JPS6182138A - Inspecting method of pressure leak - Google Patents

Inspecting method of pressure leak

Info

Publication number
JPS6182138A
JPS6182138A JP19350784A JP19350784A JPS6182138A JP S6182138 A JPS6182138 A JP S6182138A JP 19350784 A JP19350784 A JP 19350784A JP 19350784 A JP19350784 A JP 19350784A JP S6182138 A JPS6182138 A JP S6182138A
Authority
JP
Japan
Prior art keywords
pressure
air
inspection
inspected
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19350784A
Other languages
Japanese (ja)
Inventor
Takao Yoda
隆夫 依田
Minoru Hiroyasu
廣保 稔
Kuniaki Okuma
大熊 国昭
Ryuichi Toyama
隆一 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP19350784A priority Critical patent/JPS6182138A/en
Publication of JPS6182138A publication Critical patent/JPS6182138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3263Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers using a differential pressure detector

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To obtain the measurement result of easy, high-precision quality inspection by supplying fluid of the same pressure to a molding to be inspected and a master in the same shape, and comparing and measuring the pressure and deciding whether the molding is normal or not, and discharging the fluid to the outside every time a measurement is taken. CONSTITUTION:Compressed air from an air supply source 20 is passed through a filter 22, pressure regulator 24, and pressure gauge 26 and branched in two directions through an electromagnetic change-over valve 28. The air is sent to the body 36 to be inspected and the reference master 38 in the same shape with it through electromagnetic changeover valves 30a and 30b, filters 32a and 32b, and throttle valves 34a and 34b. A difference detector 40 measures a difference in internal air pressure between conduits 31a and 31b. The differential pressure is sent to a display device 44 through an amplifier 42 and a meter 44. A defect of the object body 36 such as cracking and a pinhole is detected from the differential pressure. When the inspection is finished, the air is discharged through a valve 48 and next inspection is performed.

Description

【発明の詳細な説明】 本発明は孔部を含む成形品の圧力洩れ検査方法に関し、
一層詳細には、例えば、エンジン部のウォータジャケッ
ト、カム室、クランク室、オイル穴等に圧縮空気を供給
し、一方、圧力洩れの無い正常な基準成形品(以下基準
マスターと称する)にも同圧力の空気を供給して経時的
に被検査用成形品と基準マスターの圧力差を比較測定し
て前記被検査用成形品の良、不良を判断する圧力洩れ検
査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for inspecting pressure leaks in molded products including holes.
More specifically, for example, compressed air is supplied to the water jacket, cam chamber, crank chamber, oil hole, etc. of the engine part, and at the same time, the same is applied to a normal standard molded product with no pressure leaks (hereinafter referred to as the standard master). The present invention relates to a pressure leak testing method in which pressurized air is supplied and the pressure difference between a molded product to be inspected and a reference master is compared and measured over time to determine whether the molded product to be inspected is good or defective.

自動車を構成するエンジン部のウォータージャケット、
カム室、クランク室等の孔部は完全に空気洩れの無い状
態に形成されていなければならないが、鋳造欠陥により
、例えば、亀裂、あるいは、ピンホール等が前記孔部壁
面に生ずる場合がある。
Water jackets for the engine parts of automobiles,
Holes in the cam chamber, crank chamber, etc. must be formed completely without air leakage, but due to casting defects, for example, cracks, pinholes, etc. may occur on the walls of the holes.

従来、前記エンジン部のウオークジャケット、カム室、
クランク室等において、その孔部壁面からの亀裂、ピン
ホール等による圧力洩れを検査する方法として次に示す
二つの方法が広く採用されている。先ず、その一つは、
成形品の孔部に空気を密閉供給し、この成形品を水槽の
中に入れて気泡が発生するか否かを観察することでこの
孔部の圧力洩れを検査する方法である。
Conventionally, the walk jacket of the engine part, the cam chamber,
The following two methods are widely adopted as methods for inspecting pressure leaks due to cracks, pinholes, etc. from the wall surface of a hole in a crank chamber or the like. First of all, one of them is
This method tests for pressure leaks in the holes by supplying air in a sealed manner to the holes in the molded product, placing the molded product in a water tank, and observing whether air bubbles are generated.

