JP3857244B2 - Method and apparatus for measuring thermal conductivity of transparent material - Google Patents

Method and apparatus for measuring thermal conductivity of transparent material Download PDF

Info

Publication number
JP3857244B2
JP3857244B2 JP2003052124A JP2003052124A JP3857244B2 JP 3857244 B2 JP3857244 B2 JP 3857244B2 JP 2003052124 A JP2003052124 A JP 2003052124A JP 2003052124 A JP2003052124 A JP 2003052124A JP 3857244 B2 JP3857244 B2 JP 3857244B2
Authority
JP
Japan
Prior art keywords
thermal conductivity
sulfur
measuring
measurement
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003052124A
Other languages
Japanese (ja)
Other versions
JP2004258001A (en
Inventor
亜弓 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003052124A priority Critical patent/JP3857244B2/en
Publication of JP2004258001A publication Critical patent/JP2004258001A/en
Application granted granted Critical
Publication of JP3857244B2 publication Critical patent/JP3857244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光透過性の高い透明物質の熱伝導率の測定方法および測定装置に関する。特に、転移点が600℃以下のガラスの熱伝導率測定に有効である。
【0002】
【従来の技術】
固体や液体の熱伝導率は物性値として重要であり、種々の測定方法が考案されている。熱伝導率測定の有力な方法として、レーザーフラッシュ法がある。レーザーフラッシュ法は、レーザからのパルス状の光を試料に照射して試料を加熱し、その温度上昇から熱伝導率や熱拡散率を求めるため、平衡法からみて極めて短時間で測定できる。このため、近年特に多用され、ファインセラミックスの測定方法として規格化もされている(例えば、非特許文献1参照)。また、測定できる温度範囲は、室温から1500℃までと広範囲であり、固体のみならず液体でも測定できるという特徴を有すので、広範な研究もなされている(例えば、非特許文献2参照)。
【0003】
熱伝導率という物性の特質上、レーザ光の吸収による局部的な温度上昇、温度差の発生、温度差に基づく拡散を利用するので、吸収が大きければ測定しやすくなる。一方、透過や反射は阻害的な因子でもある。液体は容器に入れないと測定できないので、その容器による吸収や反射の因子を考慮しなければならないため、その測定は一般的に難しくなる。
【0004】
液体に対しては、少なくとも1本の補助支持線平行に保持された金属製小円板を利用するレーザーフラッシュ法での液体の熱伝導測定方法が開示されている(例えば、特許文献1参照)。また、試料液の相対的液面昇降手段が設けられた熱伝導率の測定方法が開示されている(例えば、特許文献2参照)。
【0005】
他方、固体の場合は、容器を特に必要としないので、多くの物質の熱伝導率を測定することができる。しかし、透過性の高い透明固体物質、例えば着色していない板ガラスのように透過率の高い物質は、精度の良い測定が困難となる。そこで、このような透過性の高い固体物質に対しては、レーザ入射面で熱エネルギを吸収させて、ある距離が離れた場所での温度変化を測定し、その温度変化から熱伝導率を求める測定方法がとられる。レーザ入射面で熱エネルギをできるだけ多く吸収させるため、吸収率が極めて高い黒色状物質を透明物質の入射面に塗布し、その黒色状物質を利用して熱吸収させる手法が一般的である。
【0006】
この透明物質の入射面に塗布する黒色状物質としては、その吸収特性、作業性、価格、入手可能性、安定性など、多くの理由から炭素を含む黒色状物質を高温で加熱処理したグラファイト層が利用されることが多い。すなわち、炭素を含む黒色状物質、例えばグラファイト微粉末の入った溶液を透明物質に塗布、自然乾燥させた後に600〜700℃の真空中で熱処理して所定のグラファイト層を得ている。また、非特許文献1には、受光膜には炭素が望ましいこと、及び炭素塗膜後に真空中又は不活性ガス中で1000K(627℃)まで加熱処理の推奨が記述されている。
【0007】
【特許文献1】
特開昭55-114945号公報
【特許文献2】
特開昭55-124053号公報
【非特許文献1】
JIS R 1611、ファインセラミックスのレーザーフラッシュ法による熱拡散率・比熱容量・熱伝導率試験方法
【非特許文献2】
高橋洋一他:熱・温度測定と熱分析・1974、科学技術社(1974)、45-56。
【0008】
【発明が解決しようとする課題】
