JPS6184343A - Manufacture of member made of aluminum alloy - Google Patents
Manufacture of member made of aluminum alloyInfo
- Publication number
- JPS6184343A JPS6184343A JP20564084A JP20564084A JPS6184343A JP S6184343 A JPS6184343 A JP S6184343A JP 20564084 A JP20564084 A JP 20564084A JP 20564084 A JP20564084 A JP 20564084A JP S6184343 A JPS6184343 A JP S6184343A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- forging
- aluminum alloy
- extrusion
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
Lt−上段五Mj131
本発明は、粉末成形法によるアルミニウム合金製部材の
製造方法に係り、特に熱間鍛造が困難な組成範囲のアル
ミニウム合金部材を製造する方法に関するものである。[Detailed Description of the Invention] Lt-Upper Stage 5 Mj131 The present invention relates to a method of manufacturing an aluminum alloy member by a powder forming method, and particularly relates to a method of manufacturing an aluminum alloy member having a composition range in which hot forging is difficult. be.
側米且薯
自動車用内燃機関では、車体の軽量化を計るためにアル
ミニウム合金材料が積極的に採用されており、特にコネ
クチングロッド、ロッカアーム、ピストン等の運動部品
をアルミニウム合金月利で形成することは、慣性力を軽
減する意味でも効果的である。しかるに、斯様な運動部
品は高温下の苛酷な条件で使用されるため、耐熱性が良
好で、高強痕、高ヤング率の材IIを使用する必要があ
り、近時、かかる特性を得るために、大きな自由度で合
金元素を添加し得る粉末冶金製品が採用されつつある。In internal combustion engines for automobiles, aluminum alloy materials are actively used to reduce the weight of the vehicle body, and in particular, moving parts such as connecting rods, rocker arms, and pistons are made of aluminum alloy material. is also effective in reducing inertial force. However, since such moving parts are used under harsh conditions at high temperatures, it is necessary to use material II with good heat resistance, high scratch marks, and high Young's modulus. Powder metallurgy products, which allow alloying elements to be added with a large degree of freedom, are being adopted.
その様な粉末冶金製品用の材料として、本出願人は、特
願昭58−239429号において、アルミニウムに複
数種の元素を添加することによって、耐熱性、耐摩耗性
、ヤング率、断熱性の向上を51つに高鉄含有量のアル
ミニウム合金を提案した。As a material for such powder metallurgy products, the present applicant proposed in Japanese Patent Application No. 58-239429 that the heat resistance, abrasion resistance, Young's modulus, and heat insulation properties are improved by adding multiple types of elements to aluminum. An aluminum alloy with high iron content was proposed to improve the quality of the product.
が ゛しようとする化1篇
斯かる組成のアルミニウム合金粉末から所定の成形品を
得るには、熱間鍛造を行わなG1ればならないが従来の
展延性の良好なアルミニウム合金を加工するための鍛造
方案では、鍛造効宋を上げるべく圧下率を十分に大きく
していたため、太きt1フラッシュ(ぼり)が生じ、歩
留りは高々55%であって、従来の加工方法は採用し難
い。In order to obtain a specified molded product from aluminum alloy powder with such a composition, it is necessary to perform hot forging (G1), but conventional methods for processing aluminum alloys with good malleability In the forging method, the reduction rate was set sufficiently high to increase the forging efficiency, resulting in a thick t1 flash, and the yield was at most 55%, making it difficult to adopt conventional processing methods.
その理由は、第一に、鉄を含むアルミニウム合金では、
FeAesなる釘状晶の化合物が生じ、これが展延性を
阻害するため、特にFe≧10@吊%の合金は、その鍛
造加工性が悪く、クラックの発生による歩留り低下も問
題となるからであり、第二に、鉄を多量に含む廃棄物(
スクラップ材)は、再利用価値が低いからである。The reason is that, firstly, in aluminum alloys containing iron,
This is because a nail-like crystal compound called FeAes is generated and this inhibits malleability, so alloys with Fe≧10@hang% have poor forging workability, and a decrease in yield due to the occurrence of cracks is also a problem. Second, waste containing large amounts of iron (
This is because scrap materials have low reuse value.