然しなから、この方法によれば検査者が常に気泡の有無
を観察していなければならないため専任者を必要とし、
また、人力によるために正確な検査が行われない不都合
がある。他の方法としては被検査物である成形品とこの
成形品と同一形状で且つ圧力洩れの無い基準マスターと
に同圧力の空気を供給し、所定時間内における夫々の圧
力差の有無を比較測定し、被検査物側に所定圧力差以上
の値が確認出来ればそれを不良品と判断する方法がある
。然しなから、この後者の方法では、基準マスターは特
に量産される被検査物を検査しようとする時、繰り返し
利用されるために次のような欠点を露呈する。すなわち
、基準マスターに供給される空気は外部に排出されるこ
となく常に基準マスターとこのマスターを循環する空気
管路内を出入りしているため、検査が進むにつれてこの
タンク内および管路を構成する管壁に空気の圧縮による
発熱の蓄積が起こり、そのためマスターおよび管路内の
空気温度が上昇する。このような状態で検査を続ければ
、基準マスター内の空気の温度が被検査物である成形品
内の空気の温度より高くなるに至る。蓋し、被検査物で
ある成形品は検査毎に工場雰囲気中の空気が利用される
ために成形品内の空気温度が上昇することはないからで
ある。このために基準マスターと被検査用成形品に供給
される空気温度に差が出来、これが圧力差となって顕れ
る。また、検査中も両者の内部空気の温度降下速度に差
が現れ、これが圧力ノイズとなって正確な検査を妨げる
ことになる。
However, with this method, the inspector must constantly observe the presence or absence of air bubbles, which requires a dedicated person.
In addition, there is the inconvenience that accurate inspection cannot be performed because it is performed manually. Another method is to supply air at the same pressure to the molded product to be inspected and a reference master that has the same shape as the molded product and has no pressure leaks, and then compare and measure the presence or absence of a pressure difference between each within a predetermined time. However, if a value greater than a predetermined pressure difference can be confirmed on the side of the inspected object, there is a method of determining it as a defective product. However, in this latter method, the reference master is repeatedly used, especially when mass-produced test objects are to be inspected, and thus exposes the following drawbacks. In other words, the air supplied to the reference master is not discharged to the outside, but is constantly flowing in and out of the reference master and the air pipes that circulate through this master. Heat buildup occurs on the tube wall due to air compression, which increases the air temperature in the master and in the conduit. If the inspection is continued in this state, the temperature of the air inside the reference master will become higher than the temperature of the air inside the molded product to be inspected. This is because air in the factory atmosphere is used for each inspection of the molded product that is covered and inspected, so the air temperature inside the molded product does not rise. This creates a difference in the temperature of the air supplied to the reference master and the molded product to be inspected, which manifests itself as a pressure difference. Further, during the test, a difference appears in the rate of temperature drop of the internal air between the two, which causes pressure noise and impedes accurate testing.

そこで、本発明者等は鋭意考究並びに工夫を重ねた結果
、基準マスター内に供給する空気を検査毎に外へ排気し
、検査中は、常時、被検査物と同一の温度の空気を利用
するようにすれば基準マスターと被検査物と同一に条件
設定出来、得られる検査結果も極めて信頼度が高くなり
、正確な検査を行うことが可能な圧力洩れ検査方法が得
られ前記の不都合が一掃されることが判った。
Therefore, as a result of intensive research and efforts, the inventors of the present invention vented the air supplied inside the reference master to the outside for each inspection, and used air at the same temperature as the object to be inspected at all times during the inspection. By doing so, the same conditions can be set for the reference master and the object to be inspected, the inspection results obtained will be extremely reliable, and a pressure leak inspection method that allows accurate inspection will be obtained, eliminating the above-mentioned disadvantages. It turned out that it would be done.

