JPS6183617A - Oxidation of si by multiple laser beam radiation - Google Patents

Oxidation of si by multiple laser beam radiation

Info

Publication number
JPS6183617A
JPS6183617A JP20092984A JP20092984A JPS6183617A JP S6183617 A JPS6183617 A JP S6183617A JP 20092984 A JP20092984 A JP 20092984A JP 20092984 A JP20092984 A JP 20092984A JP S6183617 A JPS6183617 A JP S6183617A
Authority
JP
Japan
Prior art keywords
laser beam
oxidation
laser
ultraviolet
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20092984A
Other languages
Japanese (ja)
Inventor
Nahomi Aoto
青砥 なほみ
Eiji Igawa
英治 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20092984A priority Critical patent/JPS6183617A/en
Publication of JPS6183617A publication Critical patent/JPS6183617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To carry out the low-temperature oxidation of the surface of Si, suppressing the amount of defects at the interface of SiO2 and Si to a low level, by exposing the surface of Si to an oxygen gas atmosphere, and irradiating the surface with multiple laser beam with CO2 laser, XeBr eximer laser, etc. CONSTITUTION:The Si substrate is heated with the heater 12 to <=600 deg.C in a vessel filled with oxygen molecules 14 introduced through the gas inlet 13 under 1atm. The surface is irradiated with infrared laser beam 17 emitted from the CO2 laser 15 and transmitted through the infrared transmission window 16, and at the same time, irradiated with ultraviolet laser beam emitted from the eximer laser 18 and transmitted through the ultraviolet transmission window 19, to effect the oxidation of the Si surface. The ultraviolet laser beam is XeCl eximer laser beam, XeF eximer laser beam or XeBr eximer laser beam. The oxidization of Si surface can be carried out at a low temperature by the simultaneous radiation of infrared laser beam and ultraviolet laser beam.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子デバイス製造グミセスに用いるSl酸化
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a Sl oxidation method used in a gummy process for manufacturing electronic devices.

(従来技術) 従来のSl酸化法は、Siを酸化性の雰囲気にさらして
炉の中で加熱する方法が一般的である。
(Prior Art) A conventional method for oxidizing Si is generally a method in which Si is exposed to an oxidizing atmosphere and heated in a furnace.

(徳山、MOSデバイス、エレクトロニクス技術全書、
107−126.1973 )酸化法は、酸化温度によ
って2種類に分けられ、酸化温度900℃〜1200℃
の場合は高温酸化、700℃以下の場合は低温酸化と呼
ばれている。
(Tokuyama, MOS devices, electronics technology complete book,
107-126.1973) Oxidation methods are divided into two types depending on the oxidation temperature.
When the temperature is 700°C, it is called high-temperature oxidation, and when it is below 700°C, it is called low-temperature oxidation.

(発明が解決しようとする問題点) 高温酸化の場合には、5to2/st界面準位が少ない
反面、Si中に拡散されている不純物のプロファイルが
変化し易い。低温酸化の場合には拡散不純物のプロファ
イルを保ったtま工程を進めることができるが、5to
27st界間準位が多く形成される。
(Problems to be Solved by the Invention) In the case of high-temperature oxidation, although there are fewer 5to2/st interface states, the profile of impurities diffused into Si tends to change. In the case of low-temperature oxidation, it is possible to proceed with the process for several times while maintaining the profile of diffused impurities, but
Many 27th inter-field levels are formed.

(0’Hanlon 、アプライド・フィジクス・レタ
ー(Appl、Phym、L旬tt、 18巻1971
年554ページ))。
(0'Hanlon, Applied Physics Letters, Volume 18, 1971
554 pages)).

第2図中21は、従来法による1時間の低温ドライ酸化
後のSt/5IO2界面における欠陥密度を示すESR
スペクトルである。また高温酸化(1200℃)の場合
には、ドライ酸素中で1000Xを酸化するの薄い膜を
得る点では有用であるが、一般の酸化には不適当である
。第3図は、従来法による高温酸化(1200℃)の場
合と、同じ〈従来法による低温酸化(700℃)の場合
とについて、それぞれの場合の酸化時間と酸化膜厚との
関係を示したものである。31は高温酸化の場合、32
は低温酸化の場合を示している。
21 in Figure 2 indicates the ESR defect density at the St/5IO2 interface after 1 hour of low-temperature dry oxidation using the conventional method.
It is a spectrum. Further, in the case of high temperature oxidation (1200° C.), oxidation at 1000× in dry oxygen is useful in obtaining a thin film, but it is unsuitable for general oxidation. Figure 3 shows the relationship between oxidation time and oxide film thickness in the case of high-temperature oxidation (1200°C) using the conventional method and the case of low-temperature oxidation (700°C) using the same conventional method. It is something. 31 is 32 in the case of high temperature oxidation
shows the case of low temperature oxidation.