透明物質の熱伝導率測定を行うとき、測定値が大きくばらつくことがあり、信頼性の高い測定結果を得ることが難しかった。信頼性を高める手法としては、何度も熱伝導率測定を行った後に統計的手法を組み入れてデータ処理したり、600〜700℃以上に加熱処理を行うことが考えられている。しかし、何度も測定を行うことは非効率であり、例え統計的手法を組み入れても、最終的な信頼性には程遠いという問題があった。また、ガラス転移点が600℃よりも低いガラスの場合、600〜700℃以上に加熱処理を行うと、ガラス組成の変化という基本的な問題も懸念され、その絶対的な信頼性に問題があった。
【0009】
また、特開昭55-114945号公報および特開昭55-124053号公報で開示された方法は、液体の熱伝導率測定精度を上げる方法であり、上述の固体での基本的な問題を解決することはできなかった。
【0010】
【課題を解決するための手段】
上述の問題点を解決するために、鋭意検討した結果、本発明に至った。本発明は、黒色状物質を塗布して透明物質の熱伝導率を測定する場合において、炭素を含む黒色状物質中の硫黄を除去し、硫黄と炭素の化合物が未生成の黒色状物質を用いて測定する透明物質の熱伝導率測定方法である。また、炭素を含む黒色状物質中の硫黄を除去する場合において、280℃以上600℃以下の温度で処理する透明物質の熱伝導率測定方法である。
【0011】
さらに、黒色状物質中の硫黄を除去するための加熱設備を有すこと、又は硫黄の捕獲設備又は脱硫設備を有す透明物質の熱伝導率測定装置である。
【0012】
【発明の実施の形態】
本発明は、黒色状物質を塗布して透明物質の熱伝導率を測定する場合において、炭素を含む黒色状物質中の硫黄を除去し、硫黄と炭素の化合物が未生成の黒色状物質で測定する透明物質の熱伝導率測定方法である。透明性の高い材料の熱伝導率測定を行うときのばらつきを詳細に検討した結果、そのばらつきの原因が炭素を含む黒色状物質中の硫黄と炭素を主成分とした相関化合物であることを確認した。すなわち、炭素を含む黒色状物質がグラファイト層を形成するとき、その中に硫黄が残存すると、硫黄と炭素を主成分とした相間化合物が存在し、安定したグラファイト層にならないことを見出した。この相間化合物は、緻密構造を取らず、熱伝導率が悪いので、グラファイト層の中に相間化合物を含むと、見た目の熱伝導率が下がることになる。
【0013】
炭素を含む黒色状物質中に残存する硫黄を除去し、硫黄のない状態で透明物質に塗布させると、安定したグラファイト層とすることができる。この安定化は、主に2つの工程からなる。炭素を含む黒色状物質中に残存する硫黄を気化させる工程、気化させた硫黄をグラファイト層と反応させないために硫黄を捕獲する又は脱硫設備の中に硫黄に入れる工程である。硫黄のない状態でグラファイト層を形成し、そのグラファイト層を用いた測定を行うことにより、極めて精度の高い熱伝導率測定結果を得ることができる。
【0014】
炭素を含む黒色状物質中の硫黄を除去する場合において、280℃以上の温度で処理する透明物質の熱伝導率測定方法である。280℃未満では、硫黄を除去することができず、硫黄と炭素を主成分とした相間化合物ができやすくなる。望ましくは、300℃以上であり、この温度域では2時間程度の時間が適切である。硫黄を除去させるという観点から上限は存在しないが、透明物質の変形や組成変動が発生するので、600℃以下とする。600℃の場合、その処理時間は30分程度でも良い。この処理については、従来から知られているように真空中の処理でも良いが、280〜600℃の大気中での処理できることが本方法の大きな特徴である。
【0015】
黒色状物質中の硫黄を除去するための加熱設備を有すことを有すことが必要である。この設備が熱伝導率測定装置にないと、硫黄を除去させることができない。熱伝導率測定装置の一部には、常温以外にも測定できるように、加熱設備を織り込んだ装置があるが、当然ながらこの装置を利用しても良い。しかし、一般的にこの加熱設備は、高温にするための時間を短縮するため、急激な加熱を行うように設定されている場合が多く、硫黄を初めとする不純物を気化することが多いので、注意する必要がある。また、その加熱設備を使う場合も、上述の処理温度と処理時間は重要である。
【0016】
又は、硫黄を捕獲する設備又は脱硫する設備を有する熱伝導率測定装置であることが必要である。硫黄が気化する場合があるが、硫黄を捕獲する設備又は脱硫する設備が熱伝導率測定装置にないと、気化した又は黒色物質中の硫黄がグラファイト層と反応してしまう。
【0017】
対象とする試料は透過度の高い透明物質であれば、全てが対象となる。例えば、各種板ガラス、瓶ガラス、石英ガラス、ホウケイ酸ガラスなどのガラス、の他、容器中に入った液体でも測定可能であるが、転移点が600℃以下のガラスの場合には、特に有用である。
【0018】
【実施例】
以下、図面を参照しながら本発明を詳細に説明する。
(実施例1)
測定は以下のようにして行う。すなわち、図1に示すように、ルビーレーザから照射されたレーザ光1は試料2にグラファイト層3を経た後、入射される。試料はレーザ光を吸収することにより温度が上昇する。一般的には、試料温度が1.0〜10℃上昇した時の温度上昇から、試料の比熱、試料の熱拡散率を求め、それに試料の密度をかけて熱伝導率の値を求める(詳細は、JIS R 1611を参照のこと)。なお、グラファイト層をレーザ入射側だけではなく、裏面(温度測定側)に生成させて測定する場合もある。
【0019】
今回の測定では、直径が10mmで厚さが公称2mmのソーダ石灰ガラスの片面に素線の先端を溶接した熱電対(白金ロジウム;+脚、白金;−脚)を銀ペーストで接着し、その反対面にグラファイトスプレーを塗布した試料を準備した。塗布後、室温で5〜10分放置した後、300〜525℃の雰囲気下で1時間、加熱処理を行った。その後、常温まで冷却したこの測定試料を熱伝導率測定装置にセットし、ルビーレーザを照射して、熱伝導率測定を行った。ルビーレーザへの負荷は、2.3Kvとした。この条件で毎日2試料を5日間連続で測定した。ガラス試料は同じロットから切り出したものであり、板厚も全て1.9mmであることを確認した。
