JPH01118752A - Method for introducing sample for icp emission analysis - Google Patents

Method for introducing sample for icp emission analysis

Info

Publication number
JPH01118752A
JPH01118752A JP27622187A JP27622187A JPH01118752A JP H01118752 A JPH01118752 A JP H01118752A JP 27622187 A JP27622187 A JP 27622187A JP 27622187 A JP27622187 A JP 27622187A JP H01118752 A JPH01118752 A JP H01118752A
Authority
JP
Japan
Prior art keywords
sample
plasma
powder
sample holder
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27622187A
Other languages
Japanese (ja)
Inventor
Koji Okada
幸治 岡田
Haruo Mizukami
水上 治男
Kensuke Daiho
健介 大穂
Naoki Imamura
直樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP27622187A priority Critical patent/JPH01118752A/en
Publication of JPH01118752A publication Critical patent/JPH01118752A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To make analysis with good S/N possible by splashing the sample powder on a sample holder by the tip of filamentary plasma so that the powder is introduced into a plasma flame. CONSTITUTION:A central tube T1 of a plasma torch is a sample supply tube to which a carrier gas is sent. Gaseous plasma to form the plasma flame is supplied to an intermediate tube T2 and a cooling gas to a sleeve tube T3. Gaseous argon is supplied to the respective tubes T1-T3 of the plasma torch. The plasma flame P is ignited when high-frequency electric power is supplied to a high-frequency coil C and a high voltage to the sample holder B by a high-voltage generator H. The filamentous plasma F extends downward in the central tube T1 and arrives at the front end part of the sample holder B when said plasma flame P is formed. The sample powder is splashed at this moment and is entrained in the flow of the carrier gas. Even a slight amt. of the sample is introduced at one time into the plasma flame and, therefore, the analysis with the good S/N is enabled.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はtcp <誘導結合プラズマ)発光分光分析装
置における試料導入方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for introducing a sample into a TCP (inductively coupled plasma) emission spectrometer.

口、従来の技術 ICP発光分析法では試料はアルゴンのキャリヤガスに
混入してプラズマ炎内に導入している。
In conventional ICP emission spectrometry, a sample is introduced into a plasma flame in a carrier gas of argon.

このため試料としては気化し易い試料が扱い易い。通常
試料は溶液にして霧化してプラズマ炎に送っているので
、大量の試料を必要とし、微量の試料を分析する場合グ
ラファイトチューブ炉とがタングステンボート内に試料
を入れ、グラファイトチューブとかタングステンポート
に通電して加熱気化させている。しかしこの方法では通
電時のジュール熱による静的な加熱だけで試料を気化さ
せていて、到達温度も2000〜3000°C程度であ
るからタングステンとかウラン、トリウム等の難揮発性
の試料を気化させることは困難で、これらの微量試料に
よる物質のICP発光分析はできなかった。
For this reason, samples that easily vaporize are easy to handle. Normally, the sample is atomized into a solution and sent to the plasma flame, so a large amount of sample is required, and when analyzing a small amount of sample, a graphite tube furnace is used to put the sample into a tungsten boat and connect it to a graphite tube or tungsten port. It is heated and vaporized by electricity. However, in this method, the sample is vaporized only by static heating using Joule heat when electricity is applied, and the reached temperature is about 2000 to 3000°C, so it is possible to vaporize difficult-to-volatile samples such as tungsten, uranium, and thorium. It was difficult to perform ICP emission analysis of the substances using these minute samples.

ハ0発明が解決しようとする問題点 難揮発性のildl試量を何等かの方法で充分な高温に
まで加熱して気化させることができたとしても、気化に
時間がか\っていると、プラズマ炎中における試料濃度
が低(、S/N比が悪くて元素検出限界が高(なり、高
感度の分析はできない。
Problems that the invention aims to solve Even if a sample amount of ILDL, which is hardly volatile, can be heated to a sufficiently high temperature by some method and vaporized, it takes a long time to vaporize it. , the sample concentration in the plasma flame is low (and the S/N ratio is poor and the element detection limit is high), making it impossible to perform highly sensitive analysis.

