JPS5842418B2 - Fluid leak test device - Google Patents

Fluid leak test device

Info

Publication number
JPS5842418B2
JPS5842418B2 JP11582778A JP11582778A JPS5842418B2 JP S5842418 B2 JPS5842418 B2 JP S5842418B2 JP 11582778 A JP11582778 A JP 11582778A JP 11582778 A JP11582778 A JP 11582778A JP S5842418 B2 JPS5842418 B2 JP S5842418B2
Authority
JP
Japan
Prior art keywords
temperature
leak
workpiece
fluid
voltage conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11582778A
Other languages
Japanese (ja)
Other versions
JPS5543406A (en
Inventor
利夫 橋本
秀之 松原
高明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11582778A priority Critical patent/JPS5842418B2/en
Publication of JPS5543406A publication Critical patent/JPS5543406A/en
Publication of JPS5842418B2 publication Critical patent/JPS5842418B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 要旨の解説 この発明はガソリンタンク等の漏洩を確実に避けて製造
される容器を量産する場合、各製品をワークとして絶対
製品のマスクに対してリークテストを行う装置において
、圧力流体源に接続したリーク検出装置に配管を介して
両ワーク、マスクを接続し両者にテスト流体を封入した
場合、両者に配設した流体温度センサが検知温度を電圧
に変換されて前記リーク検出装置よりの検出差圧からリ
ーク測定回路にてキャンセルされるようにした流体リー
クテスト装置に関する発明であり、特に、両ワーク及び
マスクに対するマスキングに対し封入流体温度を直接検
知するように温度センサを内装しその各動部検出値の最
大値を加算器にて相対温度差として検出し差圧に変換し
、リーク測定回路にて前記検出差圧からキャンセルする
ようにした流体リークテスト装置に係る発明である。
[Detailed Description of the Invention] Explanation of the Summary This invention is applicable to an apparatus that performs a leak test on a mask of an absolute product using each product as a work when mass producing containers that are manufactured by reliably avoiding leakage from gasoline tanks, etc. When both the workpiece and the mask are connected via piping to a leak detection device connected to a pressure fluid source and a test fluid is sealed in both, the fluid temperature sensor installed in both converts the detected temperature into voltage and detects the leak. This invention relates to a fluid leak test device in which the differential pressure detected by the detection device is canceled by a leak measurement circuit, and in particular, a temperature sensor is installed to directly detect the temperature of the enclosed fluid for masking both the workpiece and the mask. The invention relates to a fluid leak test device in which the maximum value of the detected values of each moving part of the interior is detected as a relative temperature difference by an adder, converted to a differential pressure, and canceled from the detected differential pressure by a leak measurement circuit. It is.

従来技術 周知の如く、各方面において多種多様の容器が製造され
ており、その中でも、ガソリンタンクの如き密閉容器、
圧力容器では絶対にリークの存在は許されないため、当
然のことながら検査過程で厳密なリークテストを正確に
行う必要がある。
As is well known in the prior art, a wide variety of containers are manufactured in various fields, and among them, sealed containers such as gasoline tanks,
Since leaks are absolutely not allowed in pressure vessels, it goes without saying that rigorous and accurate leak tests must be performed during the inspection process.

しかも、該リークテストは多量のワークを順次行う必要
上から迅速に、しかも、効率良く行うことが望まれる。
Moreover, it is desired that the leak test be performed quickly and efficiently since it is necessary to sequentially perform a large amount of work.

そこで、これまで基本的構造のものを含めて種種のリー
クテスト装置が開発案出されており、差圧検出によるリ
ークチェックが正確になされるようになってきた。
Therefore, various types of leak test devices, including those with basic structures, have been developed and proposed, and leak checks based on differential pressure detection have become more accurate.

ところで、製品精度の向上、安全率の強化等の観点から
該リークチェックの正確さがより高精度に求められるよ
うになってワーク、マスクの双方に対する封入流体の計
測過程での温度の影響によって生ずる差圧がリークに与
る点を無視出来なくなり、温度補償回路を設けて温度に
よる差圧誤差をリークから除去するリークテスト装置が
開発使用されるようになった。
By the way, from the viewpoint of improving product accuracy and strengthening the safety factor, the accuracy of the leak check is required to be even higher. The effect of differential pressure on leaks can no longer be ignored, and leak test equipment has been developed and used that includes a temperature compensation circuit to eliminate differential pressure errors due to temperature from leaks.