【0020】
【表1】

Figure 0003857244
【0021】
その結果は、表1に示すように、10試料は全て1.0〜1.2W/mKの範囲であり、極めて妥当な測定値が得られたことを確認した。表1中には、グラファイト層形成時の加熱条件を明記した。なお、測定後、EPMAにより、グラファイト層の状態を観察したが、得られたピークは炭素のみであった。
【0022】
(実施例2)
従来の熱伝導率測定装置に加熱設備を付けて、黒色物質を固着させながら、同時に実施例1と同様のガラスの熱伝導率測定を行った。加熱は350℃と500℃の2条件で行った。その結果、得られた熱伝導率はそれぞれ、1.2W/mKと1.3W/mKであり、これまでの測定結果からみて妥当な測定値が得られた。なお、測定後、EPMAにより、グラファイト層の状態を観察したが、得られたピークは炭素のみであった。従来、高温域での測定を行うときは、黒色物質の固着を行ってから、測定装置に入れ、再加熱することにより測定してきたため、2日以上の測定時間を要したが、本方法によれば、1日で測定することが可能となった。
【0023】
(実施例3)
実施例1と同様のガラスに黒色物質を塗布後、250℃まで加熱するとき、その雰囲気を脱硫設備の中に通し、加熱と脱硫を同時に行った。脱硫は一般的なシーボード法により、Na2CO3の3wt%溶液を基本とした脱硫設備の中に上述の雰囲気を通すことにより行った。この脱硫したガラス試料を250℃で加熱設備付の熱伝導率測定装置により測定したところ、1.2W/mKと妥当な値が得られた。なお、測定後、EPMAにより、グラファイト層の状態を観察したが、得られたピークは炭素のみであった。
(比較例1)
実施例と同様の試料を250℃の加熱温度で処理し、同様の方法で測定した。その結果は、1日目は1.1W/mKと1.2W/mK2日目は1.0W/mKと1.2W/mKだったが、3日目は0.7W/mKと1.2W/mK、4日目は0.9W/mKと1.0W/mK、5日目はどちらも0.8W/mKであった。このように、加熱温度条件を一定にしたにもかかわらず、測定の絶対値は小さく、ばらつきも大きかった。この結果は、信頼性に大きな問題があることを示している。なお、測定後、EPMAにより、グラファイト層の状態を観察したところ、3日目の第1試料と5日目の試料には、炭素のピークの他、硫黄のピークも認められたので、その部分を電顕で拡大したところ、薄い層状の生成物があることを確認した。
【0024】
(比較例2)
従来の熱伝導率測定装置を用い、実施例1と同様の試料を用い、350℃と500℃の2条件で測定した。黒色物質を真空中600℃の雰囲気下で、加熱し、常温まで冷却した後、熱伝導率測定装置に装着し、熱伝導率測定装置の中の加熱設備を利用して熱伝導率を測定した。その結果、得られた熱伝導率はどちらも、1.0W/mKであり、妥当な値と判断されたが、真空中600℃の雰囲気下の加熱処理と熱伝導率測定で計2日間を要した。
【0025】
(比較例3)
比較例2の熱伝導率測定装置で実施例1と同様の試料を用い、250℃での熱伝導率を測定した。このとき、常温で黒色物質を塗布し、10分間大気下に放置した後、そのまま熱伝導率測定装置の加熱設備を利用して、250まで上げ、250℃になってから10分後に測定を行った。その結果は、0.7W/mKであり、これまでの測定結果よりも低い値であった。なお、測定後、EPMAにより、グラファイト層の状態を観察したところ、炭素のピークの他、硫黄のピークも認められたので、その部分を電顕で拡大したところ、薄い層状の生成物があることを確認した。
【0026】
以上のように、転移点が550℃と600℃よりも低い板ガラスでも測定の信頼性が上がり、測定に要する時間も短縮することができた。ここでは、明記しなかったが、転移点が600℃よりも高い硼珪酸ガラスでも信頼性の高い結果が得られた。
【0027】
【発明の効果】
本発明の方法および装置によれば、大きくばらつき、精度ある測定結果を得ることが難しかった透明物質の熱伝導率測定において、信頼性のあるデータを得ることができた。また、測定に要する時間も大幅に短縮することができた。
【図面の簡単な説明】
【図1】実施例に示す本測定例の概略図である。
【符号の説明】
1 レーザ
2 ガラス試料
3 グラファイト層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for measuring the thermal conductivity of a transparent material having a high light transmittance. In particular, it is effective for measuring the thermal conductivity of glass having a transition point of 600 ° C. or lower.
[0002]
[Prior art]
