JPS6180596A - Sense amplifier circuit - Google Patents

Sense amplifier circuit

Info

Publication number
JPS6180596A
JPS6180596A JP59202303A JP20230384A JPS6180596A JP S6180596 A JPS6180596 A JP S6180596A JP 59202303 A JP59202303 A JP 59202303A JP 20230384 A JP20230384 A JP 20230384A JP S6180596 A JPS6180596 A JP S6180596A
Authority
JP
Japan
Prior art keywords
electric potential
misfet
potential
connection point
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59202303A
Other languages
Japanese (ja)
Other versions
JPH0746502B2 (en
Inventor
Masunori Sugimoto
杉本 益規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59202303A priority Critical patent/JPH0746502B2/en
Publication of JPS6180596A publication Critical patent/JPS6180596A/en
Publication of JPH0746502B2 publication Critical patent/JPH0746502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To detect and amplify without converting an electric current difference to an electric potential difference by a resistance by connecting 10 MISFETs including a load element prescribedly and forming a circuit. CONSTITUTION:A sense amplifier circuit is formed by 10 pieces of MISFET of depletion type MISFET 1, 3, 5 and 7 and MISFET 2, 4, 6, 8, 9, 10, 11 and 12. For example, when the electric current of an input terminal 13 is larger than an input terminal 14, in a connecting point 24, its electric potential is changed quickly compared with a connecting point 25, FET 2 is off and the electric potential of the output terminal 15 becomes the electric potential VDD of an electric power source 20. Thus, FET 6 is on, the electric potential of a connecting point 22 becomes the electric potential VSSs of a power source 21, FET 10 is off, the electric potential of a connecting point 25 will not be changed FET 4 is kept to be on. As this result, the fact that the electric potential of the connecting point 16 becomes the electric potential VSS, and the electric current of the terminal 13 is large, is detected without converting to electric current difference and electric potential difference by a resistance and influencing dispersion of a resistance value, and this can be amplified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMISFETによシ構成されるメモリ回路に適
したセンスアンプ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a sense amplifier circuit suitable for a memory circuit configured with MISFETs.

〔従来技術〕[Prior art]

近年、MISFETによるダイナミックメモリ回路にお
いてはその大容量化に伴ない、小さな面積で実現できる
メモリセルの開発が盛んである。そのようなメモリセル
のうちの幾つかは、2つの論理レベルに対応する2つの
状態を、読み出し時においてメモリセルを流れる電流の
違いによシ区別するものである。
In recent years, as the capacity of dynamic memory circuits using MISFETs has increased, there has been active development of memory cells that can be realized in a small area. Some such memory cells distinguish between two states corresponding to two logic levels by differences in the current flowing through the memory cell when read.

しかしながら、従来のMI 5FET集積回路では電流
゛ の違いを効果的に検出できる回路は知られていなか
った・このため、従来は抵抗を用いて電流を電圧に変換
し、電位の違いを検出するセンスアンプを用いて2つの
状態のうちいずれにあるかを検出していた(アイ・イー
・イー・イー・トランスアクション・オン・エレクトロ
ン・デパイセズ(fEEE Trtns、 on El
ectron Devlees vol、ED−29(
1982)707〜714))。この場合の2つの状態
の電流差をΔ工、また電流を流す抵抗をRとすると、得
られる電位差ΔVとΔI、Rとの間には、オームの法則
よυ次の関係が成立する。
However, in the conventional MI 5FET integrated circuit, there was no known circuit that could effectively detect the difference in current. Therefore, in the past, a resistor was used to convert the current into voltage and detect the difference in potential. An amplifier was used to detect which of two states it was in (fEEE Trtns, on El
ectron Devlees vol, ED-29 (
1982) 707-714)). If the current difference between the two states in this case is ΔW, and the resistance through which the current flows is R, then the following relationship holds true between the resulting potential difference ΔV, ΔI, and R according to Ohm's law.