本発明は微量の難揮発性試料を効率良くプラズマ炎に導
入して、S/N比の高い高感度の分析を可能にしようと
するものである。
The present invention aims to efficiently introduce a trace amount of a hardly volatile sample into a plasma flame to enable highly sensitive analysis with a high S/N ratio.

二9問題点解決のための手段 プラズマトーチのキャリヤガス流路内に試料保持体を挿
入配置し、この試料保持体を高圧発生手段に接続してお
き、プラズマ炎点灯時或は点灯後、上記試料保持体に高
電圧を印加するようにし、試料保持体には粉末化した試
料を付着させておくようにした。
29 Means for Solving Problems A sample holder is inserted into the carrier gas flow path of the plasma torch, and this sample holder is connected to a high pressure generating means. A high voltage was applied to the sample holder, and a powdered sample was attached to the sample holder.

ホ1作用 ICP発光分析におけるプラズマトーチは7000°に
程度ときわめて高温であるから、粒径が10μm以下の
粒子であればどのような物質でも瞬時に完全に気化させ
るこ七ができる。従って試料を微粒状にしてプラズマ炎
に導入することができれば、予め気化させてプラズマ炎
に送る必要はない。本発明では試料は予め粉末にし・て
試料保持体に付着させである。そこへフィラメンタリプ
ラズマが延びて来て試料粉末を飛散させる。そして飛散
された試料粉末がキャリヤガスに乗ってプラズマ炎内に
運ばれるのである。
Since the plasma torch used in ICP emission spectrometry has an extremely high temperature of about 7,000°, any substance with a particle size of 10 μm or less can be instantly and completely vaporized. Therefore, if the sample can be made into fine particles and introduced into the plasma flame, there is no need to vaporize it beforehand and send it to the plasma flame. In the present invention, the sample is powdered in advance and attached to the sample holder. The filamentary plasma extends there and scatters the sample powder. The scattered sample powder is then carried into the plasma flame by the carrier gas.

プラズマトーチが点灯した状態で試料保持体に高電圧を
印加すると試料保持体からブラシュ放電が起り、生成さ
れたイオンがキャリヤガスの流れに乗ってプラズマ炎に
至り放電路が形成され、それに沿ってプラズマ炎からフ
ィラメント状のプラズマが延びて来る。このフィラメン
タリプラズマはきわめて高温であるから、その伸延して
行(先端部ではアルゴンガスは急激に膨脹しており、フ
ィラメンタリプラズマの先端が試料保持体に到達したと
き、同プラズマ先端部のアルゴンガスの爆発的な膨脹の
衝撃によって試料保持体に付着させた試料粉末が飛散せ
しめられるものと考えられる。
When a high voltage is applied to the sample holder with the plasma torch lit, a brush discharge occurs from the sample holder, and the generated ions ride the flow of carrier gas and reach the plasma flame, forming a discharge path. Filament-shaped plasma extends from the plasma flame. Since this filamentary plasma has an extremely high temperature, its extension (argon gas rapidly expands at the tip, and when the tip of the filamentary plasma reaches the sample holder, the argon gas at the tip of the plasma It is thought that the sample powder attached to the sample holder is scattered by the impact of the explosive expansion of the gas.

このように本発明によるときは試料粉末の飛散は瞬間的
に行われるので、プラズマ炎に導入される試料は総量が
微量でも、短期間内に導入されるためプラズマ炎内の試
料濃度が高くなり、高いS/N比が得られることになる
In this way, according to the present invention, the scattering of the sample powder is instantaneous, so even if the total amount of sample introduced into the plasma flame is small, it is introduced within a short period of time, resulting in a high sample concentration within the plasma flame. , a high S/N ratio can be obtained.