The thermal conductivity of solids and liquids is important as a physical property value, and various measurement methods have been devised. A laser flash method is an effective method for measuring thermal conductivity. In the laser flash method, a sample is irradiated with pulsed light from a laser to heat the sample, and the thermal conductivity and thermal diffusivity are obtained from the temperature rise. For this reason, it has been frequently used in recent years and has been standardized as a method for measuring fine ceramics (see, for example, Non-Patent Document 1). In addition, the temperature range that can be measured is a wide range from room temperature to 1500 ° C., and since it has a feature that it can measure not only solids but also liquids, extensive research has been conducted (see, for example, Non-Patent Document 2).
[0003]
Due to the physical property of thermal conductivity, local temperature rise due to absorption of laser light, generation of a temperature difference, and diffusion based on the temperature difference are used. Therefore, if absorption is large, measurement becomes easier. On the other hand, transmission and reflection are also inhibitory factors. Since a liquid cannot be measured unless it is put in a container, the measurement is generally difficult because factors of absorption and reflection by the container must be taken into consideration.
[0004]
For a liquid, a method for measuring the thermal conductivity of a liquid by a laser flash method using a small metal disk held in parallel with at least one auxiliary support line is disclosed (for example, see Patent Document 1). . Further, a method for measuring thermal conductivity provided with a relative liquid level raising / lowering means for the sample liquid is disclosed (for example, see Patent Document 2).
[0005]
On the other hand, in the case of a solid, since a container is not particularly required, the thermal conductivity of many substances can be measured. However, a highly transparent transparent solid material, for example, a material with high transmittance such as uncolored plate glass, makes accurate measurement difficult. Therefore, for such a highly transmissive solid substance, the thermal energy is absorbed at the laser incident surface, the temperature change at a certain distance is measured, and the thermal conductivity is obtained from the temperature change. A measuring method is taken. In order to absorb as much heat energy as possible on the laser incident surface, a method of applying a black material having an extremely high absorption rate to the incident surface of the transparent material and absorbing the heat using the black material is general.