即ち、第1図に示す様に在来の温度補償を行う流体リー
クテスト装置1は圧力流体源としての所定圧縮空気源2
に接続された後述周知のリーク検出装置3に対して完全
無リークの製品のマスタ4と被リークテスト製品のワー
ク5を適宜セット治具4’、5’によりフレームの所定
位置に固定し、各各給排管6,7を介して接続させ、マ
スタ4は固定マスキング治具8,9,10,11で開口
部を常密閉にし、一方、該ワーク5に対しては油圧シリ
ンダ12,13,14,15を介してマスキング治具1
6,17,1B、19で開口部を密閉し、又、テスト後
該ワーク5を次のワーク5と交替セット可能にされてい
る。
That is, as shown in FIG. 1, a conventional temperature-compensated fluid leak test device 1 uses a predetermined compressed air source 2 as a pressure fluid source.
A master 4 of a completely leak-free product and a workpiece 5 of a leak-tested product are fixed at predetermined positions on the frame using appropriate setting jigs 4' and 5', and each The master 4 is connected via each supply and exhaust pipe 6, 7, and the opening of the master 4 is always sealed with fixed masking jigs 8, 9, 10, 11, while the workpiece 5 is connected to the hydraulic cylinders 12, 13, Masking jig 1 via 14 and 15
The openings are sealed with 6, 17, 1B, and 19, and after the test, the workpiece 5 can be set alternately with the next workpiece 5.

而して、リークテスト時は該マスタ4、ワーク5をマス
キングし、配管6,7を介して圧縮空気をリーク検出装
置3を通して封入し、リークテストに入るが、マスタ4
、ワーク5の周囲温度が極めて不安定であり、就中、ワ
ーク5の表面を覆っているクーラントの温度差によって
圧入後の空気の温度による圧力が一定でない。
During the leak test, the master 4 and the workpiece 5 are masked, and compressed air is sealed through the leak detection device 3 via the pipes 6 and 7, and the leak test begins.
The ambient temperature of the workpiece 5 is extremely unstable, and in particular, the pressure due to the temperature of the air after pressurization is not constant due to the temperature difference in the coolant covering the surface of the workpiece 5.

そこで、マスタ4、ワーク5のマスキング治具10.1
9にブラケット20.21を取付け、該ブラケット20
,21を介して所定温度センサ22.23をマスタ4及
びワーク5の表面に当接させ、該マスタ4及びワーク5
の表面温度を測定し、温度差によるリーク測定誤差を修
正するようにしている。
Therefore, masking jig 10.1 for master 4 and work 5
Attach brackets 20 and 21 to
, 21, the predetermined temperature sensors 22 and 23 are brought into contact with the surfaces of the master 4 and the workpiece 5, and
The surface temperature of the sensor is measured and leakage measurement errors due to temperature differences are corrected.

ところで、ニアリーク量の温度に起因する測定誤差は測
定媒体の空気を封入したマスタ4とワーク5との間の単
位時間当りの温度変化の差による微小圧力変化に近似す
ることが分っているために、上記温度センサ22,23
のマスタ4及びワーク5のの表面温度T8M、’rsw
を検出し、配線24゜25を介して温度電圧変換機構2
6,27に接続して電圧信号に変換し、その各信号を温
度補償回路28の適宜加算器29に入力させて差圧信号
として取り出し、その差圧相当分を適宜感度調整器30
で変換し、前記リーク検出装置3の差圧検出機構31よ
りの検出信号と共にリーク測定回路32に於て該差圧検
出機構31からのリーク検出信号から温度差正分を所定
に減算して演算結果の信号を測定データとしてメータリ
レー33に出力表示するようにしている。
By the way, it is known that the measurement error due to the temperature of the near leak amount is approximated to a minute pressure change due to the difference in temperature change per unit time between the master 4 and the workpiece 5, which are filled with air as the measurement medium. , the temperature sensors 22 and 23
The surface temperature of master 4 and work 5 is T8M,'rsw
temperature voltage conversion mechanism 2 via wiring 24°25.
6 and 27 to convert it into a voltage signal, input each signal to the appropriate adder 29 of the temperature compensation circuit 28 and extract it as a differential pressure signal, and send the differential pressure equivalent to the appropriate sensitivity adjuster 30.
The temperature difference is calculated by subtracting a predetermined value from the leak detection signal from the differential pressure detection mechanism 31 in the leak measurement circuit 32 together with the detection signal from the differential pressure detection mechanism 31 of the leak detection device 3. The resulting signal is output and displayed on the meter relay 33 as measurement data.

