JPH06102246A - Mass spectrometer - Google Patents

Mass spectrometer

Info

Publication number
JPH06102246A
JPH06102246A JP4252513A JP25251392A JPH06102246A JP H06102246 A JPH06102246 A JP H06102246A JP 4252513 A JP4252513 A JP 4252513A JP 25251392 A JP25251392 A JP 25251392A JP H06102246 A JPH06102246 A JP H06102246A
Authority
JP
Japan
Prior art keywords
barrier
ion
mass spectrometer
spray
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4252513A
Other languages
Japanese (ja)
Other versions
JP3238488B2 (en
Inventor
Yasuaki Takada
安章 高田
Minoru Sakairi
実 坂入
Tsudoi Hirabayashi
集 平林
Atsushi Maki
敦 牧
Hideki Kanbara
秀記 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25251392A priority Critical patent/JP3238488B2/en
Publication of JPH06102246A publication Critical patent/JPH06102246A/en
Application granted granted Critical
Publication of JP3238488B2 publication Critical patent/JP3238488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To obtain a liquid chromatograph/mass spectrometer with an electrostatic spray ion source which enables the obtaining of the intensity of ions stably and intensely. CONSTITUTION:A spray tubule 11 is arranged with the axis thereof shifted from the center axis of a ion pickup pore. A sample solution eluted from a liquid chromatograph is introduced into the spray tubule 11 through a piping 2 and a connector 10. A voltage of several kV is applied between the spray tubule 11 and an opposed electrode 12 having an ion introduction pore 15 opened thereon to spray the solution electrostatically. A gas such as dry nitrogen flows at a gas jet port 13 for spraying. Liquid drops charged electrically are vaporized to generate ions, which are taken into a mass spectrometric section 6 through the ion introduction pore 15a, a differential exhaust part 19 and an ion introduction pore 15b. A barrier 20a is provided between the tip of the spray tubule 11 and the opposed electrode 12. This enables reduction in temperature changes in the perimeter of the ion introduction pores 15a and 15b thereby observing the intensity of ions stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に蛋白質などの難揮
発性物質の分離分析に重要な液体クロマトグラフと質量
分析計とを結合した装置、すなわち液体クロマトグラフ
・質量分析計におけるインタフェースに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus in which a liquid chromatograph and a mass spectrometer, which are particularly important for separating and analyzing poorly volatile substances such as proteins, are combined, that is, an interface in a liquid chromatograph / mass spectrometer.

【0002】[0002]

【従来の技術】現在、分析の分野では液体クロマトグラ
フ・質量分析計の開発が重要視されている。液体クロマ
トグラフは混合物の分離に優れるが物質の同定ができ
ず、一方質量分析計は感度も高く物質の同定能力に優れ
るが混合物の分析は困難である。そこで、液体クロマト
グラフの検出器として質量分析計を用いる液体クロマト
グラフ・質量分析計は、混合物の分析に対して大変有効
である。参考のために、従来の液体クロマトグラフ・質
量分析計の全体の構成を示すブロック図を図9に示す。
液体クロマトグラフから溶出してくる試料溶液は配管2
によりイオン源に導入される。イオン源はイオン源用電
源4により信号ライン5aを介して制御されている。イ
オン源で生成した試料分子に関するイオンは、質量分析
部に導入されて質量分析される。この質量分析部は排気
系により真空に排気される。質量分析されたイオンはイ
オン検出器8で検出され、検出信号は信号ライン5bを
介してデータ処理装置に送られる。さて、このように液
体クロマトグラフ・質量分析計の原理は簡単であるが、
液体クロマトグラフは溶液中の試料を扱うのに対して、
質量分析計は高真空中のイオンを扱うという相性の悪さ
から、この方法の開発は非常に困難なものとなってい
る。この問題を解決するためにいくつかの方法が開発さ
れている。なかでも有力視されているのは、液体クロマ
トグラフからの溶出液を噴霧し、生成した液滴中に含ま
れる試料分子をイオン化して質量分析部へと取り込む噴
霧イオン化法である。
2. Description of the Related Art At present, the development of a liquid chromatograph / mass spectrometer is regarded as important in the field of analysis. The liquid chromatograph is excellent in separating the mixture but cannot identify the substance. On the other hand, the mass spectrometer has high sensitivity and excellent ability to identify the substance, but it is difficult to analyze the mixture. Therefore, a liquid chromatograph / mass spectrometer that uses a mass spectrometer as a detector of a liquid chromatograph is very effective for analyzing a mixture. For reference, a block diagram showing the entire configuration of a conventional liquid chromatograph / mass spectrometer is shown in FIG.
The sample solution eluted from the liquid chromatograph is pipe 2
Is introduced into the ion source. The ion source is controlled by the ion source power source 4 via a signal line 5a. The ions relating to the sample molecules generated by the ion source are introduced into the mass spectrometric section and subjected to mass spectrometric analysis. This mass spectrometer is evacuated to a vacuum by an exhaust system. The mass-analyzed ions are detected by the ion detector 8, and the detection signal is sent to the data processing device via the signal line 5b. Now, although the principle of a liquid chromatograph / mass spectrometer is simple,
Whereas liquid chromatographs handle samples in solution,
The incompatibility of mass spectrometers in dealing with ions in high vacuum makes the development of this method very difficult. Several methods have been developed to solve this problem. Among them, the most promising is the spray ionization method in which the eluate from the liquid chromatograph is sprayed and the sample molecules contained in the generated droplets are ionized and taken into the mass spectrometric section.