ΔV=RX ΔI 従って、大きな電位差を得るためには抵抗値Rを大きく
しなければならない。
ΔV=RX ΔI Therefore, in order to obtain a large potential difference, the resistance value R must be increased.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、MXS集積回路では抵抗を精度良く作成
するのは困難でちゃ、特に大きな抵抗のものの作成は難
かしい。したがってMIS集積回路で上記検出回路を構
成したときには抵抗値のばらつきによシ、正しく動作し
ない虞れがあった。
However, in MXS integrated circuits, it is difficult to manufacture resistors with high precision, especially those with large resistances. Therefore, when the detection circuit is constructed using an MIS integrated circuit, there is a risk that it will not operate properly due to variations in resistance values.

本発明は、この点に鑑み、電流の違いを検出するのに特
に適したセンスアンプ回路を提供することを目的とする
In view of this point, it is an object of the present invention to provide a sense amplifier circuit particularly suitable for detecting differences in current.

c問題点を解決する丸めの手段〕 本発明は一端を第1の電源20に接続し他端を第1の出
力端子15に接続した第1の負荷素子(MISFET)
 1と、ドレイン電極を前記第1の出力端子15に接続
しソース電極を第2の電源21に接続した第1のMIS
FET 2と、一端を前記第1電源20に接続し他端を
第2の出力端子16に接続した第2の負荷素子(MIS
FET) 3と、ドレイン直積を前記第2の出力端子1
6に接続しソース電極を前記第2の電源21に接続した
第2のMISFET 4と、一端を前記第1の電源20
に接続し他端を第1の接続点22に接続した第3の負荷
素子(MzspEr) 5と、ドレイン電極を前記第1
の接続点22に接続し?−)電極を前記第1の出力端子
15に接続し、ソース電極を前記第2の電源21に接続
した第3のMISFET 6と、一端を前記第一の電源
20に接続し他端を第2の接続点23に接続した第4の
負荷素子(MISFET) 7と、ドレイン−極を前記
第2の接続点23に接続しゲート電極を@2第2の出力
端子16に接続しソース電極を前記第2の電源21に接
続した第4のMISFET 8と、ドレイン電極を前記
第1のMISFET2のゲート電1に接続し?−)電極
を前記第2の接続点23に接続しソース電極を第1の入
力端子13に接続した第5のMlsFET 9と、ドレ
イン電(1メを前記第2のMISFET 4のゲート電
極に接続し、ゲート電極を前記第1の接続点22に接続
しソース電極を第2の入力端子14に接続した第6のM
ISFET 10と、ドレイン電極を前記第1の電源2
0に接続しゲート電極をクロック入力端子19に接続し
ソース電極を前記第1 )MISFET 2 ノr −
ト’!極に接続した第7 OMISFET11と、ドレ
イン電極を前記第1の電源2oに接続しゲート電極を前
記クロック入力端子19に接続しソース電極を前記第2
のMISFET 4のゲート電極に接続した第8のMI
SFET 12とを具備することを特徴とするセンスア
ンプ回路である。
Rounding Means for Solving Problem c] The present invention provides a first load element (MISFET) with one end connected to the first power supply 20 and the other end connected to the first output terminal 15.
1, and a first MIS whose drain electrode is connected to the first output terminal 15 and whose source electrode is connected to the second power supply 21.
FET 2 and a second load element (MIS) whose one end is connected to the first power supply 20 and the other end is connected to the second output terminal 16.
FET) 3 and the drain direct product to the second output terminal 1.
a second MISFET 4 whose source electrode is connected to the second power source 21 and whose one end is connected to the first power source 20;
a third load element (MzspEr) 5 whose other end is connected to the first connection point 22 and whose drain electrode is connected to the first connection point 22;
Connect to connection point 22 of ? -) a third MISFET 6 whose electrode is connected to the first output terminal 15 and whose source electrode is connected to the second power supply 21; one end is connected to the first power supply 20 and the other end is connected to the second A fourth load element (MISFET) 7 is connected to the connection point 23 of A fourth MISFET 8 is connected to the second power supply 21, and its drain electrode is connected to the gate electrode 1 of the first MISFET 2. -) a fifth MlsFET 9 whose electrode is connected to the second connection point 23 and whose source electrode is connected to the first input terminal 13; and a sixth M whose gate electrode is connected to the first connection point 22 and whose source electrode is connected to the second input terminal 14.
ISFET 10 and the drain electrode connected to the first power supply 2
0, the gate electrode is connected to the clock input terminal 19, and the source electrode is connected to the first) MISFET 2 nor -.
to'! a seventh OMISFET 11 connected to the terminal, a drain electrode connected to the first power supply 2o, a gate electrode connected to the clock input terminal 19, and a source electrode connected to the second
The eighth MI connected to the gate electrode of MISFET 4
This is a sense amplifier circuit characterized by comprising an SFET 12.