而して、該温度補償過程においては第3図に示す様に横
軸に時間tを縦軸にマスタ4、ワーク5の前記測定表面
温度Tsをとると、前述の如く周囲条件により影響を受
ける表面温度Tsには必ずしも圧入直後の断熱圧縮の昇
温は現われず、前記加算器29に於ては測定開始時刻t
□から所定時間経過後のリーク検出時間(t2tx)の
温度差量、a’rsをt1時におけるTSMとTswの
差とt2時におけるTSMとTswの差との差、即ち、
両者の絶対温度差分としてとらえて結果的に、JTs−
JTsM−、a’rsw として測定し、その測定量を前記感度調整器30で差圧
相当に変換し、リーク検出量から減算除去するようにし
ている。
In the temperature compensation process, as shown in FIG. 3, if we take the time t on the horizontal axis and the measured surface temperature Ts of the master 4 and workpiece 5 on the vertical axis, it is affected by the ambient conditions as described above. The temperature increase due to adiabatic compression immediately after press-fitting does not necessarily appear in the surface temperature Ts, and the adder 29
The temperature difference amount at the leak detection time (t2tx) after a predetermined time has elapsed from □, a'rs, is the difference between the difference between TSM and Tsw at time t1 and the difference between TSM and Tsw at time t2, that is,
Taking it as the absolute temperature difference between the two, as a result, JTs-
JTsM-, a'rsw is measured, and the measured amount is converted into a value equivalent to the differential pressure by the sensitivity adjuster 30, and then subtracted and removed from the detected leakage amount.

したがって、基本的に上記封入流体自体の断熱圧縮によ
る影響を直接測定せず、クーラント等の周囲条件により
影響されるマスタ4、ワーク5の表面温度測定によって
両者の相対温度差でなく絶対温度差をとるようにしてお
り、リークに直接与る測定媒体流体の封入空気の温度を
測定しない欠点があった。
Therefore, basically, the effect of the adiabatic compression of the sealed fluid itself is not directly measured, but the absolute temperature difference, not the relative temperature difference, is measured by measuring the surface temperature of the master 4 and workpiece 5, which are affected by the ambient conditions such as the coolant. However, there was a drawback that the temperature of the air enclosed in the measurement medium fluid, which directly affects leakage, was not measured.

又、マスタ4の絶対温度差ATsM及びワーク5の絶対
温度差a’rswを得るために加圧、検出までの測定時
間が長くかかる難点があり、加えて、温度センサ、特に
、ワーク5へのセンサ23の接触状態を毎回正確、且つ
、均一にするには熟練を要する上にそのチェックが極め
て慎重である不都合さがあった。
In addition, there is a drawback that it takes a long time to pressurize and detect the absolute temperature difference ATsM of the master 4 and the absolute temperature difference a'rsw of the workpiece 5, and in addition, the temperature sensor, especially the There is an inconvenience that skill is required to ensure that the contact state of the sensor 23 is accurate and uniform every time, and that checking is extremely careful.

発明の目的 この発明の目的は上述従来技術に基づく温度補償付流体
リークテスト装置の問題点を解決すべき技術的課題とし
、マスク及びワークのマスキング治具内にて温度センサ
を配設して該マスキング治具内の流体に直接触れるよう
にし、該流体の温度を直接検知し、測定開始後のマスク
及びワーク内温度の最大値を検出してその差を計測時に
用い計測時間を短くし、正確にリーク検出が出来るよう
にし、各種産業における密封容器利用分野に益する優れ
た流体リークテスト装置を提供せんとするものである。
Purpose of the Invention The purpose of the present invention is to solve the problems of the temperature-compensated fluid leak test device based on the prior art described above, and to solve the problem by disposing a temperature sensor in the masking jig for the mask and the workpiece. The temperature of the fluid is directly detected by directly touching the fluid inside the masking jig, and the maximum value of the temperature inside the mask and workpiece after the start of measurement is detected.The difference is used during measurement to shorten the measurement time and increase accuracy. It is an object of the present invention to provide an excellent fluid leak test device that is capable of detecting leaks in various industries and is useful in the field of use of sealed containers in various industries.

発明の構成 上述目的に沿い先述特許請求の範囲を要旨とするこの発
明の構成は前述問題点を解決するためにリーク検出装置
から送給された圧力流体がセットマスク及びワークに封
入され、その封入前に予め両マスキング治具に内装され
た温度センサは直接該封入流体の測定開始後の温度状態
を検出し、該検出温度の最大値差が相対温度変化と強い
相関々係にあることによりリーク検出時に該最大値差に
よる差圧相当分の変換をしてリーク検知出力から減算し
てリーク量を除去するようにした技術的手段を講じたも
のである。
Structure of the Invention In order to solve the above-mentioned problems, the structure of the present invention, which is in accordance with the above-mentioned object and has the gist of the above-mentioned claims, is that the pressure fluid supplied from the leak detection device is sealed in the set mask and the workpiece, and the pressure fluid is sealed in the set mask and the workpiece. Temperature sensors installed in both masking jigs in advance directly detect the temperature state of the sealed fluid after the measurement starts, and the maximum difference in detected temperature is strongly correlated with relative temperature change, which prevents leakage. A technical measure is taken to remove the amount of leakage by converting the amount equivalent to the differential pressure based on the maximum value difference at the time of detection and subtracting it from the leakage detection output.

