JPS6179123A - Measuring instrument for emissivity and temperature of body - Google Patents

Measuring instrument for emissivity and temperature of body

Info

Publication number
JPS6179123A
JPS6179123A JP59202818A JP20281884A JPS6179123A JP S6179123 A JPS6179123 A JP S6179123A JP 59202818 A JP59202818 A JP 59202818A JP 20281884 A JP20281884 A JP 20281884A JP S6179123 A JPS6179123 A JP S6179123A
Authority
JP
Japan
Prior art keywords
emissivity
temperature
radiation
radiant energy
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59202818A
Other languages
Japanese (ja)
Other versions
JPH0514852B2 (en
Inventor
Isao Hishikari
功 菱刈
Tetsuo Kobari
小針 哲郎
Mitsuo Ishige
石毛 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Works Ltd filed Critical Chino Works Ltd
Priority to JP59202818A priority Critical patent/JPS6179123A/en
Publication of JPS6179123A publication Critical patent/JPS6179123A/en
Publication of JPH0514852B2 publication Critical patent/JPH0514852B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/70Passive compensation of pyrometer measurements, e.g. using ambient temperature sensing or sensing of temperature within housing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0896Optical arrangements using a light source, e.g. for illuminating a surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • G01J5/802Calibration by correcting for emissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0074Radiation pyrometry, e.g. infrared or optical thermometry having separate detection of emissivity

Abstract

PURPOSE:To easily measure the emissivity and temperature of an object body by calculating the emissivity on the basis of the relation between a difference between a detected value when radiant energy is incident and a detected value when not and the emissivity of the object body, and calculating the temperature from it. CONSTITUTION:A scan type radiation thermometer 2 which scans the object body 1 to detect radiant energy from it and radiation sources 31 and 32 which radiates radiant energy to the object body 1 in the scanning area of the thermometer 2 are provided. Then, a coefficient of correction as the ratio of the difference between the detected value when the radiant energy from the radiation sources 31 and 32 which is reflected by the object body 1 is incident on the thermometer 2 and that when not and a value regarding the temperature of the radiation sources is in specific relation with the emissivity of the object body 1, so the emissivity is calculated from it, and an arithmetic means 6 calculates the temperature of the object body 1. Consequently, a correct temperature distribution after the emissivity of the object body 1 is corrected is measured through the simple constitution.

Description

【発明の詳細な説明】 (1)発明の分野 この発明は、走査形放射温度計を用いた鋼板等の放射率
および温度の測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to an apparatus for measuring the emissivity and temperature of steel plates and the like using a scanning radiation thermometer.

(2)従来技術 出願人は、たとえば特開昭57−161521号公報に
あるように、比較熱板と測定物体との距離を変化させた
ときの放射検出器の出力変化から測定物体の放射率を求
める方法を提案している。
(2) Prior art As disclosed in Japanese Patent Laid-Open No. 57-161521, for example, the applicant has determined that the emissivity of the object to be measured is based on the change in the output of the radiation detector when the distance between the comparison hot plate and the object to be measured is changed. We are proposing a method to find the .

しかしながら、この方法では、比較熱板を駆動する装置
が大型なものとなり、また、一点測定のため測定物体の
広い範囲での放射率、温度パターンの測定が困難である
等の問題点が生じている。
However, this method requires a large device to drive the comparative heating plate, and also has problems such as the difficulty of measuring the emissivity and temperature pattern over a wide range of the measurement object because of the single-point measurement. There is.

(3)発明の目的 この発明の目的は、以上の点に鑑み、より簡便に、測定
物体の広い範囲での放射率、温度の測定を可能とした物
体の放射率および温度の測定装置を提供することである
(3) Purpose of the Invention In view of the above points, the purpose of the present invention is to provide a device for measuring the emissivity and temperature of an object, which makes it possible to more easily measure the emissivity and temperature of the object over a wide range. It is to be.