[0006]
The black material to be applied to the incident surface of this transparent material is a graphite layer obtained by heat-treating a black material containing carbon for many reasons such as its absorption characteristics, workability, price, availability, and stability. Is often used. That is, a black substance containing carbon, for example, a solution containing fine graphite powder is applied to a transparent substance, naturally dried, and then heat-treated in a vacuum of 600 to 700 ° C. to obtain a predetermined graphite layer. Non-patent document 1 describes that carbon is desirable for the light-receiving film, and that heat treatment is recommended up to 1000 K (627 ° C.) in a vacuum or in an inert gas after the carbon coating.
[0007]
[Patent Document 1]
JP 55-114945 A [Patent Document 2]
JP 55-124053 [Non-Patent Document 1]
JIS R 1611, Test method for thermal diffusivity, specific heat capacity and thermal conductivity of fine ceramics by laser flash method [Non-Patent Document 2]
Yoichi Takahashi et al .: Thermal and temperature measurement and thermal analysis, 1974, Science and Technology Corporation (1974), 45-56.
[0008]
[Problems to be solved by the invention]
When measuring the thermal conductivity of a transparent material, the measured values may vary greatly, making it difficult to obtain highly reliable measurement results. As a technique for improving the reliability, it is considered to perform data processing by incorporating a statistical technique after measuring the thermal conductivity many times, or to perform a heat treatment at 600 to 700 ° C. or higher. However, it was inefficient to make measurements many times, and even if statistical methods were incorporated, there was a problem that it was far from the final reliability. Further, in the case of a glass having a glass transition point lower than 600 ° C., if heat treatment is performed at 600 to 700 ° C. or more, there is a concern about a basic problem of a change in the glass composition, and there is a problem in its absolute reliability. It was.
[0009]
In addition, the methods disclosed in Japanese Patent Laid-Open Nos. 55-114945 and 55-124053 are methods for increasing the thermal conductivity measurement accuracy of liquids, and solve the above-mentioned basic problems with solids. I couldn't.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-described problems, the present invention has been achieved. In the present invention, when black material is applied to measure the thermal conductivity of a transparent material, sulfur in the black material containing carbon is removed, and a black material in which a compound of sulfur and carbon is not generated is used. This is a method for measuring the thermal conductivity of a transparent substance. Further, in the case of removing sulfur in a black substance containing carbon, it is a method for measuring the thermal conductivity of a transparent substance that is treated at a temperature of 280 ° C. or higher and 600 ° C. or lower.
[0011]
Furthermore, it is a heat conductivity measuring device of a transparent substance having a heating facility for removing sulfur in the black substance, or having a sulfur capturing facility or a desulfurization facility.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when black material is applied and the thermal conductivity of a transparent material is measured, sulfur in the black material containing carbon is removed, and the sulfur-carbon compound is measured with a non-generated black material. This is a method for measuring the thermal conductivity of a transparent material. As a result of a detailed examination of the variation when measuring the thermal conductivity of highly transparent materials, it was confirmed that the cause of the variation was a correlation compound composed mainly of sulfur and carbon in black-containing substances containing carbon. did. That is, when a black-like substance containing carbon forms a graphite layer, it has been found that if sulfur remains therein, an interphase compound mainly composed of sulfur and carbon is present, and the graphite layer is not stable. Since this interphase compound does not have a dense structure and has poor thermal conductivity, when the interphase compound is contained in the graphite layer, the apparent thermal conductivity is lowered.
[0013]
A stable graphite layer can be obtained by removing sulfur remaining in a black-like substance containing carbon and applying it to a transparent substance in the absence of sulfur. This stabilization mainly consists of two steps. It is a step of vaporizing sulfur remaining in a black substance containing carbon, and a step of capturing sulfur in order to prevent the vaporized sulfur from reacting with the graphite layer or putting it in sulfur in a desulfurization facility. A highly accurate thermal conductivity measurement result can be obtained by forming a graphite layer in the absence of sulfur and performing measurement using the graphite layer.