【0003】噴霧イオン化法の例として、アナリティカ
ル ケミストリー 1987年、59巻、2642頁
(Analytical Chemistry 59 (1987) 2642)に記載され
ている静電噴霧法について説明する。図10に静電噴霧
イオン源を備えた液体クロマトグラフ・質量分析計の構
造を示す断面図を示す。液体クロマトグラフ1から溶出
してくる試料溶液を、配管2、コネクタ10を介して噴
霧細管11に導入する。この噴霧細管11と対向電極1
2との間に数kVの電圧を印加すると、噴霧細管11の
先端で試料溶液がコーン状態になりその先端から微小液
滴が生成する、いわゆる静電噴霧現象が起こる。静電噴
霧法では、噴霧用ガス噴出口13を設け、噴霧細管11
のまわりから窒素などのガスを流し、噴霧を容易にす
る。さらに、生成した微小液滴に向けて、窒素などのガ
スを対向電極12側に設けられた気化用ガス噴出口14
から吹き付け、微小液滴の気化を促進させる。以上のよ
うな過程を経て生成したイオンは、イオン導入細孔15
から直接真空中に導入され、高真空下の質量分析部6で
質量分析される。
As an example of the spray ionization method, the electrostatic spray method described in Analytical Chemistry, 1987, 59, 2642 (Analytical Chemistry 59 (1987) 2642) will be described. FIG. 10 is a sectional view showing the structure of a liquid chromatograph / mass spectrometer equipped with an electrostatic spray ion source. The sample solution eluted from the liquid chromatograph 1 is introduced into the spray thin tube 11 via the pipe 2 and the connector 10. The spray thin tube 11 and the counter electrode 1
When a voltage of several kV is applied between the tip and the nozzle 2, the sample solution is in a cone state at the tip of the nebulization tube 11, and a so-called electrostatic atomization phenomenon occurs in which minute droplets are generated from the tip. In the electrostatic spraying method, a spraying gas jet port 13 is provided, and a spraying thin tube 11 is provided.
A gas such as nitrogen is flowed from around to facilitate atomization. Further, a gas such as nitrogen toward the generated fine droplets is provided on the counter electrode 12 side, and the vaporizing gas ejection port 14 is provided.
To accelerate vaporization of fine droplets. The ions generated through the above process are ion-introducing pores 15
Is directly introduced into a vacuum and is subjected to mass analysis by the mass spectrometric section 6 under high vacuum.

【0004】[0004]

【発明が解決しようとする課題】かかる従来の方法には
次のような課題があった。静電噴霧イオン源に導入でき
る試料溶液の流量は、毎分10マイクロリットル程度に
限られており、これを越える試料用溶液をイオン源に導
入するとイオンを安定して観測することができなかっ
た。これは、試料溶液の流量が増すとともに、静電噴霧
により生成される液滴の直径が大きくなり、液滴を気化
し液滴中に含まれるイオンを効率良く取りだすことが困
難となるためである。さらに、直径の大きな液滴がイオ
ン取り込み細孔付近に触れると、細孔温度が下がり、液
膜が生成し細孔を閉鎖させてしまう。
The conventional method has the following problems. The flow rate of the sample solution that can be introduced into the electrostatic spray ion source is limited to about 10 microliters per minute, and if a sample solution exceeding this is introduced into the ion source, the ions cannot be stably observed. . This is because as the flow rate of the sample solution increases, the diameter of the droplets generated by electrostatic spraying increases, and it becomes difficult to vaporize the droplets and efficiently extract the ions contained in the droplets. . Further, when a droplet having a large diameter comes into contact with the vicinity of the ion-incorporating pores, the pore temperature is lowered, and a liquid film is formed to close the pores.

【0005】一方、通常用いられる液体クロマトグラフ
の流量は毎分200マイクロリットルから1000マイ
クロリットルである。この、静電噴霧イオン源と液体ク
ロマトグラフとの流用の不適合のため、従来は、液体ク
ロマトグラフからの溶出液をスプリッタを用いて分割
し、ごく一部だけを静電噴霧イオン源に導入する方法が
取られていた。しかしながら、分離比1対100といっ
たスプリッタは安定に動作させるのが困難であるため、
観測されるイオン強度も安定しなかった。従って、毎分
数百マイクロリットルという高い流量で試料溶液を導入
しても安定してイオンを観測できる静電噴霧イオン源の
開発が望まれていた。
On the other hand, the flow rate of a commonly used liquid chromatograph is 200 to 1000 microliters per minute. Due to this incompatibility between the electrostatic spray ion source and the liquid chromatograph, conventionally, the eluate from the liquid chromatograph is divided by using a splitter, and only a small portion is introduced into the electrostatic spray ion source. The method was taken. However, it is difficult to operate a splitter with a separation ratio of 1: 100 stably,
The observed ionic strength was also not stable. Therefore, it has been desired to develop an electrostatic spray ion source capable of stably observing ions even when a sample solution is introduced at a high flow rate of several hundred microliters per minute.