(4)発明の概要 この発明は、走査形放射温度計に測定物体を反射した放
射源からの放射エネルギーが入射したときと入射しない
ときの検出値の差と放射源温度に関連する値との比であ
る補正係数が測定物体の放射率と所定の関係にあること
に基いて放射率を求め、この放射率から温度を求めるよ
うにした物体の放射率および温度の測定装置である。
(4) Summary of the Invention This invention provides a method for determining the difference between detected values when radiant energy from a radiation source reflected from a measurement object is incident on a scanning radiation thermometer and when it is not, and the value related to the radiation source temperature. This is an apparatus for measuring the emissivity and temperature of an object, which calculates the emissivity based on the fact that a correction coefficient, which is a ratio, has a predetermined relationship with the emissivity of the object to be measured, and calculates the temperature from this emissivity.

(5)発明の実施例 第1図は、この発明の一実施例を示す構成説明図である
(5) Embodiment of the Invention FIG. 1 is an explanatory diagram showing an embodiment of the invention.

図において、1は、紙面に対して垂直に走行する鋼板の
ような測定物体、2は、測定物体1の幅方向を垂直に走
査して測定物体1からの放射エネルギーを検出するCO
Dまたは走査鏡等を用いた走査形放射温度計、31.3
2は、走査形放射湛度計2の走査線上の両側に位置し走
査形放射湿度計2の走査領域の測定物体1に放射エネル
ギーを放射し測定物体1を反射した放射エネルギーが走
査形放射温度計2に入射するよう設けら゛れた放射源、
4は、走査形放射濃度計2、放射源31.32を支持し
、放射源31.32の放射エネルギーを放射する開口、
走査形成@温度計2の放射エネルギーを受光する開口を
有する背景放射板(壁)、5は、背景放射板4の温度を
検出する熱電対、測温抵抗体のような温度検出器、6は
、走査形放射温度計2、放射源31.32、温度検出器
5の出力信号が供給され、所定の演算処理を行い温度信
号を得るマイクロコンピュータ、パーソナルコンピュー
タ、あるいはアナログ回路を利用した演算手段である。
In the figure, 1 is a measurement object such as a steel plate that runs perpendicular to the paper surface, and 2 is a CO that scans the width direction of the measurement object 1 perpendicularly to detect the radiant energy from the measurement object 1.
D or scanning radiation thermometer using scanning mirror, etc., 31.3
2 is located on both sides of the scanning line of the scanning radiant hygrometer 2, and emits radiant energy to the measuring object 1 in the scanning area of the scanning radiant hygrometer 2, and the radiant energy reflected from the measuring object 1 is the scanning radiant temperature. a radiation source arranged to be incident on the total 2;
4 is an aperture that supports the scanning radiodensitometer 2 and the radiation source 31.32 and emits the radiant energy of the radiation source 31.32;
A background radiation plate (wall) having an opening for receiving the radiation energy of the scanning formation@thermometer 2; 5 is a temperature detector such as a thermocouple or a resistance thermometer to detect the temperature of the background radiation plate 4; 6 is a temperature detector such as a thermometer; , the scanning radiation thermometer 2, the radiation source 31, 32, and the temperature detector 5 are supplied with the output signals, and a microcomputer, a personal computer, or an arithmetic means using an analog circuit performs predetermined arithmetic processing to obtain a temperature signal. be.

なお、走査形放射温度計2は、以下、1軸(−次元)走
査形のものについて説明するが、面走査形についてでも
同様で、放射源31.32は、1個でもよく、また背景
放射板4は、通常の壁面でもよい。
The scanning radiation thermometer 2 will be described below as a one-axis (-dimensional) scanning type, but the same applies to a surface scanning type, and the number of radiation sources 31 and 32 may be one, and the background radiation The plate 4 may be a normal wall surface.

測定物体1の温度をT1放射率をε、反射率をρ、放射
源31,32の温度をTr、放射率をεr1背景放射板
4の温度をTW、走査形放射温度計2の出力信号をE(
S)、温度下の黒体の放射エネルギーをE (T)とす
る。
The temperature of the measuring object 1 is T1. E(
S), the radiant energy of a black body under temperature is E (T).

走査形放射温度計2・が、測定物体1を走査すると第2
図のように、放射源31.32からの放射エネルギーが
入射したときに、高い出力信号が得られる。
When the scanning radiation thermometer 2 scans the measurement object 1, the second
As shown, a high output signal is obtained when radiant energy from the radiation sources 31, 32 is incident.