〔実施例〕〔Example〕

以下本発明の一実確例をg1図に従って説明する。以下
実施例ではMQ 5FETについて説明するが、一般に
MISFETについて適用できるのはいうまでもない。
Hereinafter, one concrete example of the present invention will be explained according to the g1 diagram. In the following embodiments, an MQ 5FET will be explained, but it goes without saying that the present invention can be applied to MISFETs in general.

第1図において、7″グレッシ、l/型のMOSFET
1.3及び5,7は2端子の負荷素子として動作する。
In Figure 1, a 7" Gressi, l/type MOSFET
1.3, 5, and 7 operate as two-terminal load elements.

MOSFET 1 、31’:j−tしく’しMOSF
ET 2 、4 ト共に、インバータを構成する。MO
SFET 1 、3及びMOSFET 2 、4とはそ
九ぞれ電気的特性の整合がとられている。
MOSFET 1, 31': j-t's MOSFET
Both ET 2 and ET 4 constitute an inverter. M.O.
SFETs 1 and 3 and MOSFETs 2 and 4 are matched in electrical characteristics.

待機時にはクロック入力端子19にはMOSFET 1
1と12とを4通させるrt位が印加されており、この
結果MO8FET 2と4とのゲート電極が接続されて
いる接続点24と25との電位は電源20の′d位vD
Dにほぼ等しく 、MOSFET 2と4とは共に導通
している。このため、出力端子15と16には共に電源
21の電位Vllllにほぼ等しい電位があられれる。
MOSFET 1 is connected to the clock input terminal 19 during standby.
A potential at rt is applied that causes 4 passes through MO8FETs 2 and 12, and as a result, the potential at the connection points 24 and 25, where the gate electrodes of MO8FETs 2 and 4 are connected, is at the d level vD of the power supply 20.
D is approximately equal to D, and MOSFETs 2 and 4 are both conductive. Therefore, a potential approximately equal to the potential Vllll of the power supply 21 is applied to both the output terminals 15 and 16.

動作時にはクロック入力端子19にMOSFET 11
と12を遮断させる電位を印加する。入力端子13と1
4には比較すべき電流が加えられていて、これらの電流
はそれぞれ接続点24の浮遊容量17及び接続点25の
浮遊容量18を放電する。この結果、接続点24と25
との電位は電源21の電位VaSに同って変化する。こ
こで浮遊容量16と17との値は等しいものとする。一
般にMO8FET集積回路において、容量値は幾可学的
形状によシはぼ決定されるので抵抗値に比較しはるかに
制御が容易である。従って、この条件は容易に満たすこ
とができる。
During operation, MOSFET 11 is connected to clock input terminal 19.
and 12 are applied. Input terminals 13 and 1
Currents to be compared are applied to 4, and these currents discharge the stray capacitance 17 of the connection point 24 and the stray capacitance 18 of the connection point 25, respectively. As a result, connection points 24 and 25
The potential of the power source 21 changes in the same manner as the potential VaS of the power supply 21. Here, it is assumed that the values of stray capacitances 16 and 17 are equal. In general, in MO8FET integrated circuits, the capacitance value is largely determined by the geometrical shape and is therefore much easier to control than the resistance value. Therefore, this condition can be easily met.