へ、実施例 第1図に本発明の一実施例を示す。図でTはプラズマト
ーチで三重管よりなっており、Cは高周波コイルで、P
はプラズマトーチ上に形成されているプラズマ炎を示す
。プラズマトーチTの中心管T1は試料供給管で、これ
にはキャリヤガスが送られている。中間の管T2はプラ
ズマ炎を形成するプラズマガスが、また外套管T3には
冷却ガスが供給されている。これらのガスは全てアルゴ
ンガスが用いられる。中心管T1は下端部において側方
からキャリヤガスが供給されるようになっており、下端
開放端から試料保持体Bが挿入される。試料保持体Bは
タングステン、グラファイト等の導電体で作られており
、高電圧発生器Hに接続される。中心管T1の下層部側
方に延出されているキャリヤガス供給管路は中心管T1
との接続部に近い所で内径を紋った高抵抗部Rが設けて
あって、こ\ではキャリヤガスの流速が前後の部分より
速くなっている。
Embodiment FIG. 1 shows an embodiment of the present invention. In the figure, T is a plasma torch consisting of a triple tube, C is a high frequency coil, and P
shows the plasma flame forming on the plasma torch. The central tube T1 of the plasma torch T is a sample supply tube, into which a carrier gas is sent. The middle tube T2 is supplied with plasma gas for forming a plasma flame, and the outer tube T3 is supplied with cooling gas. Argon gas is used for all of these gases. A carrier gas is supplied from the side to the lower end of the central tube T1, and the sample holder B is inserted from the open lower end. The sample holder B is made of a conductor such as tungsten or graphite, and is connected to a high voltage generator H. The carrier gas supply pipe line extending to the side of the lower layer of the central pipe T1 is the central pipe T1.
A high resistance part R is provided near the connection part with the inner diameter, and the flow velocity of the carrier gas is faster in this part than in the front and rear parts.

試料保持体Bの先端部は細くして先端を少し平らにして
小面積の平坦部を作っである。試料は粉末にし、例えば
水で解いて一滴を試料保持体Bの先端の小さな平坦部に
付着させ乾燥させる。このようにして試料保持体をプラ
ズマトーチの中心管TIの下端に挿入し高圧発生2SH
に接続する。プラズマトーチTの6管にアルゴンガスを
供給し、高周波コイルCに高周波電力を供給し、高電圧
発生器Hにより試料保持体Bに高電圧を印加するとプラ
ズマ炎が点灯される。プラズマ炎Pが形成されると、プ
ラズマ炎からフィラメント状のプラズマFが中心管Tl
内を下方に延びて来て試料保持体Bの先端部に到達する
。この瞬間に試料粉末が飛散せしめられる。
The tip of the sample holder B is made thinner and slightly flattened to create a flat portion with a small area. The sample is ground into powder, dissolved in water, for example, and a drop is applied to a small flat portion at the tip of the sample holder B, followed by drying. In this way, the sample holder is inserted into the lower end of the central tube TI of the plasma torch, and high pressure is generated 2SH.
Connect to. When argon gas is supplied to the six tubes of the plasma torch T, high frequency power is supplied to the high frequency coil C, and a high voltage is applied to the sample holder B by the high voltage generator H, a plasma flame is lit. When the plasma flame P is formed, a filament-shaped plasma F from the plasma flame enters the central tube Tl.
The sample holder B extends downward and reaches the tip of the sample holder B. At this moment, the sample powder is scattered.