放射源31.32からの放射エネルギーが走査形放射温
度計2に入射したときの出力信号をE(31>、入射し
ないときの出力信号をE(S2)とすると次式が成り立
つ。
If the output signal when the radiation energy from the radiation sources 31 and 32 is incident on the scanning radiation thermometer 2 is E(31>), and the output signal when the radiation energy is not incident is E(S2), the following equation holds true.

E  (S  +  )  −ε E  (T)  +
a ρ 6r  (Tr  )+βρE(TV)・・・
・・・・・・・・・・・・(1)E(82)−εE(T
)十ρE (TW )−ε E  (T)  + α 
ρ E(Twi+βρE (Tw )・・・・・・・・
・・・・・・・(2)ここで、αは放射源31.32か
らの放射エネルギーが測定物体1で反射され走査形放射
温度計2に入射する割合、βは背景放射板4からの放射
エネルギーが測定物体1で反射され走査形tlll温度
計2に入射する割合でα+β−1である。
E (S + ) −ε E (T) +
a ρ 6r (Tr ) + βρE (TV)...
・・・・・・・・・・・・(1)E(82)−εE(T
) 1ρE (TW) − ε E (T) + α
ρE(Twi+βρE(Tw)・・・・・・・・・
(2) Here, α is the ratio of the radiation energy from the radiation source 31, 32 reflected by the measurement object 1 and incident on the scanning radiation thermometer 2, and β is the ratio of the radiation energy from the background radiation plate 4. The rate at which the radiant energy is reflected by the measuring object 1 and enters the scanning TLL thermometer 2 is α+β-1.

つまり、走査形放射温度計2が放射源31.32を見た
ときの(1〉式の右辺第1項は測定物体1自体からの放
射エネルギー、第2項はtIl射源31.32からの放
射エネルギー、第3項は背景放射板4からの放射エネル
ギーの寄与分で、走査形放射温度計2が放射源31.3
2を見ないときの(2〉式の右辺では放射源31.32
の影響はなく、背景放射板4からの寄与分のみとなって
いる。
In other words, when the scanning radiation thermometer 2 looks at the radiation source 31.32, the first term on the right side of equation (1) is the radiation energy from the measurement object 1 itself, and the second term is the radiation energy from the tIl radiation source 31.32. The third term of the radiation energy is the contribution of the radiation energy from the background radiation plate 4, and the scanning radiation thermometer 2 is the radiation source 31.3.
On the right side of equation (2) when not looking at 2, the radiation source is 31.32
There is no influence, and only the contribution from the background radiation plate 4 is made.

(1)、(2)式は辺々差し引くと次式となる。When equations (1) and (2) are subtracted, the following equation is obtained.

E (S+ )−E (82) −ao (6r E (Tr ) −E (Tw ) 
)E (S+ ) −E (2ン αρ−−−−−−−−−−−−−− ・・・・・・(3
)εr E (Tr ) −E (Tw )ここで左辺
をkとおき、この左辺にの値はその右辺から測定で求め
ることができるものである。
E (S+)-E (82) -ao (6r E (Tr) -E (Tw)
)E (S+) −E (2 αρ−−−−−−−−−−−−−− ・・・・・・(3
) εr E (Tr) −E (Tw) Here, let the left side be k, and the value on this left side can be determined by measurement from the right side.

一方、K−αρと放射率εとの関係は、次式で示すよう
に1次の関係式にあることが実験により見い出された。
On the other hand, it has been experimentally found that the relationship between K-αρ and emissivity ε is a linear relational expression as shown in the following equation.

ε−A−Bk =A−8(αρ)・・・・・・・・・(
4)この関係を図示すると、第3図で示すように、物体
M l、 M 2の種別等により異なった直線となる。
ε-A-Bk =A-8(αρ)・・・・・・・・・(
4) When this relationship is illustrated, as shown in FIG. 3, the straight lines differ depending on the type of objects M1, M2, etc.