今、仮に入力端子13に加えられている電流の方が、入
力端子14に加えられている電流よシ大きいとする。こ
の場合接続点24の電位は接続点25の電位よシ速く変
化する。この結果、やがてMOSFET2が遮断し、出
力端子15の電位が電源20の′社位’l’DDになる
。これによp MOSFET 6が導通し、接続点22
の電位が電源21の電位Mil11にほぼ等しくなp 
MOSFET 10を遮断する。この結果接続点25の
電位は変化しなくなシ、MOSFET 4は導通したま
まに保たれ、出力端子16の電位はV++sK近い電位
に保たれる。このようにして、接続点15の電位がVD
D%接続点16の電位が’/agに近い値となシ、入力
漏子13に加えられている電流の方が大きいことが検出
できる。
Now, suppose that the current applied to the input terminal 13 is larger than the current applied to the input terminal 14. In this case, the potential at the connection point 24 changes faster than the potential at the connection point 25. As a result, the MOSFET 2 is eventually cut off, and the potential of the output terminal 15 becomes ``1'' DD of the power supply 20. This makes p MOSFET 6 conductive and connection point 22
When the potential of p is approximately equal to the potential Mil11 of the power supply 21,
MOSFET 10 is shut off. As a result, the potential at the connection point 25 does not change, the MOSFET 4 remains conductive, and the potential at the output terminal 16 is maintained at a potential close to V++sK. In this way, the potential at the connection point 15 becomes VD
When the potential at the D% connection point 16 is close to '/ag, it can be detected that the current being applied to the input leakage element 13 is larger.

第1図の回路に於て、出力端子15の電位がvDDにな
シ、接続点22の電位をVB2に近い電位とし、MOS
FET 10を遮断した後も、MOSFET 10のリ
ーク′成流が大きいときは、少しずつ容量18が放′亀
され、充分時間が経った後にはMOSFET 4が、a
ll′rシてしまい、出力端子16の電位が出力端子1
5の電位と等しくvDDになってしまうことが考えられ
る。
In the circuit of FIG. 1, the potential of the output terminal 15 is set to VDD, the potential of the connection point 22 is set to a potential close to VB2, and the MOS
Even after FET 10 is shut off, if the leakage current of MOSFET 10 is large, the capacitance 18 is released little by little, and after a sufficient period of time, MOSFET 4 becomes a
ll'r, and the potential of the output terminal 16 becomes the output terminal 1.
It is conceivable that the potential becomes vDD, which is equal to the potential of No. 5.

このようにリーク電流が大きい時も動作する回路の構成
を第2図に示す。第2図の回路は、第1図の回路のMO
SFET 11 、12と並列にそれぞれMOSFET
31と32とが付は加えられている。第1図の回路と同
様に、仮に入力端子13に加えられている電流の方が入
力端子14に加えられている電流よυも大きいとする。
FIG. 2 shows the configuration of a circuit that operates even when the leakage current is large. The circuit in Figure 2 is the MO of the circuit in Figure 1.
MOSFETs in parallel with SFETs 11 and 12, respectively.
31 and 32 have been added. As in the circuit of FIG. 1, it is assumed that the current applied to the input terminal 13 is larger than the current applied to the input terminal 14 by υ.

待機状態に於ては出力端子15 、16の電位はVSS
にほぼ等しいのでMOSFET 31と32とは共に遮
断されている。MOSFET 11と12を遮断し回路
を動作状態にし、やがてMOSFET 2がi@L出力
端子15ノ電位がVDDにfxッた時、MOSFET 
10が遮断されると同時にMOSFET 32が導通す
る。この結果接続点25の電位はVDDまで引き上げら
れ、以降この値を保つ。このためMOSFET 10の
リーク電流の有無にかかわらず、MOSFET 4は導
通状態に保たれる。
In the standby state, the potential of output terminals 15 and 16 is VSS.
Since it is approximately equal to , both MOSFETs 31 and 32 are cut off. MOSFETs 11 and 12 are cut off to put the circuit into operation, and when the potential of MOSFET 2's i@L output terminal 15 reaches VDD, MOSFET
At the same time MOSFET 10 is turned off, MOSFET 32 becomes conductive. As a result, the potential at the connection point 25 is raised to VDD and remains at this value thereafter. Therefore, regardless of the presence or absence of leakage current in MOSFET 10, MOSFET 4 is maintained in a conductive state.