歩留りを向上させる加工法として完全密閉型鍛造法を採
用することも考えられるが、甲純形状品はとも角、異形
品を加工する場合、金型構造が複雑化するとともに金型
の寿命が低下して、製品コストが」−昇するため、この
方法は、実用化には至っていないのが現状である。Completely closed die forging may be adopted as a processing method to improve yield, but when processing non-standard or irregularly shaped products, the mold structure becomes complicated and the life of the mold decreases. At present, this method has not been put into practical use because the product cost increases.
11]淵−タ邂−ン11鮨玉艮市m111本発明は、斯
かる技術的背明の下に創案されたものであり、その狙い
は、熱間鍛造成形が困難な組成範囲のアルミニウム合金
粉末から、高歩留りで最終鍛造成形品を得る点にある。11] Fuchi Tanen 11 Sushi Tamaraichi m111 The present invention was created with this technical background in mind, and its aim is to produce an aluminum alloy with a composition range that is difficult to hot forge. The goal is to obtain a final forged product from powder at a high yield.
本発明によるアルミニウム合金製部材の1lIJ造方法
は、熱間鍛造が困難な組成範囲のアルミニウム合金粉末
を圧粉成形して密度比70%になし、その圧粉成形品を
温度240〜430℃に加熱して、押出し成形品の断面
積が、最終鍛造成形品の外形投影の75〜95%になる
様に熱間押出し加工を行い、押出し成形品を圧下率5〜
25%で熱間鍛造成形することを特徴としている。The 11IJ manufacturing method of aluminum alloy members according to the present invention involves compacting aluminum alloy powder with a composition range that is difficult to hot forge to a density ratio of 70%, and heating the compacted product to a temperature of 240 to 430°C. The extruded product is heated and hot extruded so that the cross-sectional area of the extruded product becomes 75 to 95% of the external projection of the final forged product, and the extruded product is rolled at a reduction rate of 5 to 95%.
It is characterized by hot forging at 25%.
熱間鍛造成形性の悪いアルミニウム合金粉末を用い、熱
間型鍛造法によって成形品を得るためには、型鍛造時の
圧F率(圧下率R%−(素材肉厚−成形肉厚)xlOO
/素材肉厚)を小さくするのが好ましい。圧下率を小さ
くすることによって、フラッシュ量が減少し、クラック
が生じ難くなるため、歩留りの向1ニを期待することが
できる。In order to obtain a molded product by the hot die forging method using aluminum alloy powder with poor hot forging formability, the reduction ratio (reduction ratio R% - (material wall thickness - molding wall thickness) xlOO) during die forging is required.
/material thickness) is preferably made small. By reducing the rolling reduction rate, the amount of flash is reduced and cracks are less likely to occur, so an improvement in yield can be expected.
本発明は、斯かる観点の下で創案されたものであり、第
一工程では、アルミニウム合金粉末を、密度比(汁粉密
度と、圧粉体と同一組成の物質の真密度との比)が70
%以I−になる様に圧粉成形(冷間静水圧プレス成形法
または金型汁縮成形法)を行う。ここで、密度比を70
%以上にする理由は、70%未満では、次工程へ向けて
の成形品の取扱いが困難になるからである。但し、本工
程における成形性を考慮すると85%以下が好ましい。The present invention was devised from such a point of view, and in the first step, aluminum alloy powder is heated so that the density ratio (the ratio between the powder density and the true density of a substance having the same composition as the green compact) is 70
Powder compaction (cold isostatic press molding method or mold liquid compression molding method) is performed so that the powder is less than % I-. Here, the density ratio is 70
% or more because if it is less than 70%, it will be difficult to handle the molded product for the next process. However, in consideration of moldability in this step, it is preferably 85% or less.