このように、従来の酸化方法によれば、5iA102界
面準位の少ない酸化膜を不純物グロファイルが変化しな
いような低温で作ることができず、また低温の酸化では
酸化時間に長時間を要するという欠点があった。
Thus, according to conventional oxidation methods, it is not possible to create an oxide film with few 5iA102 interface states at a low temperature where the impurity profile does not change, and low-temperature oxidation requires a long oxidation time. There were drawbacks.

本発明は、Si表面の酸化において、Si基板を600
℃以上の高温に加熱せずに酸化し、5102/St界面
単位の少ない酸化膜を、従来の低温酸化よシも短かい時
間で形成する方法を提供することを目的とする。
In the present invention, in the oxidation of the Si surface, the Si substrate is
It is an object of the present invention to provide a method of oxidizing without heating to a high temperature of .degree.

(問題点を解決するための手段) 本発明は、酸素ガス雰囲気中にさらされ、室温または7
00℃以下に加熱されている Siの表面に、C02レ
ーザー金照射すると同時に、XeBrエキシマレーザ−
1XeCLエキシマレーザ−1XeFエキシマレーザ−
またはUVランプ光を照射し、Si基板の加熱を従来の
低温酸化よシも低い600℃以下に抑えながら従来の低
温酸化よシも短かい時間でSi表面を酸化することを特
徴とする多重レーザービーム照射によるSi酸化法であ
る。本発明によれば、St/sto□界面準位の少ない
酸化膜を得ることができる。
(Means for Solving the Problems) The present invention is designed to be exposed to an oxygen gas atmosphere at room temperature or at 70°C.
The surface of Si heated to below 00°C is irradiated with C02 laser gold and at the same time XeBr excimer laser
1XeCL excimer laser - 1XeF excimer laser
Alternatively, a multi-laser method that irradiates UV lamp light and oxidizes the Si surface in a shorter time than conventional low-temperature oxidation while suppressing the heating of the Si substrate to 600°C or less, which is lower than conventional low-temperature oxidation. This is a Si oxidation method using beam irradiation. According to the present invention, an oxide film with few St/sto□ interface states can be obtained.

以下に本発明方法を具体的に説明するヶまず、1気圧の
酸素ガス雰囲気中にあるsi基板をヒーターによって6
00℃以下に加熱する。このような装置中のSt基板に
対し、C02レーザーから出た赤外レーザービームを照
射する。赤外レーf −ヒー ムの波長は5i−0ボン
ドの振動エネルギーと一致する9、26μmとする。こ
の赤外レーザービームの照射によシ、形成された5IO
2膜中でのSi−0結合の振縮にエネルギーが与えられ
酸化膜中のO原子の移動が促進されるため、界面での酸
化反応が加速される。さらに同時にエキシマレーザ−か
ら出た紫外レーザービームまたはUVランデ光から出た
紫外光を、Si基板に照射する。紫外レーザービームは
、XeCtエキシマレーザ−光(308nm) ’!た
はXeFエキシマレーザー光(352nm)またはXe
Brエキシマレーザ−光(282nm)である。UVラ
ンプ光は、Xe −Hgランプを用いた場合200〜4
20nmである。これらの紫外レーザービームの波長で
Siは高い吸収係数(15〜20×10cr1t)持つ
反面、5102はこれらの波長をほとんど透過させる。
The method of the present invention will be specifically explained below. First, a Si substrate in an oxygen gas atmosphere of 1 atm is heated to 6.
Heat to below 00°C. The St substrate in such an apparatus is irradiated with an infrared laser beam emitted from a C02 laser. The wavelength of the infrared f-beam is 9.26 μm, which matches the vibrational energy of the 5i-0 bond. 5IO formed by irradiation with this infrared laser beam
Energy is given to the vibration of the Si-0 bond in the two films, promoting the movement of O atoms in the oxide film, so that the oxidation reaction at the interface is accelerated. Furthermore, at the same time, the Si substrate is irradiated with an ultraviolet laser beam emitted from an excimer laser or ultraviolet light emitted from UV Lande light. The ultraviolet laser beam is XeCt excimer laser light (308 nm)'! or XeF excimer laser light (352 nm) or Xe
Br excimer laser light (282 nm). UV lamp light is 200~4 when using a Xe-Hg lamp.
It is 20 nm. While Si has a high absorption coefficient (15 to 20×10 crlt) at the wavelengths of these ultraviolet laser beams, 5102 almost transmits these wavelengths.