以上各実施例に於て、容i17.18として浮遊容量を
考えたが、これは必要に応じて別に容量素子を付は加え
ても構わない。また実゛際に出力を発生させる回路とし
てはMOSFET 1と2またMOSFET3と4から
なる単純なインバータ回路を用いているが、これはよ)
利得の高いカスコード増幅回路やシュミット・トリガ回
路を用いた方が良い特性が得られる場合がおる。
In each of the above embodiments, the stray capacitance was considered as the capacitance i17.18, but a separate capacitive element may be added as required. Also, as the circuit that actually generates the output, a simple inverter circuit consisting of MOSFETs 1 and 2 and MOSFETs 3 and 4 is used, but this is fine)
In some cases, better characteristics can be obtained by using a high-gain cascode amplifier circuit or Schmitt trigger circuit.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明によれば、電流差を、抵抗を通
して電位差に変抗することなしに検出。
As described above, according to the present invention, a current difference can be detected without changing to a potential difference through a resistor.

増幅でき、抵抗値のばらつきの影響を受けない電流値検
出型のセンスアンプ回路を得ることができるので、電流
検出型のメモリセルを用いたMISメモリにおいて大き
な効果がある。
Since it is possible to obtain a current value detection type sense amplifier circuit that can perform amplification and is not affected by variations in resistance values, it is highly effective in MIS memory using current detection type memory cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はいずれも本発明の実施例を示す回路図
である・ 1.2.3,4,5,6,7,8.9,10,11,1
2.31゜32・・・MOSFET、 13 、14・
・・入力端子。15 、16・・・出力端子。17.1
8・・・容量。19・・・クロック入力端子。 20 、21・・・電諒G
1 and 2 are circuit diagrams showing embodiments of the present invention. 1.2.3, 4, 5, 6, 7, 8.9, 10, 11, 1
2.31゜32...MOSFET, 13, 14.
...Input terminal. 15, 16...output terminals. 17.1
8...Capacity. 19...Clock input terminal. 20, 21... Denryo G

Claims (1)