[0014]
This is a method for measuring the thermal conductivity of a transparent material that is treated at a temperature of 280 ° C. or higher when sulfur in the black-like material containing carbon is removed. If it is less than 280 degreeC, sulfur cannot be removed and it will become easy to produce the interphase compound which has sulfur and carbon as a main component. Desirably, it is 300 degreeC or more, and about 2 hours is suitable in this temperature range. Although there is no upper limit from the viewpoint of removing sulfur, the temperature is set to 600 ° C. or lower because deformation of the transparent material and composition change occur. In the case of 600 ° C., the processing time may be about 30 minutes. This process may be performed in a vacuum as conventionally known, but the main feature of this method is that it can be processed in the atmosphere at 280 to 600 ° C.
[0015]
It is necessary to have heating equipment for removing sulfur in the black substance. If this equipment is not in the thermal conductivity measuring device, sulfur cannot be removed. Some of the thermal conductivity measuring devices include a device incorporating heating equipment so that measurement can be performed at a temperature other than room temperature. Of course, this device may be used. However, in general, this heating equipment is often set to perform rapid heating in order to shorten the time required for high temperature, and impurities such as sulfur are often vaporized. You need to be careful. Moreover, also when using the heating equipment, the above-mentioned processing temperature and processing time are important.
[0016]
Or it is necessary to be a thermal conductivity measuring device having equipment for capturing sulfur or equipment for desulfurization. Although sulfur may be vaporized, if there is no facility for capturing sulfur or desulfurization in the thermal conductivity measuring device, the vaporized sulfur in the black substance will react with the graphite layer.
[0017]
If the target sample is a transparent material having a high transmittance, all of the samples are targets. For example, in addition to various types of glass such as plate glass, bottle glass, quartz glass, and borosilicate glass, it is possible to measure liquid contained in a container, but it is particularly useful in the case of glass having a transition point of 600 ° C. or lower. is there.
[0018]
【Example】
Hereinafter, the present invention will be described in detail with reference to the drawings.
Example 1
The measurement is performed as follows. That is, as shown in FIG. 1, the laser beam 1 irradiated from the ruby laser is incident on the sample 2 after passing through the graphite layer 3. The sample rises in temperature by absorbing the laser beam. In general, the specific heat of a sample and the thermal diffusivity of the sample are obtained from the temperature rise when the sample temperature rises by 1.0 to 10 ° C., and the value of the thermal conductivity is obtained by multiplying the density of the sample (details Refer to JIS R 1611). In some cases, the graphite layer is generated not only on the laser incident side but also on the back surface (temperature measurement side).
[0019]
In this measurement, a thermocouple (platinum rhodium; + leg, platinum;-leg) with a wire tip welded to one side of soda-lime glass with a diameter of 10 mm and a nominal thickness of 2 mm was bonded with silver paste. A sample having a graphite spray applied to the opposite surface was prepared. After coating, the mixture was left at room temperature for 5 to 10 minutes, and then heat-treated at 300 to 525 ° C. for 1 hour. Then, this measurement sample cooled to normal temperature was set in the thermal conductivity measuring apparatus, and the thermal conductivity measurement was performed by irradiating a ruby laser. The load on the ruby laser was 2.3 Kv. Under these conditions, 2 samples were measured every day for 5 consecutive days. The glass samples were cut from the same lot, and it was confirmed that all the plate thicknesses were 1.9 mm.
[0020]
[Table 1]
Figure 0003857244
[0021]
As a result, as shown in Table 1, all 10 samples were in the range of 1.0 to 1.2 W / mK, and it was confirmed that extremely reasonable measurement values were obtained. In Table 1, the heating conditions for forming the graphite layer are specified. After the measurement, the state of the graphite layer was observed by EPMA, but the obtained peak was only carbon.
[0022]
(Example 2)
A conventional thermal conductivity measuring apparatus was equipped with heating equipment, and the thermal conductivity of the glass was measured at the same time as in Example 1 while fixing the black substance. Heating was performed under two conditions of 350 ° C. and 500 ° C. As a result, the obtained thermal conductivities were 1.2 W / mK and 1.3 W / mK, respectively, and reasonable measurement values were obtained in view of the measurement results so far. After the measurement, the state of the graphite layer was observed by EPMA, but the obtained peak was only carbon. Conventionally, when measuring in a high temperature range, the black substance was fixed and then measured by putting it in a measuring device and reheating, which required a measurement time of 2 days or more. For example, it was possible to measure in one day.