係数A(AI、A2.・・・)、B(Bl、B2、・・
・)は測定物体の種別ごとにあらかじめ実験で求めてお
く。
Coefficients A (AI, A2...), B (Bl, B2,...
・) is determined in advance through experiments for each type of object to be measured.

そこで、ε+ρ−1−1であることから、(2)式%式
%() となり、この(5)式に(4)式から求めた放射率εを
代入し、測定物体1の真温度下が求まる。
Therefore, since ε + ρ-1-1, the formula (2) becomes the formula % (), and by substituting the emissivity ε obtained from the formula (4) into the formula (5), the true temperature of the measuring object 1 is is found.

なお、以上の式で、背景放射板4の温度Twが十分小さ
ければ、Twは省略できる。
Note that in the above equation, Tw can be omitted if the temperature Tw of the background radiation plate 4 is sufficiently small.

つまり、測定前に、演算手段6に含まれる記憶手段に、
放射源31.32の放射率εrS測定物体1の種別に対
応した係数A1、A2、・・・・・・、B1.82、・
・・・・・をあらかじめ記憶させておき、測定物体1の
種別に従って選択して読み出すことができるようにして
おく。
In other words, before the measurement, the storage means included in the calculation means 6 has the following information:
Emissivity εrS of the radiation source 31.32 Coefficients A1, A2, . . . , B1.82, .corresponding to the type of the measurement object 1
. . . are stored in advance so that they can be selected and read out according to the type of the measurement object 1.

測定時、走査形放射温度計2は、測定物体1を走査し、
各走査位置Xiに対応した出力信号Eiを演算手段6に
供給する。このとき、たとえば、E2、E5を走査位置
X2、XSで放射#I31.32を走査したときの出力
信号、El、E3.E4、E6を放射源31.32の放
射エネルギーが測定物体1で反射される位置X2、Xs
の両側の位置からの出力信号とする。また、放射源31
.32の温度信号Tr、背景放射板4の温度Twを検出
する温度検出器5の出力信号ち演算手段6に供給される
During measurement, the scanning radiation thermometer 2 scans the measurement object 1,
An output signal Ei corresponding to each scanning position Xi is supplied to the calculation means 6. At this time, for example, output signals when radiation #I31.32 is scanned at scanning positions X2 and XS with E2 and E5, El, E3. E4, E6 are the positions X2, Xs where the radiant energy of the radiation source 31.32 is reflected by the measuring object 1.
Let the output signals be from the positions on both sides of . In addition, the radiation source 31
.. The temperature signal Tr of 32 and the output signal of the temperature detector 5 which detects the temperature Tw of the background radiation plate 4 are supplied to the calculation means 6.

演算手段6は、 El+23     E4+26 E2−□、Es −□のよな演算 を行って(3)式の分子とし、Tr%Twを演算してE
 (Tr >、 E (Tw )とし、ε「ヲ利用シて
6r E (Tr ) −E (Tw )の演算を行い
(3)式の分母とし、(3)式からαρ−kを求め、こ
の2つの杖とASBの値を用いて、(4)式から2つの
放射率εを求める。この2つの放射率εの平均値を測定
物体の放射率とし、各点Xiの放射エネルギー検出信号
Eiとともに(5)式に代入し、各点の温度下を求め、
演算手段6の出力とすることができる。
The calculation means 6 performs calculations such as El+23 E4+26 E2-□, Es-□ to obtain the numerator of equation (3), and calculates Tr%Tw to obtain E.
(Tr >, E (Tw ), use ε, calculate 6r E (Tr ) − E (Tw ), use it as the denominator of equation (3), find αρ−k from equation (3), and calculate this Using the two sticks and the value of ASB, calculate the two emissivities ε from equation (4).The average value of these two emissivities ε is taken as the emissivity of the measurement object, and the radiant energy detection signal Ei of each point Xi Substitute it into equation (5) and find the temperature at each point,
It can be the output of the calculation means 6.

このように、放射源31.32を利用して、測定物体1
の放射率εを求め、各点の温度を求めることができる。
In this way, using the radiation sources 31 and 32, the measuring object 1
It is possible to find the emissivity ε of and find the temperature at each point.