従って、本発明の目的は量産工程における被検査物の品
質検査において、簡単にしかも精度の高い測定結果が得
られる圧力洩れ検査方法を提供するにある。
Accordingly, an object of the present invention is to provide a pressure leakage testing method that allows simple and highly accurate measurement results to be obtained in quality testing of objects to be tested in a mass production process.

前記の目的を達成するために、本発明は被検査物である
成形品とこの成形品と同一形状の基準マスターとに同圧
力の流体を供給して前記成形品内の圧力と基準マスター
内の圧力を比較測定し、成形品の良否を判断すると共に
さらに前記基準マスター内に供給される流体を測定毎に
外部へ排気することを特徴とする。
In order to achieve the above object, the present invention supplies a fluid of the same pressure to a molded product to be inspected and a reference master having the same shape as the molded product, so that the pressure in the molded product and the reference master are equal to each other. The method is characterized in that the pressure is comparatively measured to determine the quality of the molded product, and the fluid supplied into the reference master is further exhausted to the outside after each measurement.

次に、本発明に係る圧力洩れ検査方法について、それを
実施する装置との関係において好適な実施例を挙げ、添
付の図面を参照しながら以下詳細に説明する。
Next, the pressure leak testing method according to the present invention will be described in detail below with reference to the accompanying drawings, citing preferred embodiments in relation to the apparatus for carrying out the method.

そこで、本発明に係る圧力洩れ検査方法を実施する配管
系を第1図に示す。
FIG. 1 shows a piping system for carrying out the pressure leak inspection method according to the present invention.

参照符号20は空気供給源を示し、この空気供給源20
の吐出側はフィルタ22を介して圧力レギュレータ24
に連結される。前記圧力レギュレータ24の出力側は電
磁切換弁28に連結する。この場合、圧力レギュレータ
24と電磁切換弁28との間には、必要に応じてゲージ
26を介装しておく。
Reference numeral 20 indicates an air supply source, this air supply source 20
The discharge side of is connected to a pressure regulator 24 via a filter 22.
connected to. The output side of the pressure regulator 24 is connected to an electromagnetic switching valve 28 . In this case, a gauge 26 is interposed between the pressure regulator 24 and the electromagnetic switching valve 28, if necessary.

一方、電磁切換弁28の出力側は分岐して夫々、第1の
電磁切換弁30aと第2の電磁切換弁30bとに連結接
続する。前記第1電磁切換弁30aがら延在する管路3
1aは、さらに、フィルタ32a、絞り弁34aを介し
て被検査対象となる成形品(以下被検査物と称する)3
6に気密に接続する。
On the other hand, the output side of the electromagnetic switching valve 28 is branched and connected to a first electromagnetic switching valve 30a and a second electromagnetic switching valve 30b, respectively. A pipe line 3 extending from the first electromagnetic switching valve 30a
1a further passes through a filter 32a and a throttle valve 34a to a molded product to be inspected (hereinafter referred to as an inspected object) 3.
Connect to 6 airtightly.

前記第2電磁切換弁30bから延在する管路31bは同
様にしてフィルタ32bから絞り弁34bを経て基準マ
スター38に気密に接続される。なお、この場合、絞り
弁34bと基準マスター38との間にはコックにより開
閉する逃がし弁48を介装しておくと好適である。
Similarly, a conduit 31b extending from the second electromagnetic switching valve 30b is airtightly connected to the reference master 38 from the filter 32b via the throttle valve 34b. In this case, it is preferable to interpose a relief valve 48 between the throttle valve 34b and the reference master 38, which is opened and closed by a cock.

このような構成において、本発明では電磁切換弁30a
、30bの出口側に管路31a、31bに介装して差圧
検出器4oを配設する。前記差圧検出器40の出力側は
圧力増幅器42、メータ44を介して表示器46に連結
してお(。
In such a configuration, in the present invention, the electromagnetic switching valve 30a
, 30b, a differential pressure detector 4o is disposed between the pipes 31a and 31b. The output side of the differential pressure detector 40 is connected to a display 46 via a pressure amplifier 42 and a meter 44.