【0006】図11に、静電噴霧イオン源に毎分200
マイクロリットルで溶液(水/メタノール/5%酢酸)
を導入し、噴霧細管11と噴霧細管の先端から15ミリ
メートル離れた位置に配置された金属メッシュ16との
間に4キロボルトの電圧を印加して得られた噴流17中
の液滴の平均直径及び粒子数の分布を調べた結果を示
す。測定は噴霧細管11の先端から10ミリメートル離
れた位置で行った。ここで、粒子数とは、1秒間に0.
03立方ミリメートルの空間中を通過した粒子の個数を
表す。噴流の中心部分には噴霧用ガスの圧力により生成
される直径の大きな液滴が含まれる。この大きな液滴が
イオン導入細孔付近の温度を低下させ、イオン強度を減
少させる要因となる。一方、噴流中心部から外周部へと
離れるにつれ、液滴の平均粒径は小さくなり、噴流中心
から3mm以上離れると粒径は一定になった。そこで、噴
流の外周部に存在する粒径の小さな液滴だけをイオン導
入細孔より取り込むことにより、イオン導入細孔の冷却
によるイオン強度の減少を軽減し、イオンを安定に観測
することができる。本発明の目的は、イオン強度を強く
かつ安定に取り込むことができる静電噴霧イオン源を提
供することであり、これにより液体クロマトグラフ・質
量分析計の高感度化を実現することにある。
FIG. 11 shows that the electrostatic atomization ion source is 200 minutes per minute.
Solution in microliters (water / methanol / 5% acetic acid)
And the average diameter of the droplets in the jet stream 17 obtained by applying a voltage of 4 kilovolts between the spray capillary 11 and the metal mesh 16 placed 15 mm away from the tip of the spray capillary. The result of having investigated the distribution of the number of particles is shown. The measurement was performed at a position 10 mm away from the tip of the spray capillary 11. Here, the number of particles is 0.
It represents the number of particles that have passed through a space of 03 cubic millimeters. The central portion of the jet stream contains large-diameter droplets generated by the pressure of the atomizing gas. The large droplets lower the temperature in the vicinity of the ion-introducing pores, which causes the ionic strength to decrease. On the other hand, as the distance from the center of the jet to the outer periphery decreased, the average particle size of the droplets decreased, and when the distance from the center of the jet was 3 mm or more, the particle size became constant. Therefore, by taking in only the droplets having a small particle size existing on the outer peripheral portion of the jet flow from the ion introduction pores, it is possible to reduce the decrease in the ion intensity due to the cooling of the ion introduction pores and to stably observe the ions. . An object of the present invention is to provide an electrostatic spray ion source capable of capturing ionic strength strongly and stably, and thereby to realize high sensitivity of a liquid chromatograph / mass spectrometer.

【0007】[0007]

【課題を解決するための手段】上記目的、すなわち、イ
オン強度を強くかつ安定に得られる静電噴霧イオン源を
得るため、液体クロマトグラフから送られてくる試料溶
液を噴霧細管の一端に導入しこの噴霧細管の他端から静
電噴霧させイオンを生成するための静電噴霧イオン源、
この生成したイオンを真空部に導入するためのイオン導
入細孔、及びこの導入されたイオンを質量分析するため
の質量分析部を備えた質量分析計において、噴霧細管の
先端とイオン導入細孔の開口する電極との間に、噴流中
心がイオン導入細孔の周囲に触れるのを妨げる障壁を設
ける。より詳細には、障壁の断面形状は、噴流の外周部
だけを細孔周辺へ収束させるため、円形、あるいは楕円
形、あるいは流線形など、外周に曲率を持つ。また、溶
液が障壁部分に溜るのを防ぐため、溶液を気化させるた
めの加熱機構をイオン源の他の部分とは独立して設ける
か、障壁を軸の方向ベクトルが重力方向に成分を持つ糸
状あるいは棒状の物体で構成し、溶液が流れ落ちるのを
補助する。さらに、電界によりイオンの収束を補助する
ため、障壁に対しイオン源の他の部分とは独立して電位
を印加する機構を設ける。
[Means for Solving the Problems] In order to obtain the above-mentioned object, that is, to obtain an electrostatic spray ion source capable of obtaining a strong and stable ionic strength, a sample solution sent from a liquid chromatograph is introduced into one end of a spray capillary. An electrostatic spray ion source for electrostatically spraying ions from the other end of the spray capillary to generate ions,
In the mass spectrometer equipped with the ion introduction pores for introducing the generated ions into the vacuum portion, and the mass analysis portion for performing mass analysis of the introduced ions, the tip of the spray capillary and the ion introduction pores A barrier that prevents the center of the jet from coming into contact with the periphery of the ion introduction pore is provided between the opening and the electrode. More specifically, the cross-sectional shape of the barrier has a curvature on the outer circumference, such as a circular shape, an elliptical shape, or a streamline shape, in order to converge only the outer peripheral portion of the jet flow around the pores. In order to prevent the solution from accumulating in the barrier part, a heating mechanism for vaporizing the solution should be provided independently of the other parts of the ion source, or the barrier should be in the form of a thread whose axis direction vector has a component in the direction of gravity. Alternatively, it is composed of a rod-shaped object to help the solution flow down. Further, in order to assist the focusing of ions by the electric field, a mechanism for applying a potential to the barrier independently of the other parts of the ion source is provided.

【0008】[0008]

【作用】試料溶液を噴霧する細管とイオンを取り込む細
孔との間に障壁を設け、粒径の大きな液滴が含まれる噴
流の中心付近が細孔周囲に接触することを妨げるため、
細孔の温度低下を軽減することができ、従って、質量分
析計において、イオン強度を安定に観測することができ
る。また、障壁の外壁面を曲率を有する形状とし、噴流
の外周部分の粒径の小さな液滴が多く得られる部分を気
流によりイオン導入細孔へと収束させることにより、イ
オン強度を強く得ることができる。従って、イオン強度
が安定に観測でき、かつ、高感度な質量分析計が可能と
なる。
[Function] Since a barrier is provided between the narrow tube for spraying the sample solution and the pore for taking in ions, the vicinity of the center of the jet flow containing droplets with large particle diameter is prevented from coming into contact with the periphery of the pore.
It is possible to reduce the temperature drop in the pores, and thus to stably observe the ionic strength in the mass spectrometer. Further, by forming the outer wall surface of the barrier with a shape of curvature and converging the portion of the outer peripheral portion of the jet stream where a large number of small-sized droplets are obtained to the ion introduction pores by the air flow, it is possible to obtain a strong ionic strength. it can. Therefore, the ion intensity can be stably observed, and a highly sensitive mass spectrometer can be realized.