あらかじめ放射率εを求めた後は、放射源31.32の
開口にシャッタをし、連続測定を行うようにしてもよい
After determining the emissivity ε in advance, the apertures of the radiation sources 31 and 32 may be shuttered to perform continuous measurements.

第4図は、他の実施例をしめし、第1図と同一符号は同
一構成要素を示す。この例では、3WAの放射源31.
32.33は、測定物体1の法線に対して走査形放射温
度計2と互いに所定の角度をもたせて設けられており、
温度調節計71.72.73により所定の温度Trとな
るように制御されている。また、演算手段6の出力は、
CRTディスプレイ74、アナログ記録計75に表示、
記録されるようになっている。また、放射率εは、放射
源31.32.33の平均値ではなく、測定物体1の走
行方向に沿って3ゾーンに分割し、ゾーン毎の放射率と
してもよい。
FIG. 4 shows another embodiment, in which the same reference numerals as in FIG. 1 indicate the same components. In this example, a 3WA radiation source 31.
32 and 33 are provided at a predetermined angle to the scanning radiation thermometer 2 with respect to the normal line of the measurement object 1,
It is controlled to a predetermined temperature Tr by temperature controllers 71, 72, and 73. Moreover, the output of the calculation means 6 is
Displayed on CRT display 74, analog recorder 75,
It is set to be recorded. Moreover, the emissivity ε may not be the average value of the radiation sources 31, 32, 33, but may be divided into three zones along the traveling direction of the measurement object 1, and the emissivity for each zone may be determined.

第5図は、他の実施例を示し、第1図、第4図と同一符
号は同一構成要素を示す。この例では、1個の放fJ1
s3iを、平行移動あるいは首振り走査して、放射エネ
ルギーを走査形放射温度計2の走査線父上に沿って放射
する構成とし、はぼ同一点について放射源31からの放
射エネルギーが入射したときとしないときの走査形放射
温度計2の検出値に基いて走査線λ上の各点毎の放射率
εを求め、この各点毎の放射率εから各点毎の温度Tの
連続値が得られる。これらの演算は、記憶手段を持つ演
算手段6により行われる。このことにより、測定物体1
の放射率の分布、変動に対しても正確な温度測定ができ
る。
FIG. 5 shows another embodiment, in which the same reference numerals as in FIGS. 1 and 4 indicate the same components. In this example, one radiation fJ1
s3i is configured to radiate radiant energy along the scanning line height of the scanning radiation thermometer 2 by parallel translation or swing scanning, and when the radiant energy from the radiation source 31 is incident on approximately the same point. The emissivity ε for each point on the scanning line λ is determined based on the detected value of the scanning radiation thermometer 2 when the sensor is not in use, and the continuous value of the temperature T for each point is obtained from this emissivity ε for each point. It will be done. These calculations are performed by calculation means 6 having storage means. By this, the measuring object 1
Accurate temperature measurement is possible even with variations in emissivity distribution.

なお、走査形放射温度計2が面(二次元)走査タイプの
場合、その走査領域内に放射エネルギーを放射する少く
とも1個の放射源31、または、その走査領域内に放射
エネルギーを放射して走査する放射源31を用いて、同
様の演算で、放射率、温度分布が得られる。
In addition, when the scanning radiation thermometer 2 is a surface (two-dimensional) scanning type, there is at least one radiation source 31 that emits radiant energy within its scanning area, or at least one radiation source 31 that emits radiant energy within its scanning area. The emissivity and temperature distribution can be obtained by similar calculations using the radiation source 31 that is scanned by the radiation source 31.