このため、照射した紫外レーザービームは形成された5
IO2膜中を透過し、5102/sl界面のSiで強く
吸収される。
For this reason, the irradiated ultraviolet laser beam forms 5
It passes through the IO2 film and is strongly absorbed by the Si at the 5102/sl interface.

この吸収によってsiの電子状態が励起されるため、界
面で00原子との反応が促進される。また、StKエネ
ルギーが与えられているために結晶欠陥による界面準位
が形成されにくい。このように、赤外レーザービームと
紫外レーザービームとを同時にSi表面に照射すること
により、低温酸化であシながら従来の低温酸化よシも速
く、かつSi02/Sl界面の界面準位の少ない酸化が
可能となる。
This absorption excites the electronic state of si, promoting the reaction with the 00 atom at the interface. Furthermore, since StK energy is given, interface states due to crystal defects are less likely to be formed. In this way, by simultaneously irradiating the Si surface with an infrared laser beam and an ultraviolet laser beam, it is possible to achieve low-temperature oxidation that is faster than conventional low-temperature oxidation and has fewer interface states at the Si02/Sl interface. becomes possible.

(実施例) 以下に本発明の実施例を図によりて示す。Si基板11
をヒーター12によって600℃以下に加熱する。この
時装置内はガス導入管13から導入された酸素分子14
で1気圧に満たされている。このような装置内のSi基
板11に対し、CO2レーザ−15から出た赤外レーザ
ービーム17 (9,26μtrL)を、赤外線透過窓
16を通して照射する。また同時に、紫外透過窓19を
通してエキシマレーザ−18から出た上記の方法で低温
酸化(600℃)を1時間行った場合の試料について、
ESRで測定したSiO2/Si界面の欠陥量を第2図
中22に示す。21にて示す従来の低温酸化の場合の欠
陥量に比べ、その量が大幅に減少していることが判る。
(Example) Examples of the present invention will be shown below using figures. Si substrate 11
is heated to 600° C. or less by the heater 12. At this time, the inside of the device contains oxygen molecules 14 introduced from the gas introduction pipe 13.
It is filled with 1 atm pressure. An infrared laser beam 17 (9.26 μtrL) emitted from a CO2 laser 15 is irradiated onto the Si substrate 11 in such an apparatus through an infrared transmission window 16. At the same time, regarding the sample that was emitted from the excimer laser 18 through the ultraviolet transmission window 19 and subjected to low-temperature oxidation (600°C) for 1 hour using the above method,
The amount of defects at the SiO2/Si interface measured by ESR is shown at 22 in FIG. It can be seen that the amount of defects is significantly reduced compared to the amount of defects in the case of conventional low-temperature oxidation shown in No. 21.

また本発明の方法で低温酸化(600℃)した場合の酸
化時間と酸化膜厚の関係を第3図・中33にて示す。図
に明らかなとおシ、従来の低温酸化の場合を示した32
に比べ、酸化速度が大幅に速くなっている。
Further, the relationship between the oxidation time and the oxide film thickness when low-temperature oxidation (600° C.) is performed by the method of the present invention is shown in FIG. 3, middle 33. As is clear from the figure, 32 shows the case of conventional low-temperature oxidation.
The oxidation rate is significantly faster than that of

(発明の効果) 以上に述べた通シ、本発明によれば、Si02/St界
面の欠陥量を少なく抑えながら不純物グロファイルの変
化しない低温酸化を行うことが可能であリ、またその酸
化を従来の低温酸化の場合よシも高速で行うことができ
る。したがって、本発明の方法を電子デバイスゾロセス
中に用いた場合にその効果は多大であること明らかであ
る。
(Effects of the Invention) As described above, according to the present invention, it is possible to perform low-temperature oxidation without changing the impurity profile while suppressing the amount of defects at the Si02/St interface. It can be performed faster than conventional low-temperature oxidation. Therefore, it is clear that when the method of the present invention is used in electronic devices, the effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す構成図、第2図は従来の
方法及び本発明の方法を用いて酸化を行った場合の5s
o2/St界面の欠陥量を表すESRスペクトルを示す
図、第3図は従来の方法及び本発明の方法を用いて酸化
した場合の酸化時間と酸化膜厚の関係を示す図である。 11・・・Si基板、12・・・基板加熱ヒーター、1
3・・・ガス導入口、14・・・酸素分子、15・・・
CO2レーザー116・・・赤外線透過窓、17・・・
赤外レーザービーム、18・・・エキシマレーザ−11
9・・・紫外線透過窓、110・・・紫外レーザービー
ム。 酢化温度(°C)
Fig. 1 is a block diagram showing an embodiment of the present invention, and Fig. 2 shows 5s of oxidation using the conventional method and the method of the present invention.
FIG. 3 is a diagram showing an ESR spectrum representing the amount of defects at the o2/St interface, and FIG. 3 is a diagram showing the relationship between oxidation time and oxide film thickness when oxidized using the conventional method and the method of the present invention. 11...Si substrate, 12...Substrate heating heater, 1
3... Gas inlet, 14... Oxygen molecules, 15...
CO2 laser 116...Infrared transmission window, 17...
Infrared laser beam, 18...excimer laser-11
9... Ultraviolet transmission window, 110... Ultraviolet laser beam. Acetylation temperature (°C)

