JPS6182034A - Fluid-sealed mount for series 4-cylinder engine - Google Patents

Fluid-sealed mount for series 4-cylinder engine

Info

Publication number
JPS6182034A
JPS6182034A JP18986984A JP18986984A JPS6182034A JP S6182034 A JPS6182034 A JP S6182034A JP 18986984 A JP18986984 A JP 18986984A JP 18986984 A JP18986984 A JP 18986984A JP S6182034 A JPS6182034 A JP S6182034A
Authority
JP
Japan
Prior art keywords
orifice
fluid
spring constant
static spring
mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18986984A
Other languages
Japanese (ja)
Other versions
JPH0143852B2 (en
Inventor
Katsuyoshi Arai
新井 克芳
Yasuo Miyamoto
宮本 康生
Takefumi Toyoshima
豊島 健文
Hiroshi Yoshida
宏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP18986984A priority Critical patent/JPS6182034A/en
Publication of JPS6182034A publication Critical patent/JPS6182034A/en
Publication of JPH0143852B2 publication Critical patent/JPH0143852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like

Abstract

PURPOSE:To obtain the function for satisfying the shake movement and the secondary vibration of an engine by setting the wall rigidity ratio determined from the static spring constant in the state where an orifice is opened and the static spring constant in the state where the orifice is sealed into a prescribed range. CONSTITUTION:The cylinder part 3 of the base member 1 of a fixed case 2 and an inverted-cone-shaped installation member 7 are joined through a shear- type thick elastic rubber member 9, and the inside fluid chambers 11 and 12 are formed into the upper and lower divisions by an orifice plate 4. When the wall-rigidity ratio of an elastic rubber member 9 which is determined by the static spring constant in the state where the orifice 5 of the orifice plate 4 is opened and the static spring constant in the state where the orifice 5 is sealed is set to 0.5<=a<=1, the high damping for the shake movement of an engine and the low movement factor for the secondary vibration can be achieved at a same time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は直列4気筒エンジン用としての流体封入マウン
トに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fluid-filled mount for an in-line four-cylinder engine.

(従来の技術) エンジンマウントとして用いられる一般的な流体封入マ
ウントは、フレームに固定されるベース部材と、エンジ
ンに連結される取付部材とを剪断型の厚肉なる弾性ゴム
材で結合するとともに。
(Prior Art) A typical fluid-filled mount used as an engine mount connects a base member fixed to a frame and a mounting member connected to an engine using a shear type thick elastic rubber material.

ベース部材に薄肉ゴム襲のダイヤフラムを固着して内部
に流体室を形成し、この流体室を上下に区画するオリフ
ィス板を設けて成る。
A thin rubber-filled diaphragm is fixed to a base member to form a fluid chamber therein, and an orifice plate is provided to divide the fluid chamber into upper and lower sections.

(発明が解決しようとする問題点) ところで、自動車用として一般的な直列4気筒エンジン
を前記マウントにて支持する場合、マウントとして要求
される性能要件は、ダンピング。
(Problems to be Solved by the Invention) When the mount supports a typical in-line four-cylinder engine for automobiles, the performance requirement for the mount is damping.

即ち損失係数[tanδ1のピーク値が0.2以上で絶
対動的ばね定数IK ’Iを静的ばね定数[1glで除
して表される動倍:J[IK’l /Kslの周波数1
00Hz付近における値が2以下である。つまり斯かる
領域を逸脱すると、流体封入マウントとしての大きな利
点であるダンピングが小さくなり過ぎたり、また車体に
伝達されるエンジン振動が大きくなり過ぎたすしてマウ
ント性能の低下を招いてしまう。
In other words, when the peak value of the loss coefficient [tan δ1 is 0.2 or more, the dynamic multiplier expressed by dividing the absolute dynamic spring constant IK'I by the static spring constant [1gl] is the frequency 1 of J [IK'l /Ksl
The value near 00Hz is 2 or less. In other words, if the mount deviates from this range, the damping, which is a major advantage of a fluid-filled mount, becomes too small, and the engine vibration transmitted to the vehicle body becomes too large, resulting in a decline in mount performance.

本発明の目的は、前記性能要件を満足し、つまりエンジ
ンのシェイク動に対する高ダンピング化、2次振動に対
する低動倍率化を同時に達成し、しかも理論的に裏付け
がなされた設定条件に、  基づく直列4気筒エンジン
用流体封入マウントを提供するにある。
The purpose of the present invention is to satisfy the above-mentioned performance requirements, that is, simultaneously achieve high damping against engine shaking motion and low dynamic multiplier against secondary vibration, and furthermore, based on setting conditions that are theoretically supported. To provide a fluid-filled mount for a four-cylinder engine.