実施例−構成 次にこの発明の1実施例を第4図以下の図面に基づいて
説明すれば以下の通りである。
Embodiment - Configuration Next, one embodiment of the present invention will be described below based on the drawings from FIG. 4 onwards.

尚、第1゜2.3図と同一態様部分については同一符号
を付して説明するものとする。
Incidentally, parts having the same features as those in FIG. 1.2.3 will be described with the same reference numerals.

この発明の要旨を成すところの流体リークテスト装置1
′は第4図に示す様に圧力流体源の圧縮空気源2に接続
されたリーク検出装置3に対して前述同様のマスタ4及
びワーク5が配管6,7を介して前者は固定的に後者は
順次取換えられるようにして各マスキング治具8,9,
10,11並びに16.17.18.19により密封さ
れるようにされている点は従前同様態様である。
Fluid leak test device 1 which constitutes the gist of the invention
As shown in FIG. 4, a master 4 and a workpiece 5 similar to those described above are connected to a leak detection device 3 connected to a compressed air source 2 of a pressure fluid source via piping 6 and 7, so that the former is fixedly connected to the latter. are replaced in sequence so that each masking jig 8, 9,
10, 11 and 16, 17, 18, and 19, which is the same as before.

而して、該マスタ4及びワーク5のマスキング治具10
,19には周知の所定温度センサ22′。
Therefore, the masking jig 10 for the master 4 and the workpiece 5
, 19 are well-known predetermined temperature sensors 22'.

23′が予め内装され、直接、マスタ4及びワーク5の
封入空気に触れて該封入空気温度を検出するようにされ
、配線24.25を介して前述同様温度電圧変換機構2
6.27に接続されて、該温度電圧変換機構26.27
からの変換信号は温度補償回路28′に設けられた第5
図に示す様な適宜最大値保持器34.34’に入力され
て最大温度値を保持し、加算器29′に入信され、該加
算器29′に接続された感度調整器30′は該加算器2
9′による差圧相当分の変換を行い、その出力は前記リ
ーク検出装置3の差圧検出機構31からの検出信号と共
にリーク測定回路32に入力され、リーク検出信号から
最大温度値の差圧相当分を減算してメータリレー33に
送信するようにされている。
23' is installed in advance to directly touch the air enclosed in the master 4 and workpiece 5 to detect the temperature of the enclosed air, and is connected to the temperature-voltage conversion mechanism 2 via wiring 24 and 25 as described above.
6.27, the temperature voltage conversion mechanism 26.27
The conversion signal from the fifth circuit provided in the temperature compensation circuit 28'
As shown in the figure, the maximum temperature value is input to the appropriate maximum value holders 34 and 34' to hold the maximum temperature value, and is input to the adder 29', and the sensitivity adjuster 30' connected to the adder 29' Vessel 2
9', and the output thereof is input to the leak measurement circuit 32 together with the detection signal from the differential pressure detection mechanism 31 of the leak detection device 3, and the leak detection signal is converted to the differential pressure equivalent to the maximum temperature value. The minutes are subtracted and sent to the meter relay 33.

又、上記リーク検出装置3は第6,7図に詳示する様に
前記圧縮空気源2にフィルタ35、安全弁36、圧力計
37、ブツシャスイッチ38を前段計装し、前記各マス
キング治具装着完了のマスタ4、ワーク5に対して圧入
過程では圧縮空気を検出側三方弁39及びテスト側三方
弁40に分送し、該三方弁39から配管41より分岐し
た圧縮空気は二方弁42を通り、三方弁43まで配管4
4.45.46に充満され、又、同様対称配列の配管4
7より分岐した圧縮空気は二方弁48を通り三方弁49
まで配管50,5L52に充満され差圧検出機構31に
対して等圧になり、又、他の三方弁40に分岐された圧
縮空気は配管53を介して上記三方弁43.49にて分
岐して各々配管54,55絞り弁56,57を経て配管
6゜7からマスタ4、ワーク5に接続されそれぞれ等圧
にされる。
The leak detection device 3 has a filter 35, a safety valve 36, a pressure gauge 37, and a pusher switch 38 installed in the compressed air source 2, as shown in detail in FIGS. 6 and 7, and each of the masking jigs and During the press-fitting process for the master 4 and workpiece 5 that have been installed, compressed air is distributed to the detection side three-way valve 39 and the test side three-way valve 40, and the compressed air branched from the three-way valve 39 through the piping 41 is sent to the two-way valve 42. Piping 4 passes through to the three-way valve 43.
4.45.46, and the same symmetrical arrangement of pipes 4
The compressed air branched from 7 passes through a two-way valve 48 and a three-way valve 49.
The pipes 50, 5L52 are filled up to the point where the pressure is equal to the differential pressure detection mechanism 31, and the compressed air branched to the other three-way valve 40 is branched at the three-way valve 43, 49 via the pipe 53. The pipes 6.7 are connected to the master 4 and the workpiece 5 through pipes 54, 55 and throttle valves 56, 57, respectively, and are made to have equal pressures.