【特許請求の範囲】[Claims] (1)一端を第1の電源に接続し他端を第1の出力端子
に接続した第1の負荷素子と、ドレイン電極を前記第1
の出力端子に接続しソース電極を第2の電源に接続した
第1のMISFETと、一端を前記第1の電源に接続し
他端を第2の出力端子に接続した第2の負荷素子と、ド
レイン電極を前記第2の出力端子に接続しソース電極を
前記第2の電源に接続した第2のMISFETと、一端
を前記第1の電源に接続し他端を第1の接続点に接続し
た第3の負荷素子と、ドレイン電極を前記第1の接続点
に接続しゲート電極を前記第1の出力端子に接続し、ソ
ース電極を前記第2の電源に接続した第3のMISFE
Tと、一端を前記第一の電源に接続し他端を第2の接続
点に接続した第4の負荷素子と、ドレイン電極を前記第
2の接続点に接続しゲート電極を前記第2の出力端子に
接続しソース電極を前記第2の電源に接続した第4のM
ISFETと、ドレイン電極を前記第1のMISFET
のゲート電極に接続しゲート電極を前記第2の接続点に
接続しソース電極を第1の入力端子に接続した第5のM
ISFETと、ドレイン電極を前記第2のMISFET
のゲート電極に接続しゲート電極を前記第1の接続点に
接続しソース電極を第2の入力端子に接続した第6のM
ISFETと、ドレイン電極を前記第1の電源に接続し
ゲート電極をクロック入力端子に接続しソース電極を前
記第1のMISFETのゲート電極に接続した第7のM
ISFETと、ドレイン電極を前記第1の電源に接続し
ゲート電極を前記クロック入力端子に接続しソース電極
を前記第2のMISFETのゲート電極に接続した第8
のMISFETとを具備することを特徴とするセンスア
ンプ回路。
(1) A first load element having one end connected to a first power supply and the other end connected to a first output terminal, and a drain electrode connected to the first
a first MISFET connected to the output terminal of the first MISFET and having its source electrode connected to a second power supply; a second load element having one end connected to the first power supply and the other end connected to a second output terminal; a second MISFET having a drain electrode connected to the second output terminal and a source electrode connected to the second power source; one end connected to the first power source and the other end connected to the first connection point; a third load element, a third MISFE having a drain electrode connected to the first connection point, a gate electrode connected to the first output terminal, and a source electrode connected to the second power source;
a fourth load element having one end connected to the first power supply and the other end connected to the second connection point; a fourth load element having a drain electrode connected to the second connection point and a gate electrode connected to the second connection point; a fourth M connected to the output terminal and having its source electrode connected to the second power source;
ISFET, and the drain electrode is connected to the first MISFET.
a fifth M, the gate electrode being connected to the second connection point and the source electrode being connected to the first input terminal;
ISFET, and the drain electrode is connected to the second MISFET.
a sixth M, the gate electrode being connected to the first connection point and the source electrode being connected to the second input terminal;
ISFET, and a seventh MISFET having a drain electrode connected to the first power source, a gate electrode connected to the clock input terminal, and a source electrode connected to the gate electrode of the first MISFET.
ISFET, an eighth MISFET having a drain electrode connected to the first power supply, a gate electrode connected to the clock input terminal, and a source electrode connected to the gate electrode of the second MISFET.
A sense amplifier circuit comprising: a MISFET.
JP59202303A 1984-09-27 1984-09-27 Sense amplifier circuit Expired - Lifetime JPH0746502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202303A JPH0746502B2 (en) 1984-09-27 1984-09-27 Sense amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202303A JPH0746502B2 (en) 1984-09-27 1984-09-27 Sense amplifier circuit

Publications (2)

Publication Number Publication Date
JPS6180596A true JPS6180596A (en) 1986-04-24
JPH0746502B2 JPH0746502B2 (en) 1995-05-17

Family

ID=16455307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202303A Expired - Lifetime JPH0746502B2 (en) 1984-09-27 1984-09-27 Sense amplifier circuit

Country Status (1)

Country Link
JP (1) JPH0746502B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870485A (en) * 1981-10-21 1983-04-26 Nec Corp Memory device
JPS5877091A (en) * 1981-10-30 1983-05-10 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870485A (en) * 1981-10-21 1983-04-26 Nec Corp Memory device
JPS5877091A (en) * 1981-10-30 1983-05-10 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Memory device

Also Published As

Publication number Publication date
JPH0746502B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
JPS603249B2 (en) Complementary comparator/inverter circuit with low power consumption
JPH0441846B2 (en)
JPH01227520A (en) Power semiconductor device
US6686789B2 (en) Dynamic low power reference circuit
JPH052037A (en) Zero cross detecting circuit
JPH0766014B2 (en) CMOS power-on detection circuit
US4603264A (en) Schmitt trigger circuit with stable operation
JPS6237470B2 (en)
JPS6180596A (en) Sense amplifier circuit
KR930001401B1 (en) Sense amplifier
CN112242823A (en) Differential input circuit, control method thereof and differential amplifier
JPH0618306B2 (en) Operational amplifier circuit
JPS58147209A (en) Amplifying circuit
JP2893738B2 (en) Voltage detection circuit
JP3325707B2 (en) Operational amplifier
JPS62222314A (en) Constant current circuit for temperature sensor
JPS61162895A (en) Sense amplifier circuit
JPH02268516A (en) Semiconductor device
JP3063090B2 (en) Differential amplifier circuit
JP2979627B2 (en) Differential circuit
JPH0746499B2 (en) Sense amplifier circuit
EP0112895B1 (en) A voltage detecting and translating circuit
JPS6126996A (en) Sensor circuit
JPH02170707A (en) Operational amplifier
JPS61162896A (en) Sense amplifier circuit