(問題点を解決するための手段) 従って本発明は、オリフィスを開放した状態での静的ば
ね定数を[Ksl 、密閉した状態での静的ばね定数を
 [Kil として下式 で表される弾性部材(3)の壁組性化[alを0.5 
 ≦ a ≦ 1 の範囲に設定して直列、4気筒エンジン用流体封入マウ
ントを構成したことを特徴とする。
(Means for Solving the Problems) Therefore, the present invention provides elasticity expressed by the following formula, where the static spring constant in the open state of the orifice is [Ksl, and the static spring constant in the closed state is [Kil]. Wall assembly property of member (3) [al is 0.5
The present invention is characterized in that a fluid-filled mount for an in-line, 4-cylinder engine is configured by setting a in the range of ≦a≦1.

(実施例) 以下に本発明の実施例を添付図面に従って説明する。(Example) Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は流体封入マウントの中央縦断面図で。Figure 1 is a central vertical cross-sectional view of the fluid-filled mount.

固定ケース(2)上に筒部(3)を起設したペース部材
(1)の筒部(3)と、逆円錐台形の取付部材(7)と
を剪断型の厚肉なる弾性ゴム材(8)で結合するととも
に、筒部(3)の下部内周に中央にオリフィス(5)を
有するオリフィス板部(0を形成し、更にこのオリフィ
ス板部(4)の下面に薄肉ゴム製のダイヤフラム(6)
をケース(2)内へ膨出させて付設し、斯くしてオリフ
ィス板部(4)の上下には主流体室(11)と副流体室
(!2)が画成される。
The cylindrical part (3) of the pace member (1), which has the cylindrical part (3) upright on the fixed case (2), and the inverted truncated conical mounting member (7) are connected by shearing thick elastic rubber material ( 8), an orifice plate part (0) having an orifice (5) in the center is formed on the inner periphery of the lower part of the cylinder part (3), and a thin rubber diaphragm is attached to the lower surface of this orifice plate part (4). (6)
is bulged into the case (2) and attached thereto, thus defining a main fluid chamber (11) and a sub-fluid chamber (!2) above and below the orifice plate portion (4).

斯かる流体封入マウントは、自動車のフレーム上にベー
ス部材(1)のケース(2)を固定し、取付部材(7)
上に突設した取付ボルト(8)に直列4気筒エンジンを
連結する。
Such a fluid-tight mount fixes the case (2) of the base member (1) on the frame of the vehicle, and the mounting member (7)
Connect the in-line 4-cylinder engine to the mounting bolt (8) protruding from the top.

以上の流体封入マウントにおいて、損失係数[tanδ
1及び動倍率[IK”l/Ksl とパラ) −夕トの
間の相関を調べた実験結果から以下のことが判明した。
In the above fluid-filled mount, the loss coefficient [tanδ
1 and the dynamic magnification [IK''l/Ksl and para) - the experimental results that investigated the correlation between the rotation rate and the rotation rate revealed the following.

周波数 100Hz付赴での[1に一17Kslは、は
ぼa+1である。
At a frequency of 100 Hz, 1 to 17 Ksl is approximately a+1.

ここで、 [alは+iiJ記弾性ゴム材(8)の壁剛
性比と称するパラメータであり、前記オリフィス(5)
を開放した状態での静的ばね定数を[Ks]、密閉した
状態での静的ばね定数を[KjJ とした場合にと定義
される数値である。尚、前記【δ1は、マウントに加え
た変位と伝えられた力との間の位相差である。
Here, [al is a parameter called the wall rigidity ratio of the elastic rubber material (8), and the orifice (5)
This value is defined when the static spring constant in the open state is [Ks] and the static spring constant in the closed state is [KjJ]. Note that [δ1] is the phase difference between the displacement applied to the mount and the transmitted force.

そして前記の実験結果は、理論的には次のように裏付け
られる。
The above experimental results are theoretically supported as follows.

先ず、流体封入マウントは第2図のように簡単なモデル
で表されや0図中【&1は弾性ゴム材(9)のばね定数
で、[clはオリフィス(5)での流体の質量流量であ
る。
First, the fluid-filled mount is represented by a simple model as shown in Fig. 2. In Fig. be.