【0009】[0009]

【実施例】本発明による実施例を図1から図8により説
明する。図1は本発明による第1の実施例である静電噴
霧イオン源を示し、噴霧細管の先端とイオン導入細孔の
開口する対向電極との間に障壁を設けた静電噴霧イオン
源の断面図である。噴霧細管11の軸とイオン取り込み
細孔の中心軸とをずらして配置する。液体クロマトグラ
フから溶出してくる試料溶液は、配管2、コネクタ10
を介して噴霧細管11に導入される。噴霧細管11とイ
オン導入細孔15aの開口する対向電極12との間に、
電源18aを用いて数キロボルトの電圧を印加すること
により、溶液を静電噴霧させる。噴霧を補助するため
に、噴霧用ガス噴出口13より乾燥窒素などのガスを流
す。この様にして得られた帯電液滴が気化し、イオンが
生成される。生成されたイオンは、イオン導入細孔15
a、差動排気部19、イオン導入細孔15bを通して質
量分析部6に取り込まれる。この時、噴霧細管11の先
端と対向電極12との間に障壁20aを設けることによ
り、噴流の中心付近が電極に触れることを妨げ、イオン
導入細孔15aの周囲の温度変化を避ける。障壁20a
は導体が望ましいが、導体の障壁が噴霧細管先端付近の
電界を乱すおそれのある場合には、障壁20aの材質は
絶縁材を用いても良い。障壁20aの表面が溶液により
濡れ、噴霧が不安定になる場合には、この溶液を熱によ
り気化するために障壁20aにヒーター21を取付け、
イオン源の他の部分とは独立に加熱してもよい。さら
に、障壁20の電位は対向電極12の電位と同電位でも
良いが、帯電液滴あるいはイオンを細孔15a方向へド
リフトさせるため、障壁20aに電源18bを用いてイ
オン源の他の部分とは独立して電位を印加しても良い。
また、イオン導入細孔15aの中心軸に対して噴霧細管
11の中心軸を傾けて配置する構成の場合でも、障壁2
0aを設ける構成は有効である。
Embodiments of the present invention will be described with reference to FIGS. FIG. 1 shows an electrostatic spray ion source which is a first embodiment according to the present invention, and shows a cross section of the electrostatic spray ion source in which a barrier is provided between the tip of the spray capillary and the counter electrode having the opening of the ion introduction pore. It is a figure. The axis of the spray thin tube 11 and the central axis of the ion-incorporating pore are displaced from each other. The sample solution eluted from the liquid chromatograph is the pipe 2 and the connector 10.
It is introduced into the spray thin tube 11 via. Between the spray thin tube 11 and the counter electrode 12 having the ion introduction pore 15a opened,
The solution is electrostatically sprayed by applying a voltage of several kilovolts using the power supply 18a. In order to assist the spraying, a gas such as dry nitrogen is made to flow from the spraying gas jet port 13. The charged droplets thus obtained are vaporized and ions are generated. The generated ions are introduced into the ion introduction pores 15
It is taken into the mass spectrometric section 6 through a, the differential evacuation section 19, and the ion introduction pore 15b. At this time, the barrier 20a is provided between the tip of the spray thin tube 11 and the counter electrode 12 to prevent the vicinity of the center of the jet flow from touching the electrode, and avoid the temperature change around the ion introduction pore 15a. Barrier 20a
Although a conductor is desirable, an insulating material may be used as the material of the barrier 20a when the barrier of the conductor may disturb the electric field near the tip of the spray capillary. When the surface of the barrier 20a is wetted by the solution and the spray becomes unstable, a heater 21 is attached to the barrier 20a in order to vaporize the solution by heat.
It may be heated independently of the other parts of the ion source. Further, the potential of the barrier 20 may be the same as the potential of the counter electrode 12, but in order to cause the charged droplets or ions to drift in the direction of the pores 15a, the power source 18b is used for the barrier 20a so that the barrier 20a is different from the rest of the ion source. The potential may be applied independently.
Further, even in the case of the configuration in which the central axis of the spray thin tube 11 is inclined with respect to the central axis of the ion introduction pore 15a, the barrier 2
The configuration in which 0a is provided is effective.