そこで、このように回路構成される圧力洩れ検査装置を
使用して成形品の圧力洩れの有無を検査する方法につい
て説明する。
Therefore, a method for inspecting the presence or absence of pressure leaks in a molded product using the pressure leak inspection device having the circuit configuration as described above will be described.

空気供給源20からの圧力空気は、フィルタ22を通過
し除塵作用が施され、圧力レギュレータ24によってそ
の圧力を所定値に調整される。ゲージ26はこの圧力レ
ギュレータ24の出力を表示する。次に、電磁切換弁2
8により二方向に分岐した空気は、一方において、電磁
切換弁30a1フイルタ32aおよび絞り弁34aを通
り被検査物36に供給され、他方において、電磁切換弁
30b、フィルタ32bおよび絞り弁34bを通り基準
マスター38に供給される。このようにして、被検査物
36と基準マスター38には同一条件で所定圧の空気が
導入される。そこで、差圧検出器40は管路31aと管
路31bの内部空気圧の差を測定する。
Pressurized air from the air supply source 20 passes through a filter 22 to remove dust, and its pressure is adjusted to a predetermined value by a pressure regulator 24. A gauge 26 indicates the output of this pressure regulator 24. Next, the electromagnetic switching valve 2
The air branched into two directions by 8 is supplied to the inspection object 36 through the electromagnetic switching valve 30a, filter 32a and throttle valve 34a on one side, and passes through the electromagnetic switching valve 30b, filter 32b and throttle valve 34b on the other hand to the standard. The signal is supplied to the master 38. In this way, air at a predetermined pressure is introduced into the inspected object 36 and the reference master 38 under the same conditions. Therefore, the differential pressure detector 40 measures the difference in internal air pressure between the pipe line 31a and the pipe line 31b.

この測定結果は増幅器42、メータ44を介して表示器
46に送給される。所定時間経過後に差圧が所定値より
も大きければ、被検査物36に亀裂、または、ピンホー
ル等の欠陥があることが確認される。従って、この被検
査物36を不良品として取り出すことが出来る。
This measurement result is sent to a display 46 via an amplifier 42 and a meter 44. If the differential pressure is greater than a predetermined value after a predetermined time has elapsed, it is confirmed that the inspected object 36 has a defect such as a crack or a pinhole. Therefore, this inspection object 36 can be taken out as a defective product.

ところで、このように検査が一旦終了した後、本発明で
は空気逃し弁48から基準マスター38内の空気を排気
し、次の検査時には被検査物36と基準マスター38と
に同条件の空気を供給する。
By the way, in the present invention, after the inspection is once completed, the air in the reference master 38 is exhausted from the air release valve 48, and air under the same conditions is supplied to the inspected object 36 and the reference master 38 during the next inspection. do.

すなわち、前記検査工程において被検査物36および基
準マスター38に供給された夫々の空気は検査中に外気
に冷やされて温度が下がり、そのため圧力変動を生じる
が、前記被検査物36および基準マスター38に供給さ
れる空気の温度が同じならば前記検査時における温度の
低下並びに圧力変動も同一となり検査において問題とな
ることはない。
That is, the air supplied to the object to be inspected 36 and the reference master 38 in the inspection process is cooled by the outside air during the inspection and its temperature decreases, resulting in pressure fluctuations. If the temperature of the air supplied is the same, the temperature drop and pressure fluctuation during the inspection will be the same and will not pose a problem during the inspection.

ここで、第2図に本発明に係る圧力洩れ検査方法と従来
の方法とによる検査回数と測定値の関係を示す、検査条
件は圧力2Kg/adで5秒間加圧し10秒間平衡をと
った後5秒間の測定を行った。また、排気に要した時間
は5秒間であった。
Here, Fig. 2 shows the relationship between the number of inspections and the measured values by the pressure leak inspection method according to the present invention and the conventional method.The inspection conditions were: pressurized at a pressure of 2 kg/ad for 5 seconds, balanced for 10 seconds; Measurement was performed for 5 seconds. Further, the time required for evacuation was 5 seconds.