次の第二工程では、圧粉成形品を、240〜430℃に
加熱した後、該温度範囲で、第一段階の加工である熱間
押出し加工を行って、例えば第1図図示のごとき押出し
成形品(]ネクブングロツド用)1を得る。その際、押
出し成形品1の断面積(押出し方向に対して直角な方向
の断面積)Slを、第二段階の加工である熱間型鍛造に
よって得るべき鍛造成形品4(第3図参照)の外形投影
面積S2の15〜95%とする。加熱温度を240〜4
30℃にする理由は、240℃未満では、変形抵抗が大
きく、押出し加工が困難になり、430℃を越えると組
織の粗大化が生じて製品における所期の機械的特性が得
られなくなるからである。なお、加熱素度は、特に30
0〜400℃にするのが好ましい。その理由は、300
℃未満では、鉄含有量が増加した合金粉末においては、
粉末硬葭が高< 1.にるため、焼結性が悪化し、40
0℃を越えると、添加元素が多い合金粉末を使用した場
合、共晶温度が下がるためバーニング(burning
)を起こし易く、焼結性が悪化するからである。また、
面積比(S1/5t)X100を、75〜95%にする
理由は、75−未満では型鍛造で生ずるフラッシュ量が
増えて歩留り改善効果がなく、95%を越えると、鍛造
成形品4で必要な鋭角部の形状を押出し加工の際に飼与
する必要があり、押出し成形品1にクラックや彎曲が生
じ易く、加工が困ガになるからである。In the next second step, the powder molded product is heated to 240 to 430°C, and then hot extrusion processing, which is the first stage processing, is performed in the temperature range, for example, as shown in Figure 1. A molded product (for Nexbun Grotto) 1 is obtained. At that time, the cross-sectional area (cross-sectional area in the direction perpendicular to the extrusion direction) Sl of the extruded product 1 is the forged product 4 to be obtained by hot die forging, which is the second stage of processing (see Figure 3). 15 to 95% of the external projected area S2. Heating temperature 240~4
The reason for setting it at 30°C is that if it is less than 240°C, the deformation resistance will be large and extrusion processing will be difficult, and if it exceeds 430°C, the structure will become coarse and the desired mechanical properties of the product will not be obtained. be. In addition, the heating element is particularly 30
The temperature is preferably 0 to 400°C. The reason is 300
Below ℃, in alloy powders with increased iron content,
Powdered hardwood is high<1. The sinterability deteriorates due to
When the temperature exceeds 0°C, if alloy powder with a large number of added elements is used, the eutectic temperature decreases, causing burning.
) is likely to occur, resulting in poor sinterability. Also,
The reason why the area ratio (S1/5t) This is because it is necessary to maintain the shape of the acute angle portion during extrusion processing, and the extrusion molded product 1 is likely to be cracked or curved, making processing difficult.
第三工程では、押出し成形品1を而2で切断して、肉厚
t1なる予備成形品3を得る。In the third step, the extrusion molded product 1 is cut at 2 to obtain a preformed product 3 having a wall thickness of t1.
この切断方向は、押出し方向に沿う材料の流れ線に対し
て直角であり、次工程における鍛造圧下方向が該流れ線
方向と一致するため、鍛造成形性が極めて良好である。This cutting direction is perpendicular to the flow line of the material along the extrusion direction, and the forging reduction direction in the next step coincides with the flow line direction, so forging formability is extremely good.