(6)発明の効果 あらかじめ、放射率と補正係数とが所定の関係にあるこ
とを利用し、走査形放射湿度計を用いて、放射率、濃度
を測定するようにしているので、簡単な構成で、測定物
体の広い範囲についての放射率補正がされた正しい温度
分布を測定することができる。また、関係式の補正係数
を変えることにより種々の物体に対応でき、複数の放射
源や放射源を走査することにより、より、正確で、連続
的な放射率、温度分布を測定できる。
(6) Effects of the invention Since emissivity and concentration are measured using a scanning radiation hygrometer, taking advantage of the predetermined relationship between emissivity and correction coefficient, the configuration is simple. With this, it is possible to measure the correct temperature distribution with emissivity correction over a wide range of the measurement object. Furthermore, by changing the correction coefficient of the relational expression, it is possible to deal with various objects, and by scanning a plurality of radiation sources or radiation sources, more accurate and continuous emissivity and temperature distribution can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第4図、第5図は、この発明の一実施例を示す
構成説明図、第2図は、動作説明用波形図、第3図は、
放射率と補正係数の関係図である。
1, 4, and 5 are configuration explanatory diagrams showing one embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation, and FIG. 3 is a
FIG. 3 is a relationship diagram between emissivity and correction coefficient.

Claims (1)

【特許請求の範囲】 1、測定物体を走査して測定物体からの放射エネルギー
を検出する走査形放射温度計と、この走査形放射温度計
の走査領域内の測定物体に放射エネルギーを放射する少
くとも1個の放射源と、前記走査形放射温度計に前記測
定物体で反射した前記放射源からの放射エネルギーが入
射したときと入射しないときの検出値の差と放射源温度
に関連する値との比である補正係数が測定物体の放射率
と所定の関係にあることに基いて放射率を求め、この放
射率から測定物体の温度を求める演算手段とを備えたこ
とを特徴とする物体の放射率および温度の測定装置。 2、前記放射率と補正係数が1次の関係式であって、そ
の1次式の係数を測定物体の種別ごとに少くとも1組記
憶し、この係数を選択して演算する演算手段を用いたこ
とを特徴とする特許請求の範囲第1項記載の物体の放射
率および温度の測定装置。 3、前記放射源からの放射エネルギーが測定物体で反射
して走査形放射温度計に入射したときの検出値と放射源
からの放射エネルギーが測定物体で反射するその反射位
置近くからの放射エネルギーの検出値との差を用いて放
射率の演算を行うようにしたことを特徴とする特許請求
の範囲第1項または第2項記載の物体の放射率および温
度の測定装置。 4、前記測定物体を垂直に走査する前記走査形放射温度
計の走査線上、または、前記測定物体の法線に対して走
査形放射温度計と互いに所定の角度をもたせて放射源を
設けたことを特徴とする特許請求の範囲第1項から第3
項記載の物体の放射率および温度の測定装置。 5、前記測定物体に複数の放射エネルギーを放射する複
数の前記放射源、または測定物体に放射エネルギーを走
査して放射する放射源を用いたことを特徴とする特許請
求の範囲第1項から第4項記載の物体の放射率および温
度の測定装置。 6、前記放射源が放射エネルギーを放射する開口を有す
る背景放射板を備えたことを特徴とする特許請求の範囲
第1項から第5項記載の物体の放射率および温度の測定
装置。
[Claims] 1. A scanning radiation thermometer that scans the object to be measured and detects radiant energy from the object; a radiation source, a difference between detected values when radiant energy from the radiation source reflected by the measurement object is incident on the scanning radiation thermometer and when it is not incident on the scanning radiation thermometer, and a value related to the radiation source temperature; and calculation means for determining the emissivity based on the fact that the correction coefficient, which is the ratio of Emissivity and temperature measurement equipment. 2. The emissivity and the correction coefficient are a linear relational expression, and at least one set of coefficients of the linear expression is stored for each type of measurement object, and a calculation means is used to select and calculate the coefficients. An apparatus for measuring emissivity and temperature of an object according to claim 1, characterized in that: 3. The detection value when the radiant energy from the radiation source is reflected by the measurement object and enters the scanning radiation thermometer, and the detection value of the radiant energy from near the reflection position where the radiant energy from the radiation source is reflected by the measurement object. 3. An apparatus for measuring emissivity and temperature of an object according to claim 1 or 2, wherein the emissivity is calculated using a difference between the detected value and the detected value. 4. A radiation source is provided on the scanning line of the scanning radiation thermometer that vertically scans the measurement object, or at a predetermined angle to the scanning radiation thermometer with respect to the normal to the measurement object. Claims 1 to 3 characterized by
Apparatus for measuring the emissivity and temperature of the object described in Section 1. 5. Claims 1 to 5, characterized in that a plurality of the radiation sources that radiate a plurality of radiant energies to the measurement object or a radiation source that scans and radiates radiant energy to the measurement object are used. A device for measuring emissivity and temperature of an object according to item 4. 6. An apparatus for measuring emissivity and temperature of an object according to claims 1 to 5, characterized in that the radiation source includes a background radiation plate having an aperture that emits radiant energy.
JP59202818A 1984-09-27 1984-09-27 Measuring instrument for emissivity and temperature of body Granted JPS6179123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202818A JPS6179123A (en) 1984-09-27 1984-09-27 Measuring instrument for emissivity and temperature of body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202818A JPS6179123A (en) 1984-09-27 1984-09-27 Measuring instrument for emissivity and temperature of body