フィラメンタリプラズマFの先端が延びて行く速さは中
心管Tl内のキャリヤガスの流速より速く、キャリヤガ
スの供給源まで遡って行くことができるが、フィラメン
タリプラズマにエネルギーを供給しているのはプラズマ
炎P内の高周波電磁界であって、フィラメンタリプラズ
マが分岐すると先端のエネルギーが半減する。中心管T
1とキャリヤガス供給管の接続部の近くに内径を絞った
高抵抗部Rを設けているのは、こ\におけるキャリヤガ
スの流速を高めて、フィラメンタリプラズマがキャリヤ
ガス源の方へ延びるのを阻止し、フィラメンタリプラズ
マの分岐を防いで試料保持体Bの先端部にフィラメンタ
リプラズマ先端のエネルギーを集中させるためである。
The speed at which the tip of the filamentary plasma F extends is faster than the flow rate of the carrier gas in the central tube Tl, and it can travel back to the source of the carrier gas, but it does not supply energy to the filamentary plasma. is a high-frequency electromagnetic field within the plasma flame P, and when the filamentary plasma branches, the energy at the tip is halved. Center tube T
The reason why a high resistance part R with a narrowed inner diameter is provided near the connection part between 1 and the carrier gas supply pipe is to increase the flow velocity of the carrier gas in this part and cause the filamentary plasma to extend toward the carrier gas source. This is to prevent the filamentary plasma from branching and to concentrate the energy of the filamentary plasma tip at the tip of the sample holder B.

第2図は本発明の他の実施例を示す。この実施例ではプ
ラズマトーチTの中心管が更に2重管にしてあって、内
側の管Tliが試料供給用、外側のTloがピークキャ
ッチ川で夫々にキャリヤガスが供給される。試料供給管
Tliの下端は摺合せによってキャリヤガス供給管Cと
着脱自在に接続できるようにしである。キャリヤガス供
給管Cは側面からキャリヤガスが供給され、下端から試
料保持体Bが挿入固定されている。試料保持体Bは絶縁
体の台りに取付けられており、高電圧発生器Hに接続し
である。試料は適当な粉末例えばカーボン粉末に水溶液
にしたwI量試料を滲み込ませてこの粉末を試料保持体
Bの先端に付着させて乾燥する。その際キャリヤガス供
給管Cを試料供給管Tliから離して作業を行う。試料
をセットし終えた後のプラズマ炎への試料導入の動作は
前述実施例と同じである。また装置各部で第1図の実施
例と同じ部分には同じ符号がつけである。
FIG. 2 shows another embodiment of the invention. In this embodiment, the central tube of the plasma torch T is further made into a double tube, with the inner tube Tli used for sample supply and the outer tube Tlo supplied with carrier gas as a peak catch river. The lower end of the sample supply tube Tli can be detachably connected to the carrier gas supply tube C by sliding. Carrier gas is supplied to the carrier gas supply pipe C from the side, and the sample holder B is inserted and fixed from the lower end. The sample holder B is mounted on an insulator pedestal and is connected to a high voltage generator H. The sample is prepared by impregnating an appropriate powder such as carbon powder with an aqueous solution of the wI sample, and adhering this powder to the tip of the sample holder B and drying it. At this time, the work is performed with the carrier gas supply pipe C separated from the sample supply pipe Tli. The operation of introducing the sample into the plasma flame after setting the sample is the same as in the previous embodiment. Also, the same parts in the apparatus as in the embodiment shown in FIG. 1 are given the same reference numerals.

