に満された水溶液試料
10は霧出口46から霧となってアルゴンガスと共に運
び出される以外に消費されない。)遅出口46から霧1
8となってアルゴンガスと共に運び出される試料量は0
.01役−であるから、例えば2−の1水溶液試料を満
すことによシ、連続的に40分分間上発生することがで
きる。
A glass bulb 44 is provided at the tip of the thin tube 42 in order to increase the efficiency of fog generation. Among the generated mist 18, small particles having a particle size of 10 to 50 μm are carried along with the argon gas from the mist outlet 46 and enter the argon plasma 26. Larger particles may fall or fall onto the wall cover 48 of the atomizer 20.
The material that collides with and adheres to falls and is collected in the sample liquid reservoir 50 again. Therefore, the aqueous solution sample 10 filled in the sample liquid reservoir 50 is not consumed other than being carried out together with argon gas as a mist from the mist outlet 46. ) Fog 1 from late exit 46
8 and the amount of sample carried out with the argon gas is 0.
.. Since it is 01, it can be generated continuously for 40 minutes, for example, by filling 2-1 aqueous solution sample.

〔発明の効果〕〔Effect of the invention〕

以上、本発明によれば、水溶液試料の使用効率の良い霧
化器を備えた発光分析装置を得ることができる。
As described above, according to the present invention, it is possible to obtain a luminescence spectrometer equipped with an atomizer that can efficiently use an aqueous solution sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例になる発光分析装置を示す図
、第2図は従来の発光分析装置を示す図である。 10・・・水溶液試料、18・・・霧、20・・・霧化
器、26・・・アルゴンプラズマ、28・・・プラズマ
ガス供給管、30・・・冷却ガス供給管、32・・・高
周波誘導コイル、40・・・霧化用ガス供給管、42・
・・細管、44・・・ガラス球、46・・・霧出口、4
8・−・ふた、O
FIG. 1 is a diagram showing an optical emission analyzer according to an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional optical emission analyzer. DESCRIPTION OF SYMBOLS 10... Aqueous solution sample, 18... Fog, 20... Atomizer, 26... Argon plasma, 28... Plasma gas supply pipe, 30... Cooling gas supply pipe, 32... High frequency induction coil, 40... Gas supply pipe for atomization, 42...
...Thin tube, 44...Glass bulb, 46...Mist outlet, 4
8.--Lid, O

Claims (1)

【特許請求の範囲】[Claims] 1、水溶液試料を霧化器にて霧化した後高温部に導入し
て発光させ、元素個有の発光スペクトルを観測して分析
を行う発光分析装置において、前記霧化器を、前記水溶
液試料の液溜め部と、霧化用ガス供給管と、前記試料液
溜め部と霧化用ガス供給管との間に設置された前記水溶
液試料を吸い上げる細管とより構成したことを特徴とす
る発光分析装置。
1. In an optical emission spectrometer that atomizes an aqueous solution sample using an atomizer, introduces it into a high-temperature section to emit light, and then observes and analyzes the unique emission spectrum of each element. a liquid reservoir, an atomizing gas supply pipe, and a thin tube installed between the sample liquid reservoir and the atomizing gas supply pipe to suck up the aqueous solution sample. Device.
JP20633084A 1984-10-03 1984-10-03 Emission analysis method Pending JPS6184548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20633084A JPS6184548A (en) 1984-10-03 1984-10-03 Emission analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20633084A JPS6184548A (en) 1984-10-03 1984-10-03 Emission analysis method

Publications (1)

Publication Number Publication Date
JPS6184548A true JPS6184548A (en) 1986-04-30

Family

ID=16521510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20633084A Pending JPS6184548A (en) 1984-10-03 1984-10-03 Emission analysis method

Country Status (1)

Country Link
JP (1) JPS6184548A (en)

Similar Documents

Publication Publication Date Title
EP1629898A4 (en) Electrostatic atomizing device and humidifier using this
US20140283627A1 (en) Apparatus and method for liquid sample introduction
US9892900B2 (en) Apparatus and method for improving throughput in spectrometry
JP2008049220A (en) Method and device for separating particle
WO2014154501A1 (en) Apparatus and method for mixing a liquid sample to be introduced in an analysis device
JP2008157895A (en) Sample introducing device
US6859272B2 (en) Spectrometer sample generating and injecting system using a microliter nebulizer
JP3902380B2 (en) ICP analyzer
JPS6184548A (en) Emission analysis method
EP0510127B1 (en) Method and apparatus for analytical sample preparation
RU2252412C2 (en) Method for emission spectral analysis if substance composition and device for realization of said method
US3596128A (en) Excitation source for spectroscopic analysis
JPS59210349A (en) Analytical method and apparatus of molten metal by plasma emission spectrochemical analysis method for long-distance carriage of fine particle
JP2005031020A (en) Liquid introduction plasma torch
JP2004179079A (en) Sample atomization lead-in device
JP2002318193A (en) Nebulizer and high frequency inductive coupling plasma emission analysis device
US11378518B2 (en) Analytical nebulizer
JPH0244201Y2 (en)
Buchkamp et al. Size and distribution of particles deposited electrostatically onto the platform of a graphite furnace obtained using laser ablation sampling
JPH01118752A (en) Method for introducing sample for icp emission analysis
JPS59157541A (en) Direct analyzer of molten metal by fine particle generating plasma emission spectrochemical method
JP3115774U (en) Aerosol generator
JPH0619084Y2 (en) Inductively coupled plasma optical emission spectrometer
JPH06249783A (en) Icp emission spectroscopic analyzer
RU2629353C1 (en) Device for biologically active nanoaerosols generation