Publications (2)

Publication Number Publication Date
JPS6179123A true JPS6179123A (en) 1986-04-22
JPH0514852B2 JPH0514852B2 (en) 1993-02-26

Family

ID=16463705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202818A Granted JPS6179123A (en) 1984-09-27 1984-09-27 Measuring instrument for emissivity and temperature of body

Country Status (1)

Country Link
JP (1) JPS6179123A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605055A2 (en) * 1992-12-29 1994-07-06 Koninklijke Philips Electronics N.V. Pyrometer including an emissivity meter
JP2006294286A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Heating cooker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876127U (en) * 1981-11-19 1983-05-23 株式会社チノ− Temperature measuring device for objects inside the heating furnace
JPS5911853A (en) * 1982-06-16 1984-01-21 フランスベッド株式会社 Bed apparatus with toilet bowl

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876127U (en) * 1981-11-19 1983-05-23 株式会社チノ− Temperature measuring device for objects inside the heating furnace
JPS5911853A (en) * 1982-06-16 1984-01-21 フランスベッド株式会社 Bed apparatus with toilet bowl

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605055A2 (en) * 1992-12-29 1994-07-06 Koninklijke Philips Electronics N.V. Pyrometer including an emissivity meter
EP0605055A3 (en) * 1992-12-29 1995-06-14 Philips Electronics Nv Pyrometer including an emissivity meter.
JP2006294286A (en) * 2005-04-06 2006-10-26 Matsushita Electric Ind Co Ltd Heating cooker
JP4552735B2 (en) * 2005-04-06 2010-09-29 パナソニック株式会社 Cooker

Also Published As

Publication number Publication date
JPH0514852B2 (en) 1993-02-26

Similar Documents

Publication Publication Date Title
CA1103018A (en) Optical measuring apparatus
CA2141813C (en) Online tomographic gauging of sheet metal
Usamentiaga et al. Temperature measurement using the wedge method: Comparison and application to emissivity estimation and compensation
JPS6179123A (en) Measuring instrument for emissivity and temperature of body
JPH08193887A (en) Method for measuring temperature of material in hot rolling line
JPS634651B2 (en)
JPS61221610A (en) Method of detecting position of end edge section of tabular or band-shaped measured member, etc.
JP2501237B2 (en) Device for measuring outer diameter and wall thickness of steel pipe ends
JPS6049246B2 (en) Measured value compensation method in infrared temperature measurement method
JPH0663848B2 (en) How to measure the surface temperature of an object
JPH0521412B2 (en)
JPS6225973B2 (en)
JPH0548405B2 (en)
RU2168168C2 (en) Method of contact-free test of thermophysical characteristics of materials
JPS6219947Y2 (en)
JPH07270241A (en) Measuring method for surface temperature distribution of object in furnace
JPH0511252B2 (en)
JPS6225972B2 (en)
JPH0514851B2 (en)
JPS6146766B2 (en)
JPH0232207A (en) Roughness measuring method for metal surface
JPH0413910A (en) Measuring device of distribution of thickness of oxide film
JPH0329823A (en) Measuring device of emissivity of steel plate
JPS5911853B2 (en) Method and device for measuring emissivity and/or temperature
JPH0523703B2 (en)