次に上述した装置で一定量の粉末試料を試料保持体Bの
先端に付着させるーっの方法を第3図によって説明する
。まず試料保持体Bの先端にマイクロシリンジで適当な
溶媒W例えば純水を10〜20μe滴下し、試料保持体
B先端前面をこの溶媒で覆う(第3図a)。次にその溶
媒液面りに試料粉末Sをバイブレータで撮りかける(第
3図b)。その後空気吸引機Aによって溶媒液面上に積
っている試料粉末を吸い取る(第3図C)。このように
すると溶媒液面eを覆っている一層の粉体各粒子は溶媒
液に付着しているから吸引機で空気を吸っても吸い取ら
れず、その−層の粒子の上に降積った粉末だけが吸い取
られる。その後溶媒を乾燥させてしまうと試料保持体B
の先端には第3図dに示すように試料粉末の粒子が一層
分だけ付着して残る。試料保持体Bの先端部面積は一定
しているから、試料保持体先端に保持される試料の量も
毎回一定となる。
Next, a method for depositing a certain amount of powder sample on the tip of the sample holder B using the above-mentioned apparatus will be explained with reference to FIG. First, 10 to 20 μe of a suitable solvent W, for example, pure water, is dropped onto the tip of the sample holder B using a microsyringe, and the front surface of the tip of the sample holder B is covered with this solvent (FIG. 3a). Next, sample powder S is photographed on the surface of the solvent using a vibrator (Fig. 3b). Thereafter, the sample powder piled up on the solvent surface is sucked up by air suction device A (FIG. 3C). In this way, each particle of the powder in one layer covering the solvent liquid surface e is attached to the solvent liquid, so even if air is sucked in with the suction machine, it is not sucked out, and it falls on the particles in that layer. Only the powder is absorbed. After that, if the solvent is dried, sample holder B
As shown in FIG. 3d, only one layer of sample powder particles remains attached to the tip of the tip. Since the area of the tip of the sample holder B is constant, the amount of sample held at the tip of the sample holder B is also constant each time.

上剥では粉末が試料であるが、溶媒に溶かした試料を定
量だけプラズマ炎に導入するのにも上の方法が用いられ
る。この場合、溶媒を試料保持体B上に載せた後、撮り
かける粉末は例えばカーボンのような粉末で280〜3
00メツシュ程度が適当である。上述したプロセスによ
ると試料保持体上には一定量の粉末が付着して残る。溶
媒中の試料は粉末を濡した分だけが粉末に付着しており
、残りは試料保持体先端部表面に層をなして残る。粉体
は一層だけであり、その量は決まっており、その表面積
も決っているから、粉末粒子表面に付着した試料の量も
決まって(る。始めに述べたようにフィラメンタリプラ
ズマで飛散せしめられるのは試料保持体先端部の粉末で
あって、試料保持体先端表面に直接層をなして付着して
いる試料は飛散せしめられず、プラズマ炎に送られない
から、この方法によって定量の試料導入ができるのであ
る。
Although powder is used as a sample in top stripping, the above method can also be used to introduce a fixed amount of a sample dissolved in a solvent into a plasma flame. In this case, after placing the solvent on the sample holder B, the powder to be photographed is, for example, carbon powder with a 280-3
Approximately 0.00 mesh is appropriate. According to the above-described process, a certain amount of powder remains attached to the sample holder. Only the part of the sample in the solvent that wets the powder adheres to the powder, and the rest remains in a layer on the surface of the tip of the sample holder. Since there is only one layer of powder, its amount is fixed, and its surface area is also fixed, the amount of sample attached to the powder particle surface is also fixed (as mentioned at the beginning, it is scattered by filamentary plasma). It is the powder at the tip of the sample holder that is removed, and the sample that is directly attached to the surface of the sample holder in a layer is not scattered and sent to the plasma flame, so this method allows you to quantify the sample. It can be introduced.

また上述したプロセスは何回か重ねて繰返し、試料を濃
縮することもできる。この場合溶媒上に粉末をふりかけ
、余分の粉末を吸引して半乾の状態で、次回の溶媒を滴
下する。すっかり乾かしてしまうと乾いた粉末の上に滴
下された溶媒ははじかれて液滴となって試料保持体先端
から転げ落ちてしまうから作業が大へんやり難くなる。
The process described above can also be repeated several times to concentrate the sample. In this case, sprinkle the powder on top of the solvent, suck out the excess powder, and leave it in a semi-dry state before adding the next solvent dropwise. If it dries completely, the solvent dropped onto the dry powder will be repelled and form droplets that will roll off the tip of the sample holder, making the work much more difficult.

