JPH01143935A - Icp emission analyzer - Google Patents

Icp emission analyzer

Info

Publication number
JPH01143935A
JPH01143935A JP30398687A JP30398687A JPH01143935A JP H01143935 A JPH01143935 A JP H01143935A JP 30398687 A JP30398687 A JP 30398687A JP 30398687 A JP30398687 A JP 30398687A JP H01143935 A JPH01143935 A JP H01143935A
Authority
JP
Japan
Prior art keywords
sample
plasma
discharge
counter electrode
plasma torch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30398687A
Other languages
Japanese (ja)
Inventor
Koji Okada
幸治 岡田
Haruo Mizukami
水上 治男
Kensuke Daiho
健介 大穂
Naoki Imamura
直樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP30398687A priority Critical patent/JPH01143935A/en
Publication of JPH01143935A publication Critical patent/JPH01143935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To enable the stable emission analysis of even a slight amt. of hardly volatile sample with high sensitivity by effecting a spark discharge or arc discharge between a sample rod and counter electrode through the plasma formed on a plasma torch. CONSTITUTION:A sample base 5 is removably provided on a central pipe 3 of a plasma torch T. This sample base 5 and the counter electrode 6 disposed above the plasma torch T are connected to both electrodes of a power supply 7 for spark discharge or arc discharge. The sample base 5 is connected to an igniter 8 which generates the corona discharge from the sample base. The spark discharge or arc discharge is effected between the sample rod and the counter electrode 6 through the plasma flame F formed on the plasma torch T. Since the sample is evaporated by the high temp. of the spark discharge or arc discharge, the analysis is possible even with the hardly volatile sample and since the evaporation place of the sample is the central pipe 3 of the plasma torch T, the distance from the evaporation place of the sample to the plasma flame F is short. The evaporated sample is thus effectively sent to the plasma flame F without being stuck to the pipe wall.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はICP(誘導結合プラズマ)発光分析装置に関
し、特にそのプラズマ炎への試料導入手段の構成に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to an ICP (inductively coupled plasma) emission spectrometer, and particularly to the configuration of a means for introducing a sample into the plasma flame.

ロ、従来の技術 102発光分析では通常・、試料は溶液にして試料霧化
器で霧状にし、これをキャリヤガスの流れに乗せてプラ
ズマ炎に送込んでいる。しかしこの方法では多量の試料
を必要とするので微量試料に対しては、グラファイト試
料原子化炉とかタングステン等の高融点金属のボートを
用いた試料加熱器で、グラフアイドグ・ユーブ或は金属
ボートに直接通電し、その時発生ずるジュール熱で試料
を揮発させ、揮発した試料をキャリヤガスの流れに乗せ
てプラズマ炎まで送ると云う方法が用いられているが、
ジュール熱による加熱では充分な高温が得られず、難揮
発性試料の分析には利用できない。このような場合には
AG−I PCと呼ばれる方法が用いられる。これは試
料と電極を対向させてスパーク放電或はアーク放電を行
い試料を蒸発させる・もので、生成された試料蒸気はギ
ヤリヤガスの流れに乗せてプラズマトーチまで搬送する
ものである。
B. Conventional Technique 102 In optical emission spectrometry, a sample is usually made into a solution, atomized using a sample atomizer, and then sent into a plasma flame along with a flow of carrier gas. However, this method requires a large amount of sample, so for very small samples, a sample heater using a graphite sample atomization reactor or a boat made of a high-melting point metal such as tungsten is used, and a graphite sample reactor or a sample heater using a boat made of a high-melting point metal such as tungsten can be used. The method used is to turn on electricity, volatilize the sample with the Joule heat generated at that time, and send the volatilized sample to the plasma flame in a carrier gas flow.
Heating using Joule heat does not reach a sufficiently high temperature and cannot be used to analyze difficult-to-volatile samples. In such cases, a method called AG-I PC is used. In this method, the sample and electrode are opposed to each other and spark discharge or arc discharge is performed to evaporate the sample, and the generated sample vapor is conveyed to the plasma torch in the flow of gear gas.

ハ0発明が解決しようとする問題点 上述したようにICI’発光分析法で難揮発性微量試料
を分析する場合、従来は八G−I PC法が用いられて
いたが、試料の揮散場所がプラズマト−チから離れてい
るため途中の管路壁に試料が付着して、手ヤリャガス流
路を汚染する」−1試料の損失となって微!!L試料の
場合感度が低下し、また管路中で蒸発した試料が再凝集
して粒子径が大となり、プラズマ炎中で完全に蒸発でき
ないため感度低下と共に分析値が不安定になる等の問題
があった。従って本発明は難揮発性の微量試料に対して
も高感度で安定した102発光分析を可能にしようとす
るものである。
Problems to be Solved by the Invention As mentioned above, when analyzing a trace amount of a non-volatile sample using ICI' emission spectrometry, the 8G-I PC method was conventionally used. Because it is far away from the plasma torch, the sample adheres to the pipe wall along the way, contaminating the gas flow path.''-One sample is lost, which is very small! ! In the case of L samples, the sensitivity decreases, and the sample that evaporated in the pipe re-agglomerates and becomes larger in particle size, and cannot be completely evaporated in the plasma flame, resulting in decreased sensitivity and unstable analytical values. was there. Therefore, the present invention is intended to enable highly sensitive and stable 102 emission analysis even for a trace amount of sample with low volatility.