【0010】図2は、本発明の第2の実施例を示す図で
あり、噴霧細管の軸とイオン導入細孔の中心軸とを傾け
て配置し、噴霧細管の先端とイオン導入細孔の開口する
対向電極との間に障壁を設けた静電噴霧イオン源の断面
図を示す。イオン導入細孔の中心軸に対して噴霧細管を
傾けて配置すると、噴流の中心付近がイオン導入細孔1
5aから離れた位置に当り、噴流の外周部分だけをイオ
ン導入細孔15aより取り込むことができるため、イオ
ン導入細孔15aの温度変化によるイオン強度の減少
や、対向電極12の表面に張った液膜がイオン導入細孔
15aを閉鎖させてしまうといった問題点は軽減され
る。しかしながら、まだこの構成では、噴霧開始後、イ
オン導入細孔の周辺が温度平衡に達するまでに10分程
度の時間を要した。このため、迅速に測定を行う場合に
課題があった。そこで、図2に示すように、障壁20a
により噴流の中心部分が対向電極12に触れるのを防ぐ
ことにより、対向電極12の温度を常に一定に保つこと
ができ、迅速な測定が可能となった。また本発明の第2
の実施例において、このイオン導入細孔の中心軸に対し
て噴霧細管の中心軸を傾けて配置する構成の場合、図3
の障壁の方向を変えて配置した一例を示す静電噴霧イオ
ン源の断面図に示すように、障壁20aの方向を変えて
配置しても良い。
FIG. 2 is a view showing a second embodiment of the present invention, in which the axis of the atomizing capillary and the central axis of the ion introducing pore are inclined, and the tip of the atomizing capillary and the ion introducing pore are arranged. FIG. 3 shows a cross-sectional view of an electrostatic spray ion source in which a barrier is provided between the counter electrode and the counter electrode that opens. When the nebulized thin tube is inclined with respect to the center axis of the ion introduction hole, the vicinity of the center of the jet flow is 1
Since it is possible to take in only the outer peripheral portion of the jet flow from the ion introduction pores 15a at a position away from 5a, the ionic strength is reduced due to the temperature change of the ion introduction pores 15a and the liquid spread on the surface of the counter electrode 12 The problem that the membrane closes the ion introduction pores 15a is alleviated. However, with this configuration, it took about 10 minutes until the temperature equilibrium was reached around the ion introduction pores after the start of spraying. For this reason, there is a problem in performing quick measurement. Therefore, as shown in FIG. 2, the barrier 20a
Thus, by preventing the central portion of the jet flow from touching the counter electrode 12, the temperature of the counter electrode 12 can be kept constant at all times, and quick measurement becomes possible. The second aspect of the present invention
In the embodiment of FIG. 3, in the case of the configuration in which the central axis of the spray capillary is inclined with respect to the central axis of the ion introduction pore,
As shown in the cross-sectional view of the electrostatic spray ion source showing an example in which the barrier is changed in direction, the barrier 20a may be changed in direction.

【0011】図4は本発明の第3の実施例を示す図であ
り、障壁の外壁面形状に曲率を持たせ、噴流の外周部の
みをイオン導入細孔へと収束させる静電噴霧イオン源の
断面図を示す。障壁の形状は、図1から図3に示したよ
うに板状あるいはブロック状でも良いが、図4に示すよ
うに、障壁20bの外壁面形状を円形あるいは楕円形あ
るいは流線型など曲率をもたせ、噴霧用ガスの流れを制
御することにより、噴流中心の粒径の大きな液滴を障壁
20bに当てて消滅させ、噴流の外周部に存在する粒径
の小さな液滴が多く得られる部分だけをイオン導入細孔
15aに収束させることができ、高感度化が達成でき
る。
FIG. 4 is a diagram showing a third embodiment of the present invention, in which an electrostatic spray ion source in which the outer wall surface of the barrier wall has a curvature so that only the outer peripheral portion of the jet converges to the ion introduction pores. FIG. The shape of the barrier may be plate-like or block-like as shown in FIGS. 1 to 3, but as shown in FIG. 4, the outer wall surface of the barrier 20b is made to have a curvature such as a circle, an ellipse, or a streamline, and sprayed. By controlling the flow of the working gas, the large-diameter droplets at the center of the jet flow are made to hit the barrier 20b and disappear, and only the portion of the outer periphery of the jet where many small-diameter droplets are obtained is ion-introduced. It can be converged to the pores 15a, and high sensitivity can be achieved.

【0012】図5は、本発明の第4の実施例を示す図で
あり、障壁を糸あるいは棒あるいはそれらの集合体より
構成した静電噴霧イオン源の断面図を示す。図5に示す
ように、軸の方向ベクトルが重力の方向に成分を持つよ
うに配置された糸や棒、あるいはそれらの集合体で障壁
20cを構成しても良い。このような構成にすることに
より、障壁20cに溜った溶液が糸あるいは棒を伝わっ
て流れ去るため、噴霧が不安定になることが避けられ
る。さらに、図5に示した構成では、糸あるいは棒の末
端に試料溶液を回収する機構を設けてもよい。この、溶
液を回収する機構を設けた構成を表すブロック図を図6
に示す。イオン源より噴霧された溶液は、一部分障壁2
0cに当り、糸あるいは棒を伝わって重力方向に流れ去
る。この、糸あるいは棒の末端にフラクションコレクタ
やビーカー等の回収容器22を設け、溶液を回収する。
この、回収容器22により回収した溶液を、光検出器2
3を用いて更に分析しても良い。また、図6中に記載し
たように、糸あるいは棒を伝わって流れる溶液を、直接
光検出器23へと導入しても良い。試料分子を検出する
機構と障壁を駆動する機構とを設け、液体クロマトグラ
フからの溶出液中に試料分子が含まれる場合にのみ障壁
を除去し、質量分析計へとイオンを導入しても良い。こ
の構成にすることにより、試料分子が分析できる場合に
のみ測定が行われるので、細孔の温度変化や細孔付近の
汚れなどが軽減され、また、データ処理装置に蓄えられ
るデータ量も少なくて済む。
FIG. 5 is a view showing a fourth embodiment of the present invention, and is a sectional view of an electrostatic spray ion source in which a barrier is constituted by threads, rods or an assembly thereof. As shown in FIG. 5, the barrier 20c may be formed by threads or rods arranged such that the axial direction vector has a component in the direction of gravity, or an assembly thereof. With such a configuration, the solution accumulated in the barrier 20c flows off along the thread or the rod, and thus the instability of the spray can be avoided. Further, in the configuration shown in FIG. 5, a mechanism for collecting the sample solution may be provided at the end of the thread or rod. FIG. 6 is a block diagram showing the configuration provided with a mechanism for collecting the solution.
Shown in. The solution sprayed from the ion source has a partial barrier 2
When it hits 0c, it travels along the thread or rod and flows away in the direction of gravity. A collection container 22 such as a fraction collector or a beaker is provided at the end of the thread or rod to collect the solution.
The solution recovered by the recovery container 22 is used as the photodetector 2
3 may be used for further analysis. Further, as described in FIG. 6, the solution flowing along the thread or the rod may be directly introduced into the photodetector 23. A mechanism for detecting the sample molecule and a mechanism for driving the barrier may be provided, the barrier may be removed only when the sample molecule is contained in the eluate from the liquid chromatograph, and the ions may be introduced into the mass spectrometer. . With this configuration, the measurement is performed only when the sample molecule can be analyzed, so that the temperature change of the pores and the contamination around the pores are reduced, and the amount of data stored in the data processing device is small. I'm done.