尚、三方弁39,40,43,49二方弁42゜48の
加圧P、平衡B、検出t、解放Oの各過程のタイムチャ
ートは第7図に示す通りである。
Incidentally, the time chart of each process of pressurization P, equilibrium B, detection t, and release O of the three-way valves 39, 40, 43, 49 and the two-way valves 42 and 48 is as shown in FIG.

実施例−作用 上述構成において、所定にセットした完全無リークのマ
スタ4に対しテストに供するワーク5をセット治具にセ
ットし、油圧シリンダ12,13゜14.15を介して
マスキング治具16,17゜18.19にて完全密封し
、上述リーク検出装置3の三方弁39,43,49及び
二方弁42,48の接続により圧縮空気を差圧検出機構
31に対してバランスさせると共に三方弁40,43,
49絞り弁56,57を介してマスタ4、ワーク5に対
し圧縮空気を圧送等圧にし測定過程に入る。
Embodiment - Operation In the above-described configuration, a workpiece 5 to be tested is set in a setting jig with respect to a completely leak-free master 4 set in a predetermined manner, and a masking jig 16, 17°18.19, and the compressed air is balanced against the differential pressure detection mechanism 31 by connecting the three-way valves 39, 43, 49 and the two-way valves 42, 48 of the leak detection device 3, and the three-way valve 40, 43,
Compressed air is fed to the master 4 and the workpiece 5 at equal pressure through the throttle valves 56 and 57, and the measurement process begins.

この時、マスタ4及びワーク5のマスキング治具10,
19に内装された温度センサ22’、23’は直ちに圧
入圧縮空気の断熱圧縮を直接検出し、第8図に示す様に
経過時間に対する検出空気温度TGMはマスタ4の封入
空気の気温TGW、ワーク5の封入空気の気温TGWと
共に測定開始時t。
At this time, the masking jig 10 for the master 4 and the workpiece 5,
The temperature sensors 22' and 23' installed in the master 4 immediately directly detect the adiabatic compression of the pressurized compressed air, and as shown in FIG. t at the start of measurement along with the temperature TGW of the sealed air in No. 5.

で急速昇温し始めそれぞれtM、1w時で最大値に達す
る。
The temperature starts to rise rapidly at tM and reaches the maximum value at 1W, respectively.

その間、該検知温度TGM及びTGWは温度電圧変換機
構26.27を介して最大値保持器34゜34′に入信
されtM、1w時でその最大値を保持され、加算器29
′にて相対温度差ATGとして保持される。
During this time, the detected temperatures TGM and TGW are input to the maximum value holder 34 34' via the temperature voltage conversion mechanism 26, 27, and are held at their maximum value at tM, 1W, and the adder 29
' is held as a relative temperature difference ATG.

一方、前記差圧検出機構31.マスタ4、ワーク5に対
する前記過程による圧縮空気圧人後二方弁42.48、
三方弁43.49の切換えにより差圧検出機構31に対
するマスタ4、ワーク5双方の圧力系列、即ち、配管4
4,45,46,55゜7、ワーク5及び配管50,5
2,51,54゜6、マスタ4を平衡過程Bにて等圧バ
ランス状に移行させ検出時刻t1からt2時まで検出測
定に入る。
On the other hand, the differential pressure detection mechanism 31. Master 4, compressed air pressure man rear two-way valve 42.48 according to the above process for workpiece 5;
By switching the three-way valves 43 and 49, the pressure series of both the master 4 and the workpiece 5 to the differential pressure detection mechanism 31, that is, the piping 4
4, 45, 46, 55°7, work 5 and piping 50, 5
2, 51, 54° 6, the master 4 is shifted to an equal pressure balanced state in the equilibrium process B, and detection measurement begins from detection time t1 to t2.

而して、該検出測定過程においては上述の如く、リーク
検出装置3に対し等圧バランス状に入るため、リークが
あれば直ちにリーク差圧が該リーク検出装置3に検出さ
れ、リーク測定回路32に出力りとして送信される。
In the detection and measurement process, as described above, the leak detection device 3 enters a state of equal pressure balance, so if there is a leak, the leakage differential pressure is immediately detected by the leak detection device 3, and the leakage measurement circuit 32 The output will be sent to

一方、測定開始時t□からのマスタ4、ワーク5に圧入
された圧縮空気の温度の最大値は最大値保持器34.3
4’を介し加算器29′でJTGの相対温度差として感
度調整器30′により差圧相当分に変換され、その一定
出力Cを検出時t1から42時の間上記リーク測定回路
32に送信する。
On the other hand, the maximum value of the temperature of the compressed air pressurized into the master 4 and workpiece 5 from t□ at the start of measurement is the maximum value holder 34.3.
4', the JTG relative temperature difference is converted by the sensitivity regulator 30' into an amount equivalent to the differential pressure by the adder 29', and the constant output C is transmitted to the leak measuring circuit 32 from the detection time t1 to 42 o'clock.