そして、第四工程では鍛造温度に加熱後、圧下率((1
:t T2) X 100/ tt ;但し、t2は
鍛造成形品4の肉厚である)が、5〜25%になる様に
熱間鍛造を行って鍛造成形品4を得る。圧下率を5〜2
5%にする理由は、圧ト率が5%未満であれば、高歩留
りを期待できるものの、金型角隅部への自流れが不十分
になるとともに肉1&き部5の成形が困lIlになるか
らであり、25%を越えると、クラック発生、フラッジ
]吊の増大により歩留りが低下Mるからである。In the fourth step, after heating to the forging temperature, the reduction rate ((1
:t T2) Reduce the reduction rate to 5-2
The reason for setting it to 5% is that if the indentation ratio is less than 5%, a high yield can be expected, but the free flow to the corners of the mold will be insufficient and it will be difficult to form the flesh 1 & crevice 5. This is because if it exceeds 25%, the yield decreases due to the occurrence of cracks and an increase in sagging.
次いで、鍛造成形品4の外周に突出しているフラッジコ
ロを除去して工程が完結する。Next, the fludge rollers protruding from the outer periphery of the forged product 4 are removed to complete the process.
斯かる工程によって、内燃機関用部品として優れた強石
特竹を有する鍛造成形品を得るために使用するアルミニ
ウム合金粉末の望ましい組成は、下記の通りである。A desirable composition of the aluminum alloy powder used to obtain a forged molded product having a strong stone special bamboo excellent as an internal combustion engine part through such a process is as follows.
4≦Fe≦33川間%、 10≦81≦30重量%
08≦Cu≦ 7.5重間%、 0.5≦H(1≦ 3
55重量残部−AJ
以下、各元素の添加理由について述べる。4≦Fe≦33 Kawama%, 10≦81≦30% by weight
08≦Cu≦7.5% weight, 0.5≦H (1≦3
55 Weight balance - AJ The reasons for adding each element will be described below.
(a)Fe:鉄は高温強度、断熱性およびヤング率を向
上させるために必要である。但し、4重量%を下回ると
、高温強度はある稈[確保できるものの、高温強酸が不
足し、33重量%を一ト回ると、密度が増して軽量化が
損なわれ、その上、熱間押出し加工、熱間鍛造等におい
て成形性が悪化する。(a) Fe: Iron is necessary to improve high temperature strength, heat insulation and Young's modulus. However, if it is less than 4% by weight, the culm will have some high-temperature strength [but the high-temperature strong acid will be insufficient, and if it exceeds 33% by weight, the density will increase and weight reduction will be impaired, and in addition, hot extrusion will be difficult. Formability deteriorates during processing, hot forging, etc.
また、ヤング率は、鉄の添加間の増加に応じて向上する
が、前記密度を考慮して、鉄の添加間は前記上限値に制
限される。Further, the Young's modulus improves as the time between additions of iron increases, but in consideration of the density, the time between additions of iron is limited to the above upper limit.
(b)Si:珪素は、鉄単独添加による耐摩耗性の不足
を補い、また、ヤング率を向上させる上に有効である。(b) Si: Silicon is effective in compensating for the lack of wear resistance caused by the addition of iron alone and in improving Young's modulus.
但し、10重量%を下回ると、耐摩耗性を改善すること
ができず、300重量を上回ると、前記成形性が悪化し
、構造部材にクラックが発生し易い。ヤング率は、鉄と
同様に、珪素添加稙の増加に応じて向上するが、成形性
を前出して前記上限値に制限される。However, if it is less than 10% by weight, the wear resistance cannot be improved, and if it exceeds 300% by weight, the moldability deteriorates and cracks are likely to occur in the structural member. Like iron, the Young's modulus improves as the amount of silicon added increases, but it is limited to the above-mentioned upper limit in consideration of formability.
(C)Cu:銅は、鉄、珪素添加による焼結性および前
記成形性の悪化を補うために添加される。但し、0,8
重量%を下回ると、焼結性の改善おJ:び熱処理による
強度改善の効果がなく、7.5重間%を上回ると、高温
強度がlll]害される。(C) Cu: Copper is added to compensate for deterioration in sinterability and formability caused by addition of iron and silicon. However, 0.8
If it is less than 7.5% by weight, there is no effect of improving sinterability or strength by heat treatment, and if it exceeds 7.5% by weight, high-temperature strength is impaired.