【0013】図7は、本発明の第5の実施例である、液
体クロマトグラフからの溶出液を光検出器で分析し、信
号が得られた場合に障壁を駆動する構成を示すブロック
図である。液体クロマトグラフからの溶出液を光検出器
へと導入する。スプリッターを設けて、溶液の一部だけ
をイオン源に導入する構成の場合には、図7に示したよ
うに、スプリッターで分割後、溶液を光検出器へと導入
しても良い。光検出器からの信号は信号ライン5cによ
り、障壁20d、質量分析部、データ処理装置へと送ら
れる。光検出器からの信号により、障壁20dを駆動
し、また、質量分析部及びデータ処理装置を作動させイ
オンの検出が行われる。図8に、図7に示した構成の障
壁部分の一例を示す構造図を示す。可動する障壁20d
と、可動部分を支持する障壁支持部24より構成され
る。溶媒だけが噴霧細管11に導入されている場合は、
図8に示したように、障壁20dによりイオン導入細孔
15aが覆われる。光検出器からの信号が送られて来る
と、障壁が除去され、イオンがイオン導入細孔15aよ
り取り込まれると同時に、質量分析部、イオン検出器、
データ処理装置が作動し、分析が行われる。この、試料
分子を検出する機構と障壁を駆動する機構とを設ける構
成は、静電噴霧法に限らず、他のスプレーイオン化法、
例えば、大気圧化学イオン化法、大気圧スプレーイオン
化法等にも有効である。
FIG. 7 is a block diagram showing a fifth embodiment of the present invention, in which the eluate from a liquid chromatograph is analyzed by a photodetector and a barrier is driven when a signal is obtained. is there. The eluate from the liquid chromatograph is introduced into the photodetector. In the case of a configuration in which a splitter is provided and only a part of the solution is introduced into the ion source, the solution may be introduced into the photodetector after being split by the splitter as shown in FIG. The signal from the photodetector is sent to the barrier 20d, the mass spectrometric section, and the data processing device by the signal line 5c. The barrier 20d is driven by the signal from the photodetector, and the mass spectrometric unit and the data processing device are operated to detect ions. FIG. 8 is a structural diagram showing an example of the barrier portion having the configuration shown in FIG. Movable barrier 20d
And a barrier support 24 that supports the movable part. When only the solvent is introduced into the spray capillary 11,
As shown in FIG. 8, the ion introduction pore 15a is covered with the barrier 20d. When the signal from the photodetector is sent, the barrier is removed and the ions are taken in through the ion introduction pores 15a, and at the same time, the mass spectrometric unit, the ion detector,
The data processor is activated and the analysis is performed. The configuration in which the mechanism for detecting the sample molecules and the mechanism for driving the barrier are provided is not limited to the electrostatic atomization method, and other spray ionization methods,
For example, it is also effective for the atmospheric pressure chemical ionization method and the atmospheric pressure spray ionization method.

【0014】[0014]

【発明の効果】本発明によれば、静電噴霧により生成し
た液滴の中でも粒径の大きな物がイオン導入細孔の開口
する電極に触れるのを妨げることができる。さらに、障
壁の壁面形状に曲率を持たせることにより、小さな液滴
だけをイオン取り込み細孔から真空部へと取り込むこと
ができる。このため、イオン取り込み細孔の温度が変化
せず、質量分析部においてイオンを安定にかつ強く観測
することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to prevent the liquid droplets generated by electrostatic spraying having a large particle diameter from coming into contact with the electrodes having the ion introduction pores. Furthermore, by giving the wall shape of the barrier wall a curvature, only small droplets can be taken into the vacuum portion from the ion-taking pores. Therefore, the temperature of the ion-incorporating pores does not change, and the ions can be stably and strongly observed in the mass spectrometric section.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の静電噴霧イオン源の断
面図。
FIG. 1 is a sectional view of an electrostatic spray ion source according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の静電噴霧イオン源の断
面図。
FIG. 2 is a sectional view of an electrostatic spray ion source according to a second embodiment of the present invention.

【図3】本発明の第2の実施例において、障壁の方向を
変えて配置した一例を示す静電噴霧イオン源の断面図。
FIG. 3 is a cross-sectional view of an electrostatic spray ion source showing an example in which the direction of the barrier is changed and arranged in the second embodiment of the present invention.

【図4】本発明の第3の実施例の静電噴霧イオン源の断
面図。
FIG. 4 is a sectional view of an electrostatic spray ion source according to a third embodiment of the present invention.

【図5】本発明の第4の実施例の静電噴霧イオン源の断
面図。
FIG. 5 is a sectional view of an electrostatic spray ion source according to a fourth embodiment of the present invention.

【図6】溶液を回収する機構を設けた静電噴霧イオン源
の構成を示すブロック図。
FIG. 6 is a block diagram showing a configuration of an electrostatic spray ion source provided with a mechanism for collecting a solution.