このモデルを計算すると1周波数【ω1として を得る。When calculating this model, one frequency [ω1] get.

これをグラフ化すれば、第3図及び第4図の如くである
If this is graphed, it will look like FIGS. 3 and 4.

これから[tanδ1のピーク値と、ω→■における 
[lK”l / Ksl との間の関係は、となり、m
5図の如くグラフ化できる。
From this, [the peak value of tan δ1 and at ω→■
The relationship between [lK”l / Ksl is, m
It can be graphed as shown in Figure 5.

一方、直列4気筒エンジン用流体封入マウントとして要
求される既述した性能要件、即ちtanδ ≧ 0.2 1にl7Kg  ≦ 2 を第5図に描けば、その領域は斜線で示した範囲である
On the other hand, if the above-mentioned performance requirements required for a fluid-filled mount for an in-line four-cylinder engine, that is, tan δ ≧ 0.2 1 and l7 Kg ≦ 2 are drawn in FIG. 5, the area is the range shown by diagonal lines.

周波数100Hzテノ[lKml/Kg]がほぼal1
からンエイク動に関する性能要件は パ・a ≧ 0.5 2次振動に関する性能要件は al1  ≦ 2 ・’、aS;1 を得る。
Frequency 100Hz teno [lKml/Kg] is almost al1
The performance requirement regarding the spin-ake motion is pa·a ≧ 0.5, and the performance requirement regarding the secondary vibration is al1 ≦ 2 ·′, aS;1.

従ってシェイク勤と2次振動に対する性能要件を同時に
満足する[aJの値の範囲は 0.5  ≦ a ≦ 1 となる。
Therefore, the performance requirements for shake and secondary vibration are simultaneously satisfied [the value range of aJ is 0.5≦a≦1].

このように直列4気鏑エンジン用流体封入マウントとし
ては、壁剛性比[alが上記範囲内の値でなければ、シ
ャイク勤と2次振動を同時に満足するエンジンマウント
とならない。
As described above, in a fluid-filled mount for an in-line four-gas engine, unless the wall stiffness ratio [al] is within the above range, the engine mount will not satisfy the mechanical shock and the secondary vibration at the same time.

(発明の効果) 以上のように本発明によれば、壁剛性比[al を0.
5≦a≦1の範囲に設定して流体封入マウントを構成す
るため、直列4気筒エンジン用のマウントとしての性能
要件を満足し、しかも理論的に裏付けされた前記設定条
件によってエンジンのシェイク動に対する高ダンピング
化、2次振動に対する低動倍率化を同時に達成すること
ができる。
(Effects of the Invention) As described above, according to the present invention, the wall stiffness ratio [al] is set to 0.
Since the fluid-filled mount is configured with the setting within the range of 5≦a≦1, it satisfies the performance requirements for a mount for an in-line 4-cylinder engine, and the above-mentioned theoretically supported setting conditions provide resistance to engine shaking motion. High damping and low dynamic magnification against secondary vibration can be achieved at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は流体封入マウントの中央縦断面図、第2図は同
モデル図、第3図は周波数−動的ばね定数特性線図、第
4図は周波数−損失係数特性線図、第5図は損失係数値
−動倍率特性線図である。 尚1図面中、(1)はベース部材、(0はオリフィス板
、(5)はオリフィス、(6)はダイヤプラム、(7)
は取付部材、(9)は弾性部材、(11)。 (12)は流体室である。 昭和60年5月17日 特願昭59−189869号 2、発明の名称 直列4気筒エンジン用流体封入マウント3、補正をする
者 4、代理人 明細書の発明の詳細な説明 3nδ 7、補正の内容 明細書を下記の如く補正する。 ■、第2頁第14行目[・・・0.2以上で絶」とある
を「・・・0.2以上で、絶」と訂正する。 2、第5頁第15行目乃至16行目に「第1ノフイス(
5)での流体の質量流量」とあるを「第1ノフイス(5
)の減衰係数」と訂正する。
Figure 1 is a central vertical cross-sectional view of the fluid-filled mount, Figure 2 is a diagram of the model, Figure 3 is a frequency-dynamic spring constant characteristic diagram, Figure 4 is a frequency-loss coefficient characteristic diagram, and Figure 5 is a diagram of the frequency-dynamic spring constant characteristic. is a loss coefficient value-dynamic magnification characteristic diagram. In one drawing, (1) is the base member, (0 is the orifice plate, (5) is the orifice, (6) is the diaphragm, (7)
is a mounting member, (9) is an elastic member, and (11). (12) is a fluid chamber. May 17, 1985, Japanese Patent Application No. 59-189869 2, Name of the invention: Fluid-filled mount for in-line 4-cylinder engine 3, Person making the amendment 4, Detailed description of the invention in the attorney's specification 3nδ 7, Amendment The description of contents is amended as follows. ■, Page 2, line 14, correct the statement [...0.2 or more, absolute] to "...0.2 or more, absolute". 2. On page 5, lines 15 and 16, “The first nophis (
5)" is replaced with "mass flow rate of fluid at 1st no. 5)"
) is corrected as "attenuation coefficient of".