二0問題点解決のための手段 プラズマトーチの中心管に挿脱可能に試料台を設け、こ
の試料台とプラズマトーチ−上方に配置した対電極とを
スパーク放電或はアーク放電用電源の両極に接続すると
共に、試料台を試料台からコロナ放電を発生させる高圧
電源を接続し、プラズマトーチ上に形成されているプラ
ズマを貫通して試料棒と対電極との間にスパーク放電或
はアーク放電を行わせるようにした。
20 Means for Solving Problems A sample stand is removably inserted into the center tube of the plasma torch, and this sample stand and a counter electrode placed above the plasma torch are connected to both poles of a power source for spark discharge or arc discharge. At the same time, connect the sample stand to a high-voltage power source that generates corona discharge from the sample stand, and create a spark discharge or arc discharge between the sample rod and the counter electrode by penetrating the plasma formed on the plasma torch. I made it happen.

ホ1作用 試料を試料棒の先端に付着させてプラズマトーチの中心
管に挿入し、プラズマ炎を貫通させて対電極と試料棒と
の間にスパーク放電或はアーク放電を行わせると、試料
棒先端の試料はスパーク放電或はアーク放電の集中的な
高温により瞬時に揮発し、試料蒸気がキャリヤガスの流
れにのってプラズマ炎に送られる。試料棒と対電極との
間の距離は大きいからプラズマトーチ上にプラズマ炎が
形成されていない状態では試料棒と対電極との間に特別
な高電圧を印加しない限りスパーク放電は起らないが、
高周波はプラズマが形成されている状態で試料棒に高電
圧を印加すると試料棒からコロナ放電が行われ、プラズ
マ炎からフィラメントプラズマが延びて来る。このため
対電極からプラズマ炎フィラメントプラズマを通って導
電チャンネルが形成されるので、対電極と試料棒との間
にスパーク或はアーク放電が行われるのである。
E1 Effect When a sample is attached to the tip of a sample rod and inserted into the center tube of a plasma torch, and a plasma flame is passed through it to cause a spark discharge or arc discharge between the counter electrode and the sample rod, the sample rod The sample at the tip is instantly volatilized by the intensive high temperature of the spark discharge or arc discharge, and the sample vapor is carried by the carrier gas flow into the plasma flame. Since the distance between the sample rod and the counter electrode is large, unless a plasma flame is formed on the plasma torch, spark discharge will not occur unless a special high voltage is applied between the sample rod and the counter electrode. ,
With high frequency, when a high voltage is applied to the sample rod while plasma is being formed, a corona discharge is generated from the sample rod, and filament plasma is extended from the plasma flame. This creates a conductive channel from the counter electrode through the plasma flame filament plasma, resulting in a spark or arc discharge between the counter electrode and the sample rod.

へ、実施例 図は本発明の一実施例を示す。Tはプラズマトーチで、
外套管1.中間2.中心管3の三重管であり、外套管に
は冷却ガス、中管にはプラズマ形成用ガス、中心管には
キャリヤガスが供給される。4はプラズマ炎を形成させ
る高周波コイルである。中心管3の下部側方開口からキ
ャリヤガスが供給される。中心管の下端は開放されてい
て試料台5により閉塞されるようになっている。6はプ
ラズマトーチ上方に配置されたタングステンの対電極で
あり、7はスパーク放電用電源で、交流電源AC,昇圧
トランスT1整流回路D1放電エネルギー蓄積用コンデ
ンサC等よりなっており、両出力端子の一方が対電極7
に接続され、他方が試料台5に接続される。8はイグナ
イタとして用いられるテスラコイルで試料台5に接続さ
れる。
Embodiment Figure 1 shows an embodiment of the present invention. T is for plasma torch,
Mantle tube 1. Intermediate 2. It is a triple tube with a central tube 3, and cooling gas is supplied to the outer tube, plasma forming gas is supplied to the middle tube, and carrier gas is supplied to the central tube. 4 is a high frequency coil that forms a plasma flame. Carrier gas is supplied from the lower side opening of the central tube 3. The lower end of the central tube is open and is closed by the sample stage 5. 6 is a tungsten counter electrode placed above the plasma torch, and 7 is a spark discharge power source, which consists of an AC power source, a step-up transformer T1, a rectifier circuit D, a discharge energy storage capacitor C, etc. One side is the counter electrode 7
and the other end is connected to the sample stage 5. 8 is a Tesla coil used as an igniter and connected to the sample stage 5.