【図7】本発明の第5の実施例の試料分子を検出する機
構と障壁を駆動する機構とを設け質量分析を行う構成を
示すブロック図。
FIG. 7 is a block diagram showing a configuration for performing mass spectrometry by providing a mechanism for detecting sample molecules and a mechanism for driving a barrier according to a fifth embodiment of the present invention.

【図8】本発明の第5の実施例のイオン源部分の一例を
示す断面図。
FIG. 8 is a sectional view showing an example of an ion source portion of a fifth embodiment of the present invention.

【図9】従来の液体クロマトグラフ・質量分析計の構成
を示すブロック図。
FIG. 9 is a block diagram showing the configuration of a conventional liquid chromatograph / mass spectrometer.

【図10】従来の静電噴霧イオン源を備えた液体クロマ
トグラフ・質量分析計の構造を示す断面図。
FIG. 10 is a sectional view showing the structure of a liquid chromatograph / mass spectrometer equipped with a conventional electrostatic atomization ion source.

【図11】静電噴霧により生成される噴流中に含まれる
液滴の、噴流中心からの距離と平均粒径及び粒子数との
関係を示す図
FIG. 11 is a diagram showing the relationship between the distance from the center of the jet and the average particle diameter and the number of particles of droplets contained in the jet generated by electrostatic spraying.

【符号の説明】[Explanation of symbols]

1…液体クロマトグラフ、2…配管、3…イオン源、4
…イオン源用電源、5a、5b、5c…信号ライン、6
…質量分析部、7…排気系、8…イオン検出器、9…デ
ータ処理装置、10…コネクタ、11…噴霧細管、12
…対向電極、13…噴霧用ガス噴出口、14…気化用ガ
ス噴出口、15、15a、15b…イオン導入細孔、1
6…金属メッシュ、17…噴流、18a、18b…電
源、19…差動排気部、20a、20b、20c、20
d…障壁、21…ヒーター、22…回収容器、23…光
検出器、24…障壁支持部、25…スプリッター。
1 ... Liquid chromatograph, 2 ... Piping, 3 ... Ion source, 4
... Ion source power supply, 5a, 5b, 5c ... Signal line, 6
... mass spectrometric section, 7 ... exhaust system, 8 ... ion detector, 9 ... data processing apparatus, 10 ... connector, 11 ... spray tube, 12
... counter electrode, 13 ... atomizing gas jet, 14 ... vaporizing gas jet, 15, 15a, 15b ... ion introduction pores, 1
6 ... Metal mesh, 17 ... Jet flow, 18a, 18b ... Power supply, 19 ... Differential exhaust part, 20a, 20b, 20c, 20
d ... Barrier, 21 ... Heater, 22 ... Recovery container, 23 ... Photodetector, 24 ... Barrier support part, 25 ... Splitter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧 敦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 神原 秀記 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Maki 1-280, Higashi Koikeku, Kokubunji, Tokyo Metropolitan Institute of Hitachi, Ltd. (72) Hideki Kambara 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】液体クロマトグラフから送られてくる試料
溶液を噴霧細管の一端に導入しこの噴霧細管の他端から
静電噴霧させイオンを生成するための静電噴霧イオン
源、この生成したイオンを真空部に導入するためのイオ
ン導入細孔、及びこの導入されたイオンを質量分析する
ための質量分析部を備えた質量分析計において、前記噴
霧細管の先端と前記イオン導入細孔の開口する電極との
間に障壁を設け、静電噴霧により生成された噴流の中心
部が前記イオン導入細孔の開口する電極に接触すること
を妨げることを特徴とする質量分析計。
1. An electrostatic spray ion source for generating ions by introducing a sample solution sent from a liquid chromatograph into one end of a spray capillary and electrostatically spraying from the other end of the spray capillary, and the generated ions. In a mass spectrometer equipped with an ion-introducing pore for introducing into the vacuum part, and a mass spectrometer for mass-analyzing the introduced ion, the tip of the spray capillary and the opening of the ion-introducing pore are opened. A mass spectrometer characterized in that a barrier is provided between the electrode and the electrode to prevent the central part of the jet generated by electrostatic spraying from coming into contact with the electrode where the ion introduction pore is opened.
【請求項2】前記障壁の断面形状は、前記噴流の外周部
を前記イオン取り込み細孔周辺へ収束させるために、円
形、あるいは楕円形、あるいは流線形など、外周に曲率
を有していることを特徴とする請求項1に記載の質量分
析計。
2. The cross-sectional shape of the barrier has a curvature on the outer periphery such as a circle, an ellipse, or a streamline in order to converge the outer periphery of the jet flow to the periphery of the ion intake pores. The mass spectrometer according to claim 1, wherein:
【請求項3】前記障壁は、少なくとも1つの糸状あるい
は棒状の物体より構成されることを特徴とする請求項1
あるいは請求項2に記載のいずれかの質量分析計。
3. The barrier is composed of at least one thread-shaped or rod-shaped object.
Alternatively, the mass spectrometer according to claim 2.
【請求項4】前記障壁を構成する前記糸状あるいは棒状
物体の中心軸のベクトルが重力方向成分を有することを
特徴とする請求項3に記載の質量分析計。
4. The mass spectrometer according to claim 3, wherein the vector of the central axis of the thread-shaped or rod-shaped object forming the barrier has a gravity direction component.
【請求項5】前記糸状あるいは棒状物体の末端に、前記
糸状あるいは棒状物体を伝わって流れ落ちて来る前記試
料溶液を回収する機構を設けたことを特徴とする請求項
3あるいは請求項4に記載のいずれかの質量分析計。
5. The mechanism according to claim 3 or 4, wherein a mechanism for collecting the sample solution flowing down through the thread-shaped or rod-shaped object is provided at the end of the thread-shaped or rod-shaped object. Any mass spectrometer.
【請求項6】前記障壁を前記静電噴霧イオン源の他の部
分とは独立して加熱する機構を設けたことを特徴とする
請求項1から請求項5に記載のいずれかの質量分析計。
6. The mass spectrometer according to claim 1, further comprising a mechanism for heating the barrier independently of other portions of the electrostatic spray ion source. .
【請求項7】前記障壁に対し、イオン源の他の部分とは
独立して電位を印加する機構を設けたことを特徴とする
請求項1から請求項6に記載のいずれかの質量分析計。
7. The mass spectrometer according to claim 1, further comprising a mechanism for applying a potential to the barrier independently of other portions of the ion source. .
【請求項8】試料分子を検出する機構と前記障壁を駆動
する機構を設け、検出信号に応じて前記障壁を駆動させ
ることを特徴とする請求項1から請求項7に記載のいず
れかの質量分析計。
8. The mass according to claim 1, wherein a mechanism for detecting a sample molecule and a mechanism for driving the barrier are provided, and the barrier is driven in accordance with a detection signal. Analyzer.
JP25251392A 1992-09-22 1992-09-22 Mass spectrometer Expired - Lifetime JP3238488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25251392A JP3238488B2 (en) 1992-09-22 1992-09-22 Mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25251392A JP3238488B2 (en) 1992-09-22 1992-09-22 Mass spectrometer