ト、効果 本発明によれば、試料は粉末状であればよ(、気化させ
てプラズマ炎内に導入するのでな(、粉末試料を瞬間的
に飛散させてキャリヤガスの流れに乗せるので、微量の
試料であっても、−時にプラズマ炎に導入されるため、
時間をかけて蒸発させるよりも、プラズマ炎中の試料濃
度は高(、従ってS / N比の良い分析が可能となり
、微量、難揮発性の試料で′あっても高感度でTCP発
光分析を行うことができる。
According to the present invention, the sample only needs to be in powder form (because it is vaporized and introduced into the plasma flame), and the powder sample is instantaneously scattered and placed in the flow of carrier gas, so that a very small amount of Even if the sample is introduced into the plasma flame at - times,
Compared to evaporation over time, the sample concentration in the plasma flame is high (therefore, analysis with a good S/N ratio is possible, and TCP emission spectroscopy can be performed with high sensitivity even with trace amounts and non-volatile samples). It can be carried out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の側面図、第2図は他の実施
例の側面図、第3図は本発明における試料定量化の手順
を示す図である。 T・・・プラズマトーチ、T1・・・中心管、Tli・
・・中心管のうちの試料供給管、B・・・試料保持体、
H・・・高電圧発生器、P・・・プラズマ炎、F・・・
フィラメンタリプラズマ。 代理人  弁理士 縣  浩 介 第1vA
FIG. 1 is a side view of one embodiment of the present invention, FIG. 2 is a side view of another embodiment, and FIG. 3 is a diagram showing the procedure of sample quantification in the present invention. T...Plasma torch, T1...Center tube, Tli・
...sample supply tube in the central tube, B...sample holder,
H...High voltage generator, P...Plasma flame, F...
filamentary plasma. Agent Patent Attorney Kosuke Agata 1st vA

Claims (4)

【特許請求の範囲】[Claims] (1)プラズマトーチの試料供給管の下部に試料保持体
を挿入し、この試料保持体先端に粉末化した試料を付着
させ、同試料保持体を高電圧発生器に接続し、プラズマ
トーチ上に形成されるプラズマトーチ炎から上記試料保
持体にフィラメンタリプラズマを延長させフィラメンタ
リプラズマ先端により試料保持体上の試料粉末を飛散さ
せてプラズマ炎内に導入せしめることを特徴とするIC
P発光分析における試料導入方法。
(1) Insert a sample holder into the lower part of the sample supply tube of the plasma torch, attach a powdered sample to the tip of the sample holder, connect the sample holder to a high voltage generator, and place it on the plasma torch. An IC characterized in that filamentary plasma is extended from the formed plasma torch flame to the sample holder, and the sample powder on the sample holder is scattered by the tip of the filamentary plasma and introduced into the plasma flame.
Sample introduction method for P emission analysis.
(2)試料保持体先端に溶液を滴下して試料保持体先端
を溶液で覆い、その上に粉末をふりかけ、余分の粉体を
吸引除去した後溶液を乾燥させ、このようにして試料保
持体先端に付着した粉体をフィラメンタリプラズマの先
端によって飛散させるようにした特許請求の範囲第1項
記載のICP発光分析における試料導入方法。
(2) Drop the solution onto the tip of the sample holder to cover the tip of the sample holder with the solution, sprinkle the powder on top of it, remove the excess powder by suction, dry the solution, and in this way A method for introducing a sample in ICP emission spectroscopy according to claim 1, wherein powder adhering to the tip is scattered by the tip of the filamentary plasma.
(3)溶液がブランク試料であり、粉体が被分析試料で
ある特許請求の範囲第2項記載のICP発光分析におけ
る試料導入方法。
(3) The method for introducing a sample in ICP emission analysis according to claim 2, wherein the solution is a blank sample and the powder is a sample to be analyzed.
(4)溶液が試料溶液であり、粉体が分析対象でない特
許請求の範囲第2項記載のICP発光分析における試料
導入方法。
(4) The method for introducing a sample in ICP emission spectrometry according to claim 2, wherein the solution is a sample solution and the powder is not an object of analysis.
JP27622187A 1987-10-31 1987-10-31 Method for introducing sample for icp emission analysis Pending JPH01118752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27622187A JPH01118752A (en) 1987-10-31 1987-10-31 Method for introducing sample for icp emission analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27622187A JPH01118752A (en) 1987-10-31 1987-10-31 Method for introducing sample for icp emission analysis