試料は溶液の一滴を試料台5上に付着させ乾燥させて用
いる。或は粉状試料を試料台5表面の小穴に充填するよ
うにしてもよい。試料の付着した試料台をプラズマトー
チの中心管3の下端に取付け、外套管l、中間2.中心
管3夫々にガスを供給しコイル4に高周波電力を供給し
てプラズマ炎Fを形成させる。この状態で試料台5にテ
スラコイル8の高圧高周波電圧を印加すると試料台5か
らコロナ放電が行われ、生成されたイオンがキャリヤガ
スの流れに乗ってプラズマ炎Fまで達すると、プラズマ
炎から7、イラメント状のプラズマが延びて来て試料台
5に達する。他方スパーク放電用電源のコンデンサは充
電状態にあり、プラズマ炎Fから試料台5に向ってフィ
ラメントプラズマが形成されると対電極6とプラズマ炎
Fとの間に電界が集中して、その間のガスの絶縁が破れ
て対電極と試料台との間に一気にスパーク放電が行われ
、試料台5上に付着された試料が飛散せしめられる。こ
の試料がキャリヤガスの流れに乗ってプラズマ炎F内に
送られる。
The sample is used by depositing a drop of the solution on the sample stage 5 and drying it. Alternatively, the powder sample may be filled into small holes on the surface of the sample stage 5. Attach the sample stage with the sample attached to the lower end of the central tube 3 of the plasma torch, insert the outer tube l, the middle tube 2. Gas is supplied to each of the central tubes 3 and high frequency power is supplied to the coil 4 to form a plasma flame F. In this state, when a high-pressure high-frequency voltage from the Tesla coil 8 is applied to the sample stage 5, a corona discharge is generated from the sample stage 5, and when the generated ions ride the carrier gas flow and reach the plasma flame F, the plasma flame 7, The filament-shaped plasma extends and reaches the sample stage 5. On the other hand, the capacitor of the spark discharge power supply is in a charged state, and when filament plasma is formed from the plasma flame F toward the sample stage 5, an electric field is concentrated between the counter electrode 6 and the plasma flame F, and the gas between them is The insulation is broken and a spark discharge occurs between the counter electrode and the sample stage 5 at once, and the sample attached to the sample stage 5 is scattered. This sample is sent into the plasma flame F along with the flow of carrier gas.

上述実施例では試料台と対電極との間に接続されるのは
スパーク放電電源であるが、放電エネルギー蓄積用コン
デンサの容量を太き(シ、コンデンサと対電極間に抵抗
或はインダクタンスを挿入しておけば放電は瞬間的なス
パーク放電から哨持続的なアーク放電に変わる。或はア
ーク溶接に用いるような漏洩トランスを用いた交流アー
ク放電電源を用いてもよい。この場合、フィラメントブ
ラズマが試料台まで到達してもアーク放電が開始できな
いので、対電極を手動で瞬間的にプラズマ炎中に挿入す
るようにするか、試料台と対電極間に別に高圧インパル
スを加える回路を接続しておく。 対電極6はスパーク
或はアーク放電用電源が直流の場合、コイル4を対電極
としてもよい。
In the above embodiment, a spark discharge power supply is connected between the sample stage and the counter electrode, but the capacitance of the discharge energy storage capacitor is increased (i.e., a resistance or inductance is inserted between the capacitor and the counter electrode). If this is done, the discharge changes from an instantaneous spark discharge to a sustained arc discharge.Alternatively, an AC arc discharge power source using a leaky transformer such as that used for arc welding may be used.In this case, the filament plasma Arc discharge cannot start even when the sample stage is reached, so either manually insert the counter electrode momentarily into the plasma flame, or connect a separate circuit that applies a high voltage impulse between the sample stage and the counter electrode. The counter electrode 6 may be the coil 4 if the power source for spark or arc discharge is DC.

試料の形状は任意であって、溶液を塗着して乾燥させる
とか粉末を穴に充填するのに限らない。
The shape of the sample is arbitrary, and is not limited to applying a solution and drying it or filling a hole with powder.

試料溶液を多孔質に含浸させたものでもよく、試料が導
電性なら試料自体を試料台としてもよいのである。
A porous material impregnated with a sample solution may be used, and if the sample is conductive, the sample itself may be used as a sample stage.