図より明らかなように、従来方法では検査回数が増せば
その測定値にばらつきが生じ、例えば、10回の検査で
その測定値の誤差が0.3鶴^qまで及んでいるのに対
して、検査毎に排気する本検査方法ではその測定値がほ
とんど一定となり、10回の検査でもばらつきが0.1
mAqと非常に少ないため、常に正確な検査が可能とな
ることが判った。
As is clear from the figure, with the conventional method, as the number of tests increases, the measured values vary; for example, after 10 tests, the measured value has an error of up to 0.3 ^^. In this inspection method, which exhausts the air after each inspection, the measured value is almost constant, and the variation is 0.1 even after 10 inspections.
It was found that accurate testing is possible at all times because the amount is very small (mAq).

従って、本発明によれば、検査毎に基準マスター内の空
気を排気することにより常に同温度の空気、すなわち、
外部の空気を被検査物および前記基準マスターに供給す
る。このため、検査回数が増しても測定誤差を少なく抑
えることが出来る。これは、量産工程において生産され
る同一規格の被検査物を同一の基準マスターを使用して
繰り返し測定することが可能なことを意味する。
Therefore, according to the present invention, by exhausting the air in the reference master for each inspection, air is always kept at the same temperature, that is,
External air is supplied to the test object and the reference master. Therefore, even if the number of inspections increases, measurement errors can be kept to a low level. This means that it is possible to repeatedly measure test objects of the same standard produced in a mass production process using the same reference master.

以上、本発明について好適な実施例を挙げて説明したが
、本発明はこの実施例に限定されるものではなく、例え
ば、基準マスターに空気逃し弁に代わる空気排気口を設
けることも出来る等、本発明の要旨を逸脱しない範囲に
おいて種々の改良並びに設計の変更が可能なことは勿論
である。
Although the present invention has been described above with reference to a preferred embodiment, the present invention is not limited to this embodiment. For example, the reference master may be provided with an air exhaust port instead of an air relief valve. Of course, various improvements and changes in design are possible without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る圧力洩れ検査方法を実施する空気
供給系の配管図、第2図は本発明に係る検査方法と従来
の方法とによる検査回数と測定値の対比関係を示すグラ
フである。 20・・空気供給源     22・・フィルタ24・
・圧力レギュレータ  26・・ゲージ28・・電磁切
換弁 30a、30b・・電磁切換弁 31a、31b・・管路 32a132b・・フィルタ
Figure 1 is a piping diagram of an air supply system for carrying out the pressure leak inspection method according to the present invention, and Figure 2 is a graph showing the comparison between the number of inspections and measured values by the inspection method according to the present invention and the conventional method. be. 20...Air supply source 22...Filter 24...
・Pressure regulator 26...Gauge 28...Solenoid switching valves 30a, 30b...Solenoid switching valves 31a, 31b...Pipe line 32a132b...Filter

Claims (1)

【特許請求の範囲】[Claims] (1)被検査物である成形品とこの成形品と同一形状の
基準マスターとに同圧力の流体を供給して前記成形品内
の圧力と基準マスター内の圧力を比較測定し、成形品の
良否を判断すると共にさらに前記基準マスター内に供給
される流体を測定毎に外部へ排気することを特徴とする
圧力洩れ検査方法。
(1) Fluid of the same pressure is supplied to the molded product to be inspected and a reference master having the same shape as the molded product, and the pressure in the molded product and the pressure in the reference master are compared and measured. A pressure leak testing method characterized by determining pass/fail and further evacuating the fluid supplied into the reference master to the outside for each measurement.
JP19350784A 1984-09-15 1984-09-15 Inspecting method of pressure leak Pending JPS6182138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19350784A JPS6182138A (en) 1984-09-15 1984-09-15 Inspecting method of pressure leak

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19350784A JPS6182138A (en) 1984-09-15 1984-09-15 Inspecting method of pressure leak