Publications (1)

Publication Number Publication Date
JPH01118752A true JPH01118752A (en) 1989-05-11

Family

ID=17566375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27622187A Pending JPH01118752A (en) 1987-10-31 1987-10-31 Method for introducing sample for icp emission analysis

Country Status (1)

Country Link
JP (1) JPH01118752A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534287A (en) * 1991-07-26 1993-02-09 Power Reactor & Nuclear Fuel Dev Corp Quantometer of radioactive glass
JP2007240156A (en) * 2006-03-03 2007-09-20 Horiba Ltd Sample vaporizer for analyzer, and icp analyzer
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534287A (en) * 1991-07-26 1993-02-09 Power Reactor & Nuclear Fuel Dev Corp Quantometer of radioactive glass
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
JP2007240156A (en) * 2006-03-03 2007-09-20 Horiba Ltd Sample vaporizer for analyzer, and icp analyzer
JP4731359B2 (en) * 2006-03-03 2011-07-20 株式会社堀場製作所 Sample vaporizer and ICP analyzer for analyzer
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot

Similar Documents

Publication Publication Date Title
Gregoire Determination of platinum, palladium, ruthenium and iridium geological materials by inductively coupled plasma mass spectrometry with sample introduction by electrothermal vaporisation
Layman et al. New, computer-controlled microwave discharge emission spectrometer employing microarc sample atomization for trace and micro elemental analysis
Ng et al. Electrothermal vaporization for sample introduction in atomic emission spectrometry
Pisonero et al. High efficiency aerosol dispersion cell for laser ablation-ICP-MS
US6144029A (en) Method for trace detection by solvent-assisted introduction of substances into an ion mobility spectrometer
JPH01118752A (en) Method for introducing sample for icp emission analysis
CA1077125A (en) Metastable argon stabilized arc devices for spectroscopic analysis
DE3805682A1 (en) METHOD AND DEVICE FOR INPUTING A LIQUID INTO A MASS SPECTROMETER AND OTHER GAS PHASE OR PARTICLE DETECTORS
DE3233130A1 (en) Process for introducing a finely-divided sample substance into an excitation source for spectroscopic purposes
JPS6322406B2 (en)
EP0362813B1 (en) Ion analyzer
JPS60127453A (en) Atmospheric pressure ionizing type specimen introducing apparatus
JPS59210349A (en) Analytical method and apparatus of molten metal by plasma emission spectrochemical analysis method for long-distance carriage of fine particle
CN109860015B (en) Composite ionization source device
JPH01129141A (en) Apparatus for icp emission spectroscopic analysis
JPH02196947A (en) Electrothermal atomization method and apparatus for sample for spectrophotometer analysis
JPH06102246A (en) Mass spectrometer
Buchkamp et al. Size and distribution of particles deposited electrostatically onto the platform of a graphite furnace obtained using laser ablation sampling
Pervukhin et al. A Collison nebulizer as an ion source for mass spectrometry analysis
CN212459418U (en) Electric spray sampling device based on electric field adsorption
JPH01141340A (en) Icp light emission analyzer
Hesse et al. Narrow angle emission from a lithium liquid metal ion source
JPH01143935A (en) Icp emission analyzer
Hermann et al. Radiation-enhanced field-forced deposition of a laser-produced aerosol in a graphite furnace and continuum-source coherent forward scattering multi-element determination
Vukanović et al. Direct solution analysis using an arc source incorporating two plasmas rotating in a graphite tube