勿論、該送信データは上述の通り検出時刻t1からt2
までの間の相対温度差に基づく差圧信号ではないが、前
述の如く、最大値差ATGが相対温度変化と極めて強い
相関を有していることにより実質的に影響は無いもので
ある。
Of course, the transmission data is transmitted from detection time t1 to t2 as described above.
Although it is not a differential pressure signal based on the relative temperature difference between 1 and 2, as described above, the maximum value difference ATG has an extremely strong correlation with the relative temperature change, so there is virtually no influence.

而して、上記リーク測定回路32に送信された最大位差
変換相当信号とリーク差圧信号は図示しない所定加算器
により後者から前者を減算され、温度による差圧弁を除
去され、メータリレー33に表示される。
Then, the signal corresponding to the maximum level difference conversion and the leak differential pressure signal sent to the leak measuring circuit 32 are subtracted from the latter by a predetermined adder (not shown), the differential pressure valve due to temperature is removed, and the signal is sent to the meter relay 33. Is displayed.

そして、42時に測定終了すれば、マスタ4、ワーク5
の圧入空気は三方弁43,49.40の切換動作により
配管7,25,6,54,53ごと該三方弁40から系
外に排気され、油圧シリンダ12,13,14.15を
解離してマスキング治具16,17,18,19をワー
ク5から取外し、1サイクルを終え、次のワーク5のテ
ストを上述同様反復する。
If the measurement is completed at 42:00, master 4, work 5
The pressurized air is exhausted from the system together with the pipes 7, 25, 6, 54, and 53 by the switching operation of the three-way valves 43, 49.40, and the hydraulic cylinders 12, 13, and 14.15 are disengaged. The masking jigs 16, 17, 18, and 19 are removed from the workpiece 5, one cycle is completed, and the test for the next workpiece 5 is repeated in the same manner as described above.

他の実施例 尚、この発明の実施態様は上述実施例に限るものでない
ことは勿論であり、例えば、温度補償回路28′におい
てマスタ4、ワーク5の最大温度値時tM、tw以後の
各温度TGM 、TGWの変化の差を加算器29′、感
度調整器30′からリーク計測回路32へ入信Cさせる
と共に最大値保持器34゜34′にフィードバックGし
て各温度T。
Other Embodiments It goes without saying that the embodiments of the present invention are not limited to the above-mentioned embodiments. The difference between the changes in TGM and TGW is input to the leakage measuring circuit 32 from the adder 29' and the sensitivity adjuster 30', and is fed back to the maximum value holder 34 and 34' to obtain each temperature T.

MFTGWの低減する変化をとらえるようにし、検出開
始時t、以後の温度差JTGを予測して早期に温度差に
よるリーク誤差を除去するようにする等種々の態様が採
用可能である。
Various aspects can be adopted, such as detecting changes in the decrease in MFTGW, predicting the temperature difference JTG at the start of detection t and thereafter, and eliminating leakage errors due to the temperature difference at an early stage.

勿論、テスト時間、総ワーク5のテスト時間を長くする
ことが可能であるならば、検出時間t1からt2までの
実温度差JToを検出して減算させることも可能である
Of course, if it is possible to lengthen the test time and the test time for the total workpiece 5, it is also possible to detect and subtract the actual temperature difference JTo from detection time t1 to t2.

又、テスト流体は圧縮空気に限らないことも勿論である
Furthermore, it goes without saying that the test fluid is not limited to compressed air.