ト、効果 本発明によれば試料はスパーク放電或はアーク放電の高
温により気化せしめられるので、難揮発性の試料でも分
析可能であり、試料の揮散場所がプラズマトーチの中心
管内であるから、試料揮散場所からプラズマ炎までの距
離が短(真っ直ぐだから揮散した試料は管壁に付着する
ことなく効率的にプラズマ炎に送られ、プラズマドーグ
−の試料による汚染が起らず、試料損失が少くなって、
微量試料でも感度よく分析することができる。
Effects According to the present invention, since the sample is vaporized by the high temperature of spark discharge or arc discharge, even slightly volatile samples can be analyzed. The distance from the volatilization location to the plasma flame is short (straight), so the volatilized sample is efficiently sent to the plasma flame without adhering to the tube wall, and contamination with the Plasma Dawg sample does not occur, reducing sample loss. hand,
Even trace amounts of samples can be analyzed with high sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例の側面図である。 T・・・プラズマトーチ、F・・・プラズマ炎、1・・
・外套管、2・・・中管、3・・・中心管、4・・・コ
イル、5・・・試料台、6・・・対TL極、7・・・ス
パーク放電用tft源、8・・・イグナイタ。 代理人  弁理士 縣  浩 介
The drawing is a side view of one embodiment of the invention. T...Plasma torch, F...Plasma flame, 1...
- Outer tube, 2... Middle tube, 3... Center tube, 4... Coil, 5... Sample stage, 6... TL pole, 7... TFT source for spark discharge, 8 ...igniter. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] プラズマトーチの中心管に試料面を臨ませて着脱可能に
試料台を取付け、この試料台とプラズマトーチ上方に配
置した対電極とをスパーク放電或はアーク放電用電源の
両極に接続すると共に、上記試料台に試料台からコロナ
放電を発生させる高圧電源を接続したことを特徴とする
ICP発光分析装置。
A sample stand is removably attached to the center tube of the plasma torch with the sample surface facing, and this sample stand and a counter electrode placed above the plasma torch are connected to both poles of a power source for spark discharge or arc discharge. An ICP emission spectrometer characterized in that a high-voltage power source that generates corona discharge from the sample stage is connected to the sample stage.
JP30398687A 1987-11-30 1987-11-30 Icp emission analyzer Pending JPH01143935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30398687A JPH01143935A (en) 1987-11-30 1987-11-30 Icp emission analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30398687A JPH01143935A (en) 1987-11-30 1987-11-30 Icp emission analyzer

Publications (1)

Publication Number Publication Date
JPH01143935A true JPH01143935A (en) 1989-06-06

Family

ID=17927665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30398687A Pending JPH01143935A (en) 1987-11-30 1987-11-30 Icp emission analyzer

Country Status (1)

Country Link
JP (1) JPH01143935A (en)

Similar Documents

Publication Publication Date Title
US8242459B2 (en) Device for desorption and ionization
Schwartz et al. Visual observations of an atmospheric-pressure solution-cathode glow discharge
US4009413A (en) Plasma jet device and method of operating same
US8637812B2 (en) Sample excitation apparatus and method for spectroscopic analysis
Layman et al. New, computer-controlled microwave discharge emission spectrometer employing microarc sample atomization for trace and micro elemental analysis
Gamero-Castano Electric-field-induced ion evaporation from dielectric liquid
US5105123A (en) Hollow electrode plasma excitation source
JPH05290795A (en) Inductive coupling plasma mass spectrometer
US20140218729A1 (en) Means of Introducing an Analyte into Liquid Sampling Atmospheric Pressure Glow Discharge
JP2018136190A (en) La-icp-ms device using quantitative analysis method and la-icp-ms device
Quarles Jr et al. Liquid sampling-atmospheric pressure glow discharge optical emission spectroscopy detection of laser ablation produced particles: A feasibility study
CA1077125A (en) Metastable argon stabilized arc devices for spectroscopic analysis
Li et al. Nested-channel for on-demand alternation between electrospray ionization regimes
Gamero-Castano et al. On the current emitted by Taylor cone-jets of electrolytes in vacuo: Implications for liquid metal ion sources
JPH01143935A (en) Icp emission analyzer
CN109860015B (en) Composite ionization source device
JPS59210349A (en) Analytical method and apparatus of molten metal by plasma emission spectrochemical analysis method for long-distance carriage of fine particle
WO1990004852A1 (en) Hollow electrode plasma excitation source
CN109187496B (en) Atomic emission spectrum analysis device based on electrothermal evaporation and tip discharge
JPH01141340A (en) Icp light emission analyzer
JPH01118752A (en) Method for introducing sample for icp emission analysis
JPH051895Y2 (en)
CN111929290A (en) Atomic emission spectrum device of tungsten filament electric heating evaporation-atmospheric pressure glow discharge
JPS62202450A (en) High frequency inductive coupling plasma-mass spectrometer
Buchkamp et al. Size and distribution of particles deposited electrostatically onto the platform of a graphite furnace obtained using laser ablation sampling