Claims (1)

【特許請求の範囲】 フレームに固定されるベース部材と、直列4気筒エンジ
ンに連結される取付部材とを弾性部材で結合して内部に
流体室を形成し、該流体室を2室に画成するオリフィス
板を設けて成る流体封入マウントにおいて、オリフィス
を開放した状態での静的ばね定数を[Ks]、密閉した
状態での静的ばね定数を[Ks′]として下式 a=(Ks′)/(Ks)−1 で表される当該マウントの壁剛性比[a]を0.5≦a
≦1 の範囲として構成したことを特徴とする直列4気筒エン
ジン用流体封入マウント。
[Claims] A base member fixed to a frame and a mounting member connected to an in-line 4-cylinder engine are connected by an elastic member to form a fluid chamber inside, and the fluid chamber is divided into two chambers. In a fluid-filled mount equipped with an orifice plate, the static spring constant when the orifice is open is [Ks], and the static spring constant when the orifice is closed is [Ks'], and the following formula a = (Ks' )/(Ks)-1, the wall stiffness ratio [a] of the mount is 0.5≦a
A fluid-filled mount for an in-line four-cylinder engine, characterized in that the fluid-filled mount is configured in a range of ≦1.
JP18986984A 1984-09-11 1984-09-11 Fluid-sealed mount for series 4-cylinder engine Granted JPS6182034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18986984A JPS6182034A (en) 1984-09-11 1984-09-11 Fluid-sealed mount for series 4-cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18986984A JPS6182034A (en) 1984-09-11 1984-09-11 Fluid-sealed mount for series 4-cylinder engine

Publications (2)

Publication Number Publication Date
JPS6182034A true JPS6182034A (en) 1986-04-25
JPH0143852B2 JPH0143852B2 (en) 1989-09-22

Family

ID=16248530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18986984A Granted JPS6182034A (en) 1984-09-11 1984-09-11 Fluid-sealed mount for series 4-cylinder engine

Country Status (1)

Country Link
JP (1) JPS6182034A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165977A (en) * 2017-05-19 2017-09-15 江苏优纳优盛新材料有限公司 A kind of micropore choke type nano-fluid level 2 buffering energy absorption device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165977A (en) * 2017-05-19 2017-09-15 江苏优纳优盛新材料有限公司 A kind of micropore choke type nano-fluid level 2 buffering energy absorption device

Also Published As

Publication number Publication date
JPH0143852B2 (en) 1989-09-22

Similar Documents

Publication Publication Date Title
JPS5947171B2 (en) Elastic support device for vehicle engine suspension
JPH033088B2 (en)
JPH0330736B2 (en)
JPS60249749A (en) Vibro-isolator
JPS6196229A (en) Liquid enclosing type vibro-isolating body
JPH04203629A (en) Vibration isolator
JPH0247613B2 (en)
JPH05584Y2 (en)
JPS6182034A (en) Fluid-sealed mount for series 4-cylinder engine
JP2773796B2 (en) Anti-vibration support device
JPH0228020B2 (en)
JPH0237497B2 (en)
JP3764534B2 (en) Liquid filled vibration isolator
JPH0821474A (en) Air spring device
JP3231095B2 (en) Fluid-filled anti-vibration mount
JPH0722510Y2 (en) Liquid-filled bush
JP2572376Y2 (en) Liquid-filled mount
JP3603910B2 (en) Liquid-filled mount
JPS62196433A (en) Liquid-sealed vibration isolator
JPS60208649A (en) Power unit mounting device containing liquid
JPH08277878A (en) Liquid-filled vibration control device
JPS61266843A (en) Vibration preventer enclosing liquid
JPH032089B2 (en)
JPS60231040A (en) Liquid-seal vibro-isolating device
JPH0223881Y2 (en)