発明の効果 上述のようにこの発明によれば、温度補償機構を有する
流体リークテスト装置において、基本的に温度センサを
マスキングの封入検査流体に触れるように内装したこと
により、従来のワーク及びマスクの表面温度測定と異な
り、直接封入流体温度を検知することが可能となり、し
たがって、ワークとマスクの表面温度と内部封入流体温
度に著るしい差があっても温度補償を行うことが出来、
封入流体の経路別、ワークの粗材ロット差、加工誤差に
基づく内容積差に起因する圧入状態の断熱圧縮等による
昇温等の動的条件を正しく測定しながらも該動的温度差
に基づく微小差圧相当分を実測差圧から減算して正確に
リークを測定することが出来る優れた効果が奏される。
Effects of the Invention As described above, according to the present invention, in a fluid leak test device having a temperature compensation mechanism, the temperature sensor is basically installed inside the masking so that it comes into contact with the inspection fluid sealed in the masking, thereby improving the conventional workpiece and mask Unlike surface temperature measurement, it is possible to directly detect the temperature of the sealed fluid, and therefore, even if there is a significant difference between the surface temperature of the workpiece and mask and the temperature of the internal sealed fluid, temperature compensation can be performed.
While accurately measuring dynamic conditions such as temperature rise due to adiabatic compression in the press-fit state due to internal volume differences based on the route of the sealed fluid, differences in raw material lots of workpieces, and processing errors, it is possible to accurately measure dynamic conditions such as temperature rise due to adiabatic compression in the press-fit state The excellent effect of being able to accurately measure leakage by subtracting the amount equivalent to a minute differential pressure from the actually measured differential pressure is achieved.

又、温度センサをマスキング治具に内装することにより
該センサの他機器との作業中の干渉による損耗を可及的
に軽減することが出来る耐久性を向上させ、性能を維持
させることが出来る優れた効果もある。
In addition, by incorporating the temperature sensor into a masking jig, wear and tear due to interference with other equipment during work can be reduced as much as possible, durability can be improved, and performance can be maintained. There are also some effects.

更に、温度センサの温度電圧変換機構と加算器との間に
測定温度最大値保持器を介装し、前記動的温度測定値の
最大値差を差圧として保持し、最大値差が相対温度差と
強い相関を有する関係からリーク検出装置のリーク検出
値から検出時に減算することが出来るようにしたことに
より加圧から検出時間までの安定待ち時間を短縮するこ
とが出来、それにより反復する多くのワークのテスト回
数によるテスト時間を大幅に短くすることが出来る優れ
た効果がある。
Furthermore, a measured temperature maximum value holder is interposed between the temperature voltage conversion mechanism of the temperature sensor and the adder, and the maximum value difference of the dynamic temperature measurement values is held as a differential pressure, and the maximum value difference is the relative temperature. By making it possible to subtract from the leak detection value of the leak detection device at the time of detection due to the relationship that has a strong correlation with the difference, it is possible to shorten the stabilization waiting time from pressurization to detection time. This method has the excellent effect of significantly shortening the test time due to the number of tests performed on the workpiece.

更に又、そのように最大値外挿による温度補償を行うこ
とにより、リークテスト装置の測定精度を長時間安定さ
せることが出来、したがって、テスト信頼度を高めるこ
ともできる効果もある。
Furthermore, by performing temperature compensation by extrapolating the maximum value in this way, the measurement accuracy of the leak test device can be stabilized for a long time, and therefore, the test reliability can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術に基づく温度補償流体リークテスト装
置の全体概略説明模式図、第2図は第1同温度補償回路
の説明ブロック図、第3図は第1図装置の測定時間と測
定表面温度との関係曲線説明グラフ図、第4図以下はこ
の発明の1実施例の説明図であり、第4図は全体概略説
明模式図、第5図は第4図温度補償回路説明ブロック図
、第6図はリーク検出装置の詳細回路図、第7図は同タ
イムチャート図、第8図は第4図測定の時間と測定温度
の関係曲線説明グラフ図である。 2・・・・・・圧力流体源、3・・・・・・リーク検出
装置、5・・・・・・リーク、4・・・・・・マスク、
TGM、TGw・・・・・・流体温度、22’、23’
・・・・・・温度センサ、26,27・・・・・・温度
電圧変換機構、T、31・・・・・・差圧検出機構、3
2・・・・・・リーク測定回路、10,19・・・・・
・マスキング治具、28′・・・・・・温度補償回路、
34゜34′・・・・・・最大値保持器、30′・・・
・・・感度調整器、29/・・・・・・加算器。
Fig. 1 is a schematic explanatory diagram of the entire temperature-compensated fluid leak test device based on the conventional technology, Fig. 2 is an explanatory block diagram of the first temperature compensation circuit, and Fig. 3 is the measurement time and measurement surface of the device shown in Fig. 1. A graph diagram explaining the relationship curve with temperature, FIG. 4 and the following diagrams are diagrams explaining one embodiment of the present invention, FIG. 4 is a schematic diagram for explaining the overall outline, and FIG. FIG. 6 is a detailed circuit diagram of the leak detection device, FIG. 7 is a time chart thereof, and FIG. 8 is a graph explaining the relationship curve between measurement time and measured temperature shown in FIG. 4. 2... Pressure fluid source, 3... Leak detection device, 5... Leak, 4... Mask,
TGM, TGw...Fluid temperature, 22', 23'
... Temperature sensor, 26, 27 ... Temperature voltage conversion mechanism, T, 31 ... Differential pressure detection mechanism, 3
2... Leak measurement circuit, 10, 19...
・Masking jig, 28′...Temperature compensation circuit,
34゜34'...Maximum value holder, 30'...
...sensitivity adjuster, 29/...adder.