Publications (2)

Publication Number Publication Date
JPH06102246A true JPH06102246A (en) 1994-04-15
JP3238488B2 JP3238488B2 (en) 2001-12-17

Family

ID=17238419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25251392A Expired - Lifetime JP3238488B2 (en) 1992-09-22 1992-09-22 Mass spectrometer

Country Status (1)

Country Link
JP (1) JP3238488B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854370A (en) * 1994-08-10 1996-02-27 Hitachi Ltd Capillary electrophoresis/mass spectrometer
EP0715337A1 (en) 1994-11-28 1996-06-05 Hitachi, Ltd. Mass spectrometry of solution and apparatus therefor
US6997031B2 (en) 2003-05-01 2006-02-14 Waters Corporation Fraction collector for composition analysis
JP2009087594A (en) * 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology Ion beam generator
JP2010169454A (en) * 2009-01-21 2010-08-05 Hitachi High-Technologies Corp Mass spectrometer
CN107703204A (en) * 2017-09-26 2018-02-16 中国检验检疫科学研究院 The quick determination method of banned pesticides in a kind of pesticide product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854370A (en) * 1994-08-10 1996-02-27 Hitachi Ltd Capillary electrophoresis/mass spectrometer
EP0715337A1 (en) 1994-11-28 1996-06-05 Hitachi, Ltd. Mass spectrometry of solution and apparatus therefor
US6121608A (en) * 1994-11-28 2000-09-19 Hitachi, Ltd. Mass spectrometry of solution and apparatus
US6252225B1 (en) 1994-11-28 2001-06-26 Hitachi, Ltd. Mass spectrometry of solution and apparatus therefor
US6437327B2 (en) 1994-11-28 2002-08-20 Hitachi, Ltd. Mass spectrometry of solution and apparatus therefor
US6997031B2 (en) 2003-05-01 2006-02-14 Waters Corporation Fraction collector for composition analysis
US7086279B2 (en) 2003-05-01 2006-08-08 Waters Investments Limited Fraction collector for composition analysis
JP2009087594A (en) * 2007-09-28 2009-04-23 National Institute Of Advanced Industrial & Technology Ion beam generator
JP2010169454A (en) * 2009-01-21 2010-08-05 Hitachi High-Technologies Corp Mass spectrometer
CN107703204A (en) * 2017-09-26 2018-02-16 中国检验检疫科学研究院 The quick determination method of banned pesticides in a kind of pesticide product

Also Published As

Publication number Publication date
JP3238488B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
US5285064A (en) Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
US4968885A (en) Method and apparatus for introduction of liquid effluent into mass spectrometer and other gas-phase or particle detectors
US6943346B2 (en) Method and apparatus for mass spectrometry analysis of aerosol particles at atmospheric pressure
JP3993895B2 (en) Mass spectrometer and ion transport analysis method
JP4234441B2 (en) Ionization method and apparatus for specimen and in-use ion source probe
US4999493A (en) Electrospray ionization interface and method for mass spectrometry
US7247495B2 (en) Mass spectrometer method and apparatus for analyzing a sample in a solution
JP4178110B2 (en) Mass spectrometer
JP3904322B2 (en) Analysis equipment
JP4657451B2 (en) Vortex gas flow interface for electrospray mass spectrometry
JP2000057989A (en) Mass spectrometer and mass spectrometry
JPS583592B2 (en) Method and device for introducing sample into mass spectrometer
JPH0854372A (en) Device for converting solute sample into ionized molecule
US7561268B2 (en) Evaporative light scattering detector
JP2013007639A (en) Liquid chromatography mass spectrometer device
JPH07239319A (en) Liquid chromatography / mass spectrometer device
GB2203241A (en) Introduction of effluent into mass spectrometers and other gas-phase or particle detectors
JP3238488B2 (en) Mass spectrometer
EP1004878A1 (en) Mass spectrometer method and apparatus for analyzing a sample in a solution
EP0362813B1 (en) Ion analyzer
JP3620120B2 (en) Method and apparatus for mass spectrometry of solutions
JP3147654B2 (en) Ion source
JP2005197141A (en) Mass spectroscopy system
GB2240176A (en) Introduction of affluent into mass spectrometers and other gas-phase or particle detectors
JP3238450B2 (en) Mass spectrometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

EXPY Cancellation because of completion of term