Claims (1)

【特許請求の範囲】[Claims] (1)酸素ガス雰囲気中にさらされたSiの表面にCO
_2レーザーを照射すると同時にXeBrエキシマレー
ザー、XeClエキシマレーザー、XeFエキシマレー
ザーまたはUVランプ光を照射してSi表面を酸化する
ことを特徴とする多重レーザービーム照射によるSi酸
化法。
(1) CO on the surface of Si exposed to an oxygen gas atmosphere
A Si oxidation method using multiple laser beam irradiation, characterized in that the Si surface is oxidized by irradiating a XeBr excimer laser, a XeCl excimer laser, a XeF excimer laser, or a UV lamp light at the same time as _2 laser irradiation.
JP20092984A 1984-09-26 1984-09-26 Oxidation of si by multiple laser beam radiation Pending JPS6183617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20092984A JPS6183617A (en) 1984-09-26 1984-09-26 Oxidation of si by multiple laser beam radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20092984A JPS6183617A (en) 1984-09-26 1984-09-26 Oxidation of si by multiple laser beam radiation

Publications (1)

Publication Number Publication Date
JPS6183617A true JPS6183617A (en) 1986-04-28

Family

ID=16432628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20092984A Pending JPS6183617A (en) 1984-09-26 1984-09-26 Oxidation of si by multiple laser beam radiation

Country Status (1)

Country Link
JP (1) JPS6183617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076666A3 (en) * 2001-03-22 2004-02-12 Xsil Technology Ltd A laser machining system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002076666A3 (en) * 2001-03-22 2004-02-12 Xsil Technology Ltd A laser machining system and method

Similar Documents

Publication Publication Date Title
US4678536A (en) Method of photochemical surface treatment
JP3727358B2 (en) Article including optical element and method of manufacturing the same
JPH08220731A (en) Production of mask for exposure and apparatus for production therefor
Xu et al. Direct bonding of silicon and quartz glass using VUV/O3 activation and a multistep low-temperature annealing process
JP2009190917A (en) Silica-titania glass, its producing method and method for measuring coefficient of linear expansion
JPS6183617A (en) Oxidation of si by multiple laser beam radiation
JPS6187338A (en) Method of dry cleaning silicon surface irradiated with multiple beams
JP2010010283A (en) Surface treatment method utilizing ozone gas and its device
Fisk et al. Laser‐based and thermal studies of stress corrosion in vitreous silica
JPS59111333A (en) Method of forming sio2 by converting sio region into sio2 region
Tournour et al. Molecular oxygen diffusion in vitreous silica
JPS6245129A (en) Manufacture of semiconductor device
JP4008116B2 (en) Manufacturing method of optical fiber for ultraviolet transmission
JPS61199638A (en) Method for formation of insulating film
JPS6187341A (en) Oxidation and nitriding device for surface of silicon irradiated with beam
JP3950967B2 (en) Method for modifying solid compound film containing Si-O-Si bond to silicon oxide using vacuum ultraviolet light and pattern forming method
JP2890617B2 (en) Thin film formation method
JPS61199639A (en) Method for oxidation of semiconductor
JPH04217258A (en) Method and device for forming resist pattern
Nuccio et al. Role of H 2 O in the thermal annealing of the E γ′ center in amorphous silicon dioxide
JP3857244B2 (en) Method and apparatus for measuring thermal conductivity of transparent material
JPH11240728A (en) Production of synthetic quartz glass optical member
JPS63284823A (en) Method and apparatus for photoexcitation dry-etching
JP2000068265A5 (en)
JP2000086273A (en) Production of optical fiber for ultraviolet ray transmission