Claims (1)

【特許請求の範囲】[Claims] 1 圧力流体源に接続されるリーク検出装置に配管を介
してワーク及びマスクが接続され該ワーク及びマスクに
セットされた各封入流体温度センサが温度電圧変換機構
に接続され該温度電圧変換機構と前記リーク検出装置の
差圧検出機構とがリーク測定回路に接続されている流体
リークテスト装置において、流体温度センサが該ワーク
及びマスクに装着される各マスキングの該ワーク及びマ
スクの封入流体接触域に内装されて前記温度電圧変換機
構に接続され、而して該温度電圧変換機構が温度補償回
路を介してリーク測定回路に接続され、而して該温度補
償回路には前記温度電圧変換機構に接続する最大値保持
器と上記リーク測定回路に接続する感度調整器とが両者
の間に加算器を介設し接続して設けられていることを特
徴とする流体リークテスト装置。
1. A workpiece and a mask are connected via piping to a leak detection device connected to a pressure fluid source, and each sealed fluid temperature sensor set in the workpiece and mask is connected to a temperature-voltage conversion mechanism, and the temperature-voltage conversion mechanism and the In a fluid leak test device in which a differential pressure detection mechanism of the leak detection device is connected to a leak measurement circuit, a fluid temperature sensor is installed in the enclosed fluid contact area of each masking device attached to the workpiece and mask. and connected to the temperature-voltage conversion mechanism, and the temperature-voltage conversion mechanism is connected to a leakage measurement circuit via a temperature compensation circuit, and the temperature-compensation circuit is connected to the temperature-voltage conversion mechanism. A fluid leak test device characterized in that a maximum value holder and a sensitivity adjuster connected to the leak measuring circuit are connected to each other with an adder interposed between them.
JP11582778A 1978-09-22 1978-09-22 Fluid leak test device Expired JPS5842418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11582778A JPS5842418B2 (en) 1978-09-22 1978-09-22 Fluid leak test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11582778A JPS5842418B2 (en) 1978-09-22 1978-09-22 Fluid leak test device

Publications (2)

Publication Number Publication Date
JPS5543406A JPS5543406A (en) 1980-03-27
JPS5842418B2 true JPS5842418B2 (en) 1983-09-20

Family

ID=14672091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11582778A Expired JPS5842418B2 (en) 1978-09-22 1978-09-22 Fluid leak test device

Country Status (1)

Country Link
JP (1) JPS5842418B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140452U (en) * 1982-03-17 1983-09-21 トヨタ自動車株式会社 Airtight seal device
JPS58216926A (en) * 1982-06-11 1983-12-16 Honda Motor Co Ltd Air leak tester
US4532795A (en) * 1984-04-23 1985-08-06 Semyon Brayman Method of temperature compensating leak rate testing
JP5221410B2 (en) * 2009-02-17 2013-06-26 株式会社フクダ Leak test apparatus and method, and temperature sensitive member

Also Published As

Publication number Publication date
JPS5543406A (en) 1980-03-27

Similar Documents

Publication Publication Date Title
US4523452A (en) Method of measuring leak rates
CN101458148B (en) High precision gas leakage working position separating detection device
US4272985A (en) Method of and apparatus for compensating for temperature in leak testing
JPS63277948A (en) Temperature compensating method and device of detection of leakage
US3839900A (en) Air leakage detector
JPH0157728B2 (en)
US5600996A (en) Method and apparatus for testing the tightness of housings
US4763518A (en) Method for measuring net internal volume of a receptacle containing an unknown volume of residual liquid
CN204314033U (en) Pipe flange compactedness test macro
JPS5842418B2 (en) Fluid leak test device
JP2875829B2 (en) Accuracy check device for safety valve automatic inspection device
US3893332A (en) Leakage test system
CN105953982A (en) Pipe flange gas leakage detection device
CN201352168Y (en) High precision gas leakage different-work-station detecting device
EP0038824A1 (en) Method for testing the fluid tightness of a test object.
JPS6182138A (en) Inspecting method of pressure leak
EP0661529A3 (en) Procedure and device for leak testing of a volume and for determining the leaking amount.
JP3382727B2 (en) Leak test equipment
JP2618952B2 (en) Calibration device for differential pressure transmitter
JPH0129250B2 (en)
JP3186644B2 (en) Gas leak inspection method
JPH11351999A (en) Method and apparatus for inspecting leakage
CN211347262U (en) Inspection device for valve shell leakage
JPS59190632A (en) Differential-pressure displaying device
US2936610A (en) Differential pressure testing means