Publications (1)

Publication Number Publication Date
JPS6182138A true JPS6182138A (en) 1986-04-25

Family

ID=16309201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19350784A Pending JPS6182138A (en) 1984-09-15 1984-09-15 Inspecting method of pressure leak

Country Status (1)

Country Link
JP (1) JPS6182138A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182501B1 (en) * 1997-10-21 2001-02-06 Cosmo Instruments, Co., Ltd. Leak test method and apparatus
KR100470264B1 (en) * 2002-05-02 2005-02-07 한국항공우주산업 주식회사 Tester for sensing leak of pressure and vacuum
KR100871632B1 (en) * 2007-06-13 2008-12-02 정종진 Defect inspection apparatus for castpart using test liquid with dye
CN100453994C (en) * 2006-10-17 2009-01-21 宁波赛盟科技发展有限公司 Auto-controlled gas liquid two purpose leakage detector
EP2238424A1 (en) * 2007-11-21 2010-10-13 Structural Monitoring Systems Ltd Differential comparative pressure monitoring system
DE10024794B4 (en) * 1999-05-25 2010-12-30 Vaillant Gmbh Device for checking the tightness of containers
JP2016176849A (en) * 2015-03-20 2016-10-06 株式会社ガスター Gas leakage inspection device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6182501B1 (en) * 1997-10-21 2001-02-06 Cosmo Instruments, Co., Ltd. Leak test method and apparatus
DE10024794B4 (en) * 1999-05-25 2010-12-30 Vaillant Gmbh Device for checking the tightness of containers
KR100470264B1 (en) * 2002-05-02 2005-02-07 한국항공우주산업 주식회사 Tester for sensing leak of pressure and vacuum
CN100453994C (en) * 2006-10-17 2009-01-21 宁波赛盟科技发展有限公司 Auto-controlled gas liquid two purpose leakage detector
KR100871632B1 (en) * 2007-06-13 2008-12-02 정종진 Defect inspection apparatus for castpart using test liquid with dye
EP2238424A1 (en) * 2007-11-21 2010-10-13 Structural Monitoring Systems Ltd Differential comparative pressure monitoring system
EP2238424A4 (en) * 2007-11-21 2013-01-23 Structural Monitoring Sys Ltd Differential comparative pressure monitoring system
JP2016176849A (en) * 2015-03-20 2016-10-06 株式会社ガスター Gas leakage inspection device

Similar Documents

Publication Publication Date Title
US6314794B1 (en) Method and apparatus for detecting leaks in heat exchangers for motor vehicles
US5600996A (en) Method and apparatus for testing the tightness of housings
JP2008309698A (en) Airtightness inspection device, airtightness inspection method and method for manufacturing airtight product
US3839900A (en) Air leakage detector
US5233861A (en) Apparatus and method for in situ calibration of a metering device
JPS6182138A (en) Inspecting method of pressure leak
US4553212A (en) Leakage inspection device for brake hoses
JPS6042411B2 (en) Differential pressure leak detection method and device
JPH0749286A (en) Engine leak testing method
JPH0510845A (en) Device for inspecting mobile storage tank for leakage
JPS6199831A (en) Pressure leakage inspecting method
JPS6199832A (en) Method of inspecting pressure leakage
JPH1137890A (en) Pressure leakage inspector
JP2005315784A (en) Leak detecting method, and detector therefor
JPH05118951A (en) Method for measuring leak of hollow structure
JP3559893B2 (en) Airtightness inspection method
JPH0493737A (en) Airtightness testing apparatus
JPS6226412B2 (en)
JP2000074775A (en) Leak tester and leak testing method for aluminum wheel
JP2999548B2 (en) Fluid leak inspection device
JPH10300624A (en) Inspection method for gas leakage
JPH0240515Y2 (en)
KR960010264Y1 (en) Leak detection apparatus
KR20180057391A (en) Continuous pressure leak test device module
JPS5842418B2 (en) Fluid leak test device