(d)No:マグネシウムは、銅と同様の目的で添加さ
れるもので、05重量%を下回ると、焼結性の改善およ
び熱処理による強度改善の効果がなく、3.5重鎖%を
上回ると、高温強度が阻害される。(d) No: Magnesium is added for the same purpose as copper; if it is less than 0.5% by weight, there is no effect of improving sinterability or strength by heat treatment, and if it exceeds 3.5% by weight , high temperature strength is inhibited.
以上の各元素の他に、少なくともマンガン(l(n)曲
鉛(Zn)、リチウム(1−i)の一種を、1.5<H
n〈5.0重品%、 0.5≦’b5
.0重石%の範囲で添加すると効果的である。In addition to the above elements, at least one type of manganese (l(n)), curved lead (Zn), and lithium (1-i) is added at 1.5<H
n〈5.0 heavy goods%, 0.5≦'b5. It is effective to add within the range of 0 weight percent.
その添加理由は、下記のとおりである。The reason for its addition is as follows.
(e)on:アトマイズ粉末製造においては、アルミニ
ウム合金粉末の冷却速度が最も大きくなるように設定す
る必要があるが、量産性を前歯した場合103〜10′
℃/secが限度である。(e) on: In the production of atomized powder, it is necessary to set the cooling rate of aluminum alloy powder to the maximum, but if mass production is considered as
The limit is °C/sec.
この冷却速度の範囲において、Fe≦6重開%ではAl
1−Fe−3i系金属間化合物が熱間押出し加工工程で
充分に分断されると共にその化合物の析出形態が11状
となり、熱間変形抵抗が増大するため高速熱間鍛造が不
可能となる。In this cooling rate range, if Fe≦6%, Al
The 1-Fe-3i intermetallic compound is sufficiently divided in the hot extrusion process, and the precipitation form of the compound becomes 11-shaped, increasing hot deformation resistance and making high-speed hot forging impossible.
マンガンは、前記金属間化合物の析出形態をコントロー
ルするために有効である。すなわち、マンガンを前記特
定聞添加することによって、11状の^13 [e相お
J:びβ−All、FeSi相に代えて。Manganese is effective for controlling the precipitation form of the intermetallic compound. That is, by adding manganese in the above specified phase, the 11-like ^13 [e phase and J: and β-All, instead of the FeSi phase.
塊状のA Jl、(Fe、Hn)相および(X −AJ
、、(Fe、Hn)。Massive A Jl, (Fe, Hn) phase and (X -AJ
,, (Fe, Hn).
Si相を優先的に析出さゼ、これにより高速熱間鍛造性
を良好にし、構造部材の強度を向上させることができる
。The Si phase is preferentially precipitated, thereby improving high-speed hot forging properties and improving the strength of the structural member.
但し、1.5重量%以下では、前記効果が得られず、5
.0重量以上では、熱間変形抵抗が増大し、高速熱間鍛
造が困難となる。However, if it is less than 1.5% by weight, the above effect cannot be obtained, and 5% by weight or less cannot be obtained.
.. If the weight is 0 or more, hot deformation resistance increases and high-speed hot forging becomes difficult.
(f) Zn: 200℃以下の温度条件下で使用さ
れる部材の強度を向上させるためには、その部材に16
処理を施して珪素、銅、マグネシウムによる溶体化析出
効果を利用することが有効である。(f) Zn: In order to improve the strength of a member used under temperature conditions of 200°C or less, it is necessary to add 16
It is effective to perform a treatment to utilize the solution precipitation effect of silicon, copper, and magnesium.