[0023]
Example 3
When a black material was applied to the same glass as in Example 1 and then heated to 250 ° C., the atmosphere was passed through a desulfurization facility, and heating and desulfurization were performed simultaneously. Desulfurization was performed by passing the above atmosphere through a desulfurization facility based on a 3 wt% solution of Na 2 CO 3 by a general seaboard method. When this desulfurized glass sample was measured at 250 ° C. with a thermal conductivity measuring apparatus equipped with a heating facility, an appropriate value of 1.2 W / mK was obtained. After the measurement, the state of the graphite layer was observed by EPMA, but the obtained peak was only carbon.
(Comparative Example 1)
A sample similar to that of the example was treated at a heating temperature of 250 ° C. and measured by the same method. The results were 1.1 W / mK and 1.2 W / mK on the first day, 1.0 W / mK and 1.2 W / mK on the second day, but 0.7 W / mK and 1.2 W on the third day. / MK was 0.9 W / mK and 1.0 W / mK on the 4th day, and 0.8 W / mK on the 5th day. Thus, although the heating temperature condition was made constant, the absolute value of the measurement was small and the variation was large. This result shows that there is a big problem in reliability. After the measurement, the state of the graphite layer was observed by EPMA, and in addition to the carbon peak, a sulfur peak was also observed in the first sample and the fifth day sample. Was enlarged with an electron microscope, and it was confirmed that there was a thin layered product.
[0024]
(Comparative Example 2)
Using a conventional thermal conductivity measuring device, the same sample as in Example 1 was used, and measurement was performed under two conditions of 350 ° C and 500 ° C. The black material was heated in a vacuum at 600 ° C., cooled to room temperature, then mounted on a thermal conductivity measuring device, and the thermal conductivity was measured using the heating equipment in the thermal conductivity measuring device. . As a result, both of the obtained thermal conductivities were 1.0 W / mK, which were judged to be reasonable values. However, a total of 2 days was required for heat treatment and measurement of thermal conductivity in an atmosphere at 600 ° C. in a vacuum. It cost.
[0025]
(Comparative Example 3)
The thermal conductivity at 250 ° C. was measured using the same sample as in Example 1 with the thermal conductivity measuring device in Comparative Example 2. At this time, after applying a black substance at room temperature and leaving it in the atmosphere for 10 minutes, using the heating equipment of the thermal conductivity measuring device as it is, the temperature is raised to 250, and measurement is performed 10 minutes after reaching 250 ° C. It was. The result was 0.7 W / mK, which was a lower value than the previous measurement results. After the measurement, the state of the graphite layer was observed by EPMA. As a result of observing the sulfur peak in addition to the carbon peak, the portion was enlarged with an electron microscope, and there was a thin layered product. It was confirmed.
[0026]
As described above, the measurement reliability was improved even with plate glasses having transition points lower than 550 ° C. and 600 ° C., and the time required for the measurement could be shortened. Although not specified here, highly reliable results were obtained even with borosilicate glass having a transition point higher than 600 ° C.
[0027]
【The invention's effect】
According to the method and apparatus of the present invention, reliable data could be obtained in the measurement of the thermal conductivity of a transparent material, which had a large variation and it was difficult to obtain an accurate measurement result. In addition, the time required for measurement could be greatly shortened.
[Brief description of the drawings]
FIG. 1 is a schematic view of a measurement example shown in an example.