亜鉛は、上記溶体化析出効果を向上させるために添加さ
れる。但し、0.5重量1%を下回ると、前記効果が得
られず、10重量%を上回ると、熱間変形抵抗が増大し
、高速熱間鍛造が困難となる。Zinc is added to improve the solution precipitation effect. However, if it is less than 0.5% by weight and 1% by weight, the above effects cannot be obtained, and if it exceeds 10% by weight, hot deformation resistance increases and high-speed hot forging becomes difficult.
従来、亜鉛を右動元素として添加する場合は、アルミニ
ウム合金に含まれる珪素は不純物どして扱われるが、本
発明合金においては、その製造に当たり粉末冶金法を適
用することによって、亜鉛または金型圧縮成形法により
、密度比15%、直径225mm1長さ300#の押出
し加工用素材を成形する。Conventionally, when zinc is added as a right-handed element, the silicon contained in the aluminum alloy is treated as an impurity. However, in the alloy of the present invention, by applying powder metallurgy during its manufacture, the silicon contained in the aluminum alloy is treated as an impurity. A material for extrusion processing with a density ratio of 15%, a diameter of 225 mm, and a length of 300# is molded by compression molding.
冷間静水圧プレス成形法においては、ゴム性チコープ内
に合金粉末を入れ、1.5〜3.Ot/c#i稈度の静
水圧下で成形を行い、金型圧縮成形においては、金型中
に合金粉末を入れて、常温大気中で、1.5〜3.Ot
、/ff1Pi!麻の圧力下で成形を行う。In the cold isostatic press molding method, alloy powder is placed in a rubber tycope and 1.5 to 3. Molding is performed under hydrostatic pressure with a culmness of Ot/c#i, and in mold compression molding, the alloy powder is placed in the mold and the molding temperature is 1.5 to 3. Ot
,/ff1Pi! Shaping is done under pressure from hemp.
各押出し加工用素材を、炉内温度350℃の均熱炉に設
置して10時間保持し、次いで、各押出し加工用素材に
熱間押出し加工を施して、鍛造用素材(断面積−8,)
をlit造する。Each extrusion material was placed in a soaking furnace with an internal temperature of 350°C and held for 10 hours, and then hot extrusion was performed on each extrusion material (cross-sectional area -8, )
Build a lit.
この場合の押出し方式は、直接押出しく前方押出し)、
間接押出しく後方押出し)のいずれでもよいが、押出し
比は5以上を必要とする。押出し比が5以下では、強度
のばらつぎが大きくなるので好ましくない。押出し加工
用素材の温度は、240〜430℃に設定される。24
0℃を下回ると、素材の変形抵抗が大きくなり押出し加
[1が悪化し、430℃を1回ると、組織の粗大化が起
り、高−13−八rJ
強度品が得られない。押出し加工後においては、鍛造用
素材を、空冷または水冷により所定の冷却速度で冷却す
る。In this case, the extrusion method is direct extrusion (forward extrusion),
Either indirect extrusion or backward extrusion may be used, but the extrusion ratio must be 5 or more. If the extrusion ratio is less than 5, it is not preferable because the variation in strength becomes large. The temperature of the extrusion material is set at 240 to 430°C. 24
When the temperature is lower than 0°C, the deformation resistance of the material increases and the extrusion load [1] deteriorates, and when the temperature exceeds 430°C once, the structure becomes coarse and a high -13-8 rJ strength product cannot be obtained. After the extrusion process, the forging material is cooled at a predetermined cooling rate by air cooling or water cooling.
その後、各鍛造用素材を460〜470℃に加熱して、
加工速度75m/Sec (ジュラルミン鍛造とほぼ
同一加工速度)のクランクプレスを用いて、該鍛造用素
材に圧下率Rで高速熱間鍛造を施した。After that, each forging material was heated to 460-470°C,
The forging material was subjected to high-speed hot forging at a rolling reduction ratio R using a crank press with a processing speed of 75 m/Sec (almost the same processing speed as duralumin forging).
表1は、前記の如き加工を行った本発明例■、■、■、
■、■と、従来の鍛造方案ニテ、I、II、■、■、■
にそれぞれ対応する合金粉末を成形した例1、it、
iii 、 iv、 vとを比較したものである。Table 1 shows examples of the present invention that were processed as described above.
■、■、Conventional forging method Nite、I、II、■、■、■
Example 1, it, in which alloy powders corresponding to
This is a comparison of iii, iv, and v.
本発明方法では、鍛造成形品の外形投影面積S2に対す
る鍛造用素材(押出し成形品)の断面積S1の割合が、
従来方法のそれに比して高く、それ故鍛造圧F率Rが従
来方法よりも低くなっている。その結果、従来方法で、
11、iii 、 ivにおいてクラックが生じたのに
対し、本発明方法ではクラック発生はなく、歩留りが著
しく向上することが判る。In the method of the present invention, the ratio of the cross-sectional area S1 of the forging material (extrusion molded product) to the external projected area S2 of the forged product is
This is higher than that of the conventional method, and therefore the forging pressure F ratio R is lower than that of the conventional method. As a result, with the conventional method,
It can be seen that while cracks occurred in samples No. 11, iii, and iv, no cracks occurred in the method of the present invention, and the yield was significantly improved.
発−!![1宋
以上の説明から明らかな様に、本発明方法によれば、熱
間鍛造が困難な組成範囲のアルミニウム合金粉末を用い
ても、熱間型鍛造を行う際にクラックが牛じ轄く、高い
歩留りを期待することができ、コストダウンを達成し得
る。Departure! ! [1st Sung Dynasty] As is clear from the explanation above, according to the method of the present invention, even if aluminum alloy powder with a composition range that is difficult to hot forge is used, cracks are almost never caused during hot die forging. , high yields can be expected and cost reductions can be achieved.
第1図は本発明方法により]ネクブングロツドを成形す
る際の中間成形品である押出し成形品の斜視図、第2図
は該押出し成形品を所定厚さに切断して得た予備成形品
の斜視図、第3図は該予備成形品を熱間型鍛造して得た
鍛造成形品(フラッジ]付き)の斜視図である。
1・・・押出し成形品、2・・・面、3・・・予備成形
品、4・・・鍛造成形品、5・・・肉抜き部、6・・・
フラッシュ。Figure 1 is a perspective view of an extrusion molded product which is an intermediate molded product when molding a neck rod according to the method of the present invention, and Figure 2 is a perspective view of a preformed product obtained by cutting the extrusion molded product to a predetermined thickness. FIG. 3 is a perspective view of a forged product (with a fludge) obtained by hot die forging the preform. DESCRIPTION OF SYMBOLS 1... Extruded product, 2... Surface, 3... Preformed product, 4... Forged product, 5... Lightening part, 6...
flash.
Claims (1)
密度比が70%以上になる様に汁粉成形し、その圧粉成
形品を温度240〜430℃に加熱して熱間押出し加工
を行い、もって押出し成形品の断面積を、最終鍛造成形
品の外形投影面積の75〜95%になし、次いで圧下率
5〜25%で熱間鍛造成形することを特徴とするアルミ
ニウム合金製部材の製造方法。Aluminum alloy powder with a composition range that is difficult to hot forge,
The compacted powder product is heated to a temperature of 240 to 430°C to perform hot extrusion processing, and the cross-sectional area of the extruded product is changed to that of the final forged product. A method for manufacturing an aluminum alloy member, characterized by hot forging to a shape of 75 to 95% of the external projected area, and then hot forging at a reduction rate of 5 to 25%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20564084A JPS6184343A (en) | 1984-10-02 | 1984-10-02 | Manufacture of member made of aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20564084A JPS6184343A (en) | 1984-10-02 | 1984-10-02 | Manufacture of member made of aluminum alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6184343A true JPS6184343A (en) | 1986-04-28 |
Family
ID=16510237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20564084A Pending JPS6184343A (en) | 1984-10-02 | 1984-10-02 | Manufacture of member made of aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6184343A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250902A (en) * | 1988-05-12 | 1990-02-20 | Sumitomo Electric Ind Ltd | Method for forming aluminum alloy for product having large diameter |
WO1992017302A1 (en) * | 1991-04-03 | 1992-10-15 | Sumitomo Electric Industries, Ltd. | Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor |
CN107699747A (en) * | 2017-09-26 | 2018-02-16 | 沈阳航空航天大学 | A kind of high Cu contents Al Si Li Cu casting alloys and preparation method thereof |
-
1984
- 1984-10-02 JP JP20564084A patent/JPS6184343A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0250902A (en) * | 1988-05-12 | 1990-02-20 | Sumitomo Electric Ind Ltd | Method for forming aluminum alloy for product having large diameter |
WO1992017302A1 (en) * | 1991-04-03 | 1992-10-15 | Sumitomo Electric Industries, Ltd. | Rotor made of aluminum alloy for oil pump and method of manufacturing said rotor |
US5368629A (en) * | 1991-04-03 | 1994-11-29 | Sumitomo Electric Industries, Ltd. | Rotor for oil pump made of aluminum alloy and method of manufacturing the same |
CN107699747A (en) * | 2017-09-26 | 2018-02-16 | 沈阳航空航天大学 | A kind of high Cu contents Al Si Li Cu casting alloys and preparation method thereof |
CN107699747B (en) * | 2017-09-26 | 2019-05-21 | 沈阳航空航天大学 | A kind of high Cu content Al-Si-Li-Cu casting alloy and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4867806A (en) | Heat-resisting high-strength Al-alloy and method for manufacturing a structural member made of the same alloy | |
JP3559717B2 (en) | Manufacturing method of engine valve | |
US4853179A (en) | Method of manufacturing heat resistant, high-strength structural members of sintered aluminum alloy | |
EP0535593B1 (en) | Method of manufacturing sintered aluminum alloy parts | |
JP3845035B2 (en) | Method for manufacturing piston for internal combustion engine and piston for internal combustion engine | |
US4889557A (en) | Aluminium alloy having an excellent forgiability | |
JPS6184343A (en) | Manufacture of member made of aluminum alloy | |
JPS6326188B2 (en) | ||
JP4666659B2 (en) | Magnesium alloy forged thin casing and method for manufacturing the same | |
JP3829164B2 (en) | Semi-melt molding material manufacturing method | |
JPH0828493A (en) | Manufacture of aluminum alloy-made scroll | |
JP3320037B2 (en) | FORGED MOLDED PRODUCT AND ITS MANUFACTURING METHOD | |
CN114892051A (en) | Aluminum alloy automobile transmission shaft tube and manufacturing method thereof | |
JPH0689428B2 (en) | Method for producing heat-resistant aluminum alloy having excellent tensile strength, ductility and fatigue strength | |
JPH11277173A (en) | Magnesium alloy-made forged thin box body and manufacture thereof | |
CN110252841A (en) | A kind of manufacturing process of aluminum alloy plate materials | |
JP2001181772A5 (en) | ||
JP2003096524A (en) | Aluminum alloy, piston made of aluminum alloy, and method of producing piston made of aluminum alloy | |
JP2019119926A (en) | Aluminum alloy-made forging engine piston and a manufacturing method therefor | |
JP2004099996A (en) | Process for manufacturing component part of internal-combustion engine | |
JPS6158546B2 (en) | ||
JPS61243138A (en) | Production of structural member made of heat-resistant high-strength al sintered alloy | |
JPS60131945A (en) | High-strength aluminum alloy having superior heat resistance | |
JPH07314118A (en) | Cylinder block and production thereof | |
JPS62188705A (en) | Sintered aluminum alloy bearing member and its production |