[Explanation of symbols]
1 Laser 2 Glass sample 3 Graphite layer

Claims (3)

黒色状物質を塗布して透明物質の熱伝導率をレーザーフラッシュ法で測定する場合において、炭素を含む黒色状物質中の硫黄を除去し、硫黄と炭素の化合物が未生成の黒色状物質で測定することを特徴とした透明物質の熱伝導率測定方法。When measuring the thermal conductivity of a transparent substance by applying a black substance with the laser flash method, the sulfur in the black substance containing carbon is removed and the sulfur and carbon compound is measured with a black substance that has not been generated. A method for measuring the thermal conductivity of a transparent material. 炭素を含む黒色状物質中の硫黄を除去する場合において、280℃以上600℃以下の温度で処理することを特徴とした請求項1に記載の透明物質の熱伝導率測定方法。The method for measuring the thermal conductivity of a transparent substance according to claim 1, wherein the sulfur is removed from the black-like substance containing carbon, and the treatment is performed at a temperature of 280 ° C to 600 ° C. 請求項1又は請求項2に記載の熱伝導率測定方法を実施するための透明物質の熱伝導率測定装置であり、黒色状物質中の硫黄を除去するための加熱設備を有し、さらに硫黄の捕獲設備又は脱硫設備を有すことを特徴とする透明物質の熱伝導率測定装置。 A thermal conductivity measuring device of the transparent materials for carrying out a thermal conductivity measuring method according to claim 1 or claim 2, have a heating equipment for removing sulfur in Kokushokujo substances, sulfur An apparatus for measuring the thermal conductivity of a transparent material, characterized by having a capture facility or a desulfurization facility .
JP2003052124A 2003-02-28 2003-02-28 Method and apparatus for measuring thermal conductivity of transparent material Expired - Fee Related JP3857244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052124A JP3857244B2 (en) 2003-02-28 2003-02-28 Method and apparatus for measuring thermal conductivity of transparent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052124A JP3857244B2 (en) 2003-02-28 2003-02-28 Method and apparatus for measuring thermal conductivity of transparent material

Publications (2)

Publication Number Publication Date
JP2004258001A JP2004258001A (en) 2004-09-16
JP3857244B2 true JP3857244B2 (en) 2006-12-13

Family

ID=33117063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052124A Expired - Fee Related JP3857244B2 (en) 2003-02-28 2003-02-28 Method and apparatus for measuring thermal conductivity of transparent material

Country Status (1)

Country Link
JP (1) JP3857244B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170854A (en) * 2004-12-16 2006-06-29 Tdk Corp Sample analysis method and sample analyzer
JP5160816B2 (en) * 2007-06-19 2013-03-13 アルバック理工株式会社 Infrared detector temperature calibration method and specific heat capacity measurement method

Also Published As

Publication number Publication date
JP2004258001A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
Ristau et al. Laser damage thresholds of optical coatings
Crawford et al. High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon
Liang et al. A simple sol–gel route to ZrO2 films with high optical performances
Vook et al. Expansion of copper upon low-temperature deuteron irradiation
CN109651812A (en) The siliceous Kapton of resistance to elemental oxygen composition and preparation method thereof
Biondi Optical absorption of copper and silver at 4.2 K
Pliskin et al. Properties of insulating thin films deposited by RF sputtering
Ni et al. Cu and Fe diffusion in rhyolitic melts during chalcocite “dissolution”: Implications for porphyry ore deposits and tektites
JP3857244B2 (en) Method and apparatus for measuring thermal conductivity of transparent material
Akhmetov et al. Laser-induced electron dynamics and surface modification in ruthenium thin films
Romanova et al. Thermal stability of black aluminum films and growth of aluminum nanowires from mechanical defects on the film surface during annealing
Singh et al. Swift heavy ion interaction with silver–silica nanocomposites: an experimental surface plasmon resonance study
Hu et al. Studies on structural, electrical, and optical properties of Cu doped As–Se–Te chalcogenide glasses
Inoue et al. Laser patterning of non-linear optical Bi2ZnB2O7 crystal lines in glass
Unnam et al. An x‐ray study of diffusion in the Cu‐Ag system
Yoshida et al. FT-IR study on the effect of OH content on the damage process in silica glasses irradiated by hydrogen
Sato et al. Diffusion of hydroxyl groups in silica glass through the binding interface
Aronson Some experiments on the permeation of hydrogen through oxide films on zirconium
Xu et al. Comparative studies on the laser-induced damage of TiO2 films with different additives and thickness
Ohuchi et al. Effect of Crystallization on the Auger Electron Signal Decay in an Li2O· 2SiO2 Glass and Glass‐Ceramic
Armigliato et al. Characterization of titanium nitride films deposited onto silicon
Xu et al. Laser-induced damage threshold in n-on-1 regime of Ta2O5 films at 532, 800, and 1064 nm
Sylwestrowicz et al. Effect of chlorine on gold-titanium thin films
CN100491978C (en) Method for accurately measuring fluorescence parameters of rare earth doped laser glass
DE1496319C3 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees