JPS6177737A - Optical pulse tester - Google Patents

Optical pulse tester

Info

Publication number
JPS6177737A
JPS6177737A JP20095884A JP20095884A JPS6177737A JP S6177737 A JPS6177737 A JP S6177737A JP 20095884 A JP20095884 A JP 20095884A JP 20095884 A JP20095884 A JP 20095884A JP S6177737 A JPS6177737 A JP S6177737A
Authority
JP
Japan
Prior art keywords
light
laser device
semiconductor laser
pulse
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20095884A
Other languages
Japanese (ja)
Inventor
Masataka Nakazawa
正隆 中沢
Yoshiyuki Aomi
青海 恵之
Takashi Nakajima
隆 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20095884A priority Critical patent/JPS6177737A/en
Publication of JPS6177737A publication Critical patent/JPS6177737A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3145Details of the optoelectronics or data analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To perform optical pulse testing by a compact, high-performance tester, by using a semiconductor laser device as a light source, which emits light pulses, and operating the semiconductor laser as a light detector by switching means during the period when the light pulses are transmitted. CONSTITUTION:A semiconductor laser device is used as a light source 11. The light pulses from the light source 11 are directly inputted to an optical fiber to be measured 13. One end of the laser device 11 is connected to an electric pulse generator 18 through a load resistor 17. The other end of the laser device 11 is grounded. Only when the light pulses are emitted from the laser device 11, the driving pulses are imparted from the generator 18. During the other period, the bias voltage of the laser device 11 is made to be zero or negative value, so that the laser device 11 can detect light. A connecting point 19 of the laser device 11 and the load resistor 17 is connected to a signal processor 15. The back scattering light from the fiber 13 is returned to the laser device 11. The light current from the laser device 11, which is the light detector, is processed by the processor 15 and displayed on a display device 16. Thus the light pulse test can be performed by a compact, high-performance tester.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は光パルスを光ファイバの一端に入射し、その
光ファイバの後方散乱光を検出して、その光ファイバの
障害点探索・損失測定などを行う光パルス試験器に関す
る。
Detailed Description of the Invention "Industrial Application Field" This invention injects a light pulse into one end of an optical fiber, detects the backscattered light of the optical fiber, and searches for fault points and measures losses in the optical fiber. Related to optical pulse testing equipment that performs such operations.

「従来の技術」 従来、この種の光パルス試験器は第1図に示すように構
成されていた。即ち光源11からの光パルスは光方向性
結合器12を経て被測定光ファイバ13の一端に入射さ
れる。被測定光ファイバ13で発生した後方レイリー散
乱光は光方向性結合器12fe経て光検出器14に入る
。光検出器14で電気信号に変換された散乱光は信号処
理器15により処理され、表示部16に供給されて観測
波形が宍示される。
"Prior Art" Conventionally, this type of optical pulse tester has been constructed as shown in FIG. That is, a light pulse from a light source 11 passes through an optical directional coupler 12 and enters one end of an optical fiber 13 to be measured. The backward Rayleigh scattered light generated in the optical fiber 13 to be measured enters the photodetector 14 via the optical directional coupler 12fe. The scattered light converted into an electrical signal by the photodetector 14 is processed by a signal processor 15, and is supplied to a display section 16 to display an observed waveform.

このように従来の光パルス試験器には送出光パルスと後
方散乱光とを分離するための光方向性結合器12と光検
出器14とが必ず設けられていた。
As described above, the conventional optical pulse tester is always provided with the optical directional coupler 12 and the photodetector 14 for separating the transmitted optical pulse and the backscattered light.

光方向性結合器12は第2図Aに示すビームスプリッタ
型方向性結合器、もしくは第2図Bに示す超音波偏向器
型方向性結合器が用いられる。これら光方向性結合器は
挿入損失が大きく、また容積も大きいため、光パルス試
験器を小形・高性能化することが困難であった。また光
方向性結合器12および高感度の光検出器14を用いる
とそれらは非常に高価であるため、光パルス試験器とし
ての(置設も高かった。
As the optical directional coupler 12, a beam splitter type directional coupler shown in FIG. 2A or an ultrasonic deflector type directional coupler shown in FIG. 2B is used. These optical directional couplers have a large insertion loss and a large volume, making it difficult to make the optical pulse tester compact and high-performance. Furthermore, since the optical directional coupler 12 and the highly sensitive photodetector 14 are very expensive, they are also expensive to install as an optical pulse tester.

「問題点を解決するための手段」 この発明によれば光パルスを放射する光源として半導体
レーザが用いられ、゛光パルスを放射した後で被測定光
ファイバからの後方散乱光を受信する期間に前記半導体
レーザのバイアスが制御されて光検出器として作用する
ようにされる。この光検出器として作用されている時の
半導体レーザにより被測定光ファイバからの後方散乱光
を検出し、この検出出力を測定信号として被測定光ファ
イバの障害点探索・損失測定などを行う。このように構
成されているから、光方向性結合器を必要とせず、また
専用光検出器も不用である。
``Means for Solving the Problems'' According to the present invention, a semiconductor laser is used as a light source that emits light pulses, and during the period of receiving backscattered light from the optical fiber under test after emitting light pulses, The bias of the semiconductor laser is controlled so that it acts as a photodetector. The semiconductor laser when acting as a photodetector detects backscattered light from the optical fiber to be measured, and uses this detection output as a measurement signal to search for fault points in the optical fiber to be measured, measure loss, etc. With this configuration, there is no need for an optical directional coupler or a dedicated photodetector.

「実施例」 第3図はこの発明の実施例を示し、第1図と対応する部
分には同一符号を付けである。この発明においては光源
11として半導体レーザが用いられる。光源11からの
光パルスは被測定光ファイバ13に直接入射される。半
導体レーザ11の一端は負荷抵抗器17を通じて電気パ
ルス発生器18に接続され、半導体レーザの他端は接地
される。
"Embodiment" FIG. 3 shows an embodiment of the present invention, and parts corresponding to those in FIG. 1 are given the same reference numerals. In this invention, a semiconductor laser is used as the light source 11. A light pulse from the light source 11 is directly incident on the optical fiber 13 to be measured. One end of the semiconductor laser 11 is connected to an electric pulse generator 18 through a load resistor 17, and the other end of the semiconductor laser is grounded.

この例では半導体レーザ11から光パルスを放射する時
のみ、電気パルス発生器18から駆動パルスを与え、そ
の池は半導体レーザ11のバイアス電圧をゼσ又は負と
して、半導体レーザ11は光を検出することができるよ
うにされる。半導体レーザ11および負荷抵抗器17の
接続点19は信号処理器15に接続されて、半導体レー
ザ11よシ検出された光を電気信号として信号処理器1
5へ供給する。
In this example, only when the semiconductor laser 11 emits a light pulse, a driving pulse is applied from the electric pulse generator 18, and the bias voltage of the semiconductor laser 11 is set to zero or negative, and the semiconductor laser 11 detects the light. be made possible. A connection point 19 between the semiconductor laser 11 and the load resistor 17 is connected to the signal processor 15, and the signal processor 1 converts the light detected by the semiconductor laser 11 into an electrical signal.
Supply to 5.

電気パルス発生器18から第4図Aに示すように正電圧
パルスを半導体レーザ11に印加し、第4図Bに示すよ
うに光パルス21と発生させる。
A positive voltage pulse is applied from the electric pulse generator 18 to the semiconductor laser 11 as shown in FIG. 4A, and a light pulse 21 is generated as shown in FIG. 4B.

その光パルス21は被測定光ファイバ13の一端に入射
される。光ファイバ13からの後方散乱光22は再び半
導体し゛−ザ11に戻ってくる。その時半導体レーザ1
1への印加電圧は零(もしくは負として)とされている
ため半導体レーザ11は光検出器として作用し、入射さ
れた後方レイIJ −散乱光は電気信号に変換される。
The optical pulse 21 is input to one end of the optical fiber 13 to be measured. Backscattered light 22 from the optical fiber 13 returns to the semiconductor laser 11 again. At that time, semiconductor laser 1
Since the voltage applied to IJ is zero (or negative), the semiconductor laser 11 acts as a photodetector, and the incident backward ray IJ-scattered light is converted into an electrical signal.

半導体レーザ11はPN接合に順方向電圧を印加すると
光を放出し、逆方向電圧を印加すると光を吸収し、光検
出器となる。従って半導体レーザ11が零バイアス時に
は後方散乱光により半導体レーザ11に光電流が流れ、
それが接続点19における半導体レーザ11の端子間電
圧変化として観測される。このようにして電気信号に変
換され友後方散乱信号は信号処理器15で処理され、表
示部16に示される。
The semiconductor laser 11 emits light when a forward voltage is applied to the PN junction, absorbs light when a reverse voltage is applied, and becomes a photodetector. Therefore, when the semiconductor laser 11 is at zero bias, a photocurrent flows through the semiconductor laser 11 due to backscattered light.
This is observed as a voltage change between the terminals of the semiconductor laser 11 at the connection point 19. The backscattered signal thus converted into an electrical signal is processed by the signal processor 15 and displayed on the display section 16.

以上の動作の時間チャーIf第4図に示す。第4図Aは
光の放出/検出を制御する電気パルス、第4図Bは放出
光パルス21と光ファイバ13からの後方散乱光22、
その両端に光フアイバ入射端でのフレネル反射パルス2
3と、光ファイバ13ス放射時の順方向降下電圧パルス
25、後方散乱信号26が得られる。
The time chart If of the above operation is shown in FIG. FIG. 4A shows an electric pulse controlling light emission/detection, FIG. 4B shows an emitted light pulse 21 and backscattered light 22 from the optical fiber 13,
At both ends of the optical fiber, there is a Fresnel reflected pulse 2 at the input end.
3, a forward drop voltage pulse 25 during radiation through the optical fiber 13, and a backscattered signal 26 are obtained.

第5図に示すように接続点19と信号処理器15との間
にアナログスイッチ27を挿入し、遅延制御回路2Bの
出力でアナログスイッチ27は制御される。遅延制御回
路28には電気パルス発生器18から電気パルスが供給
される。この装置の時間チャ−11第6図に示す。ファ
イバ入射端のフレネル反射(第6図Bのパルス23)が
信号処理器15に入力されるのを除去するために、第6
図Aに示すようにその反射光23が半導体レーザ11に
入射する場合には僅かな正電圧E0を印加し、光吸収が
生じないようにしている。即ちこの状態では散乱光は検
出されない。光を検出する場合には半導体レーザ11の
バイアスを僅かに負電位−E2とすることにより検出感
度を向上させている。この第6図に示した電気パルスの
発生および電気的なバイアスの制御は電気パルス発生器
18で行い、その電気パルスは遅延制御回路29にも供
給され、遅延制御回路29はその電気パルスを感知して
これより一定時間T1の遅延の後、ゲート信号31を発
生し、そのゲート信号31でアナログスイッチ27をO
Nとする。半導体レーザ11からの光パルス21および
被測定光ファイバ13からの後方散乱光22は第6図B
に示すように発生するが、信号処理器15に入力される
後方散乱信号は第6図りに示すようになる。このように
して第4図Cの場合と比べて不必要な電圧成分が除去さ
れる。
As shown in FIG. 5, an analog switch 27 is inserted between the connection point 19 and the signal processor 15, and the analog switch 27 is controlled by the output of the delay control circuit 2B. The delay control circuit 28 is supplied with electrical pulses from the electrical pulse generator 18 . A time chart 11 of this device is shown in FIG. In order to eliminate the Fresnel reflection at the input end of the fiber (pulse 23 in FIG. 6B) from being input to the signal processor 15, the sixth
As shown in FIG. A, when the reflected light 23 is incident on the semiconductor laser 11, a slight positive voltage E0 is applied to prevent light absorption from occurring. That is, no scattered light is detected in this state. When detecting light, the detection sensitivity is improved by setting the bias of the semiconductor laser 11 to a slightly negative potential -E2. Generation of the electric pulses and control of the electric bias shown in FIG. 6 are performed by the electric pulse generator 18, and the electric pulses are also supplied to the delay control circuit 29, which senses the electric pulses. Then, after a delay of a certain time T1, a gate signal 31 is generated, and the analog switch 27 is turned on with the gate signal 31.
Let it be N. The optical pulse 21 from the semiconductor laser 11 and the backscattered light 22 from the optical fiber 13 to be measured are shown in FIG. 6B.
However, the backscattered signal input to the signal processor 15 becomes as shown in Figure 6. In this way, unnecessary voltage components are removed compared to the case of FIG. 4C.

第7図および第8図に第5図に示した実施例によって表
示部16に観測された実験データを示す。
7 and 8 show experimental data observed on the display section 16 according to the embodiment shown in FIG. 5.

それぞれ半導体レーザ11として波長λが1.31μm
および1.56μmのものを用いた場合のデータである
。また被測定光ファイバ13として長さ約11Kxの単
一モードファイバを用いている。第7図Aおよび第8図
Aはそれぞれ第6図りに相当するデータであゃ、ファイ
バ長が約11Kmであることが確認できる。第7図Bお
よび第8図Bは第7図Aおよび第8図Ill対数変換し
た図であり、その直線の傾きから約20KIIまで光フ
ァイバの光パルス試験を行えることが確認できた。
Each semiconductor laser 11 has a wavelength λ of 1.31 μm.
This is the data when using a 1.56 μm one. Further, as the optical fiber 13 to be measured, a single mode fiber having a length of about 11 Kx is used. FIG. 7A and FIG. 8A are data corresponding to FIG. 6, respectively, and it can be confirmed that the fiber length is about 11 km. FIG. 7B and FIG. 8B are logarithmically transformed diagrams of FIG. 7A and FIG. 8, and it was confirmed that the optical pulse test of the optical fiber can be performed up to about 20 KII from the slope of the straight line.

「発明の効果」 以上説明したようにこの発明によれば光源として用いた
半導体レーザを用い、光の放出を行わない時に光検出器
として作用させることにより、光パルス試験器において
従来不可欠であった光方向性結合器、Ge−APDなど
の光検出器を除去でき、光方向性結合器の挿入損失がゼ
ロとなシ、小形高性能光パルス試験器を作製できる利点
がある。加えて、光方向性結合器およびGe−APD光
検出器等の高価な物品を用いないため、安価でかつ光方
向性結合器を用いないので挿入損失の少い光パルス試験
器が実現できる。
``Effects of the Invention'' As explained above, according to the present invention, a semiconductor laser used as a light source is used as a photodetector when no light is emitted, which has been indispensable in optical pulse testers. This method has the advantage that a photodetector such as an optical directional coupler or Ge-APD can be removed, the insertion loss of the optical directional coupler is zero, and a compact high-performance optical pulse tester can be manufactured. In addition, since expensive items such as an optical directional coupler and a Ge-APD photodetector are not used, it is possible to realize an optical pulse tester that is inexpensive and has low insertion loss since no optical directional coupler is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光パルス試験器を示す構成図、第2図は
従来の光パルス試験器に用いられ念力向性結合器を示す
図、第3図はこの発明の光パルス試験器の一実施例を示
す構成図、第4図は第3図の動作例を示す時間フローチ
ャート、第5図はこの発明の光パルス試験器の池の実施
例を示す構成図、第6図は第5図の動作例を示す時間フ
ローチャート、第7図およ゛び第8図はそれぞれ第5図
の実施例による測定結果の茨示例を示す図である。 11:半導体レーザ光i、12:光方向性結合器、13
:被測定光ファイバ、14:光検出器、15:信号処理
器、16:表示部、17:負荷抵抗、18:電気パルス
発生器、27:アナログスイッチ、28:遅延制御回路
。 特許出願人  日本電信電話公社 代  理  人   草  野     卓オ 17 オ 2 図 オ 3 図 IP 4 図 +■ 2i77  図 先ファイバ灸(kml 2t78 匹 光フフイ/\゛長(km) 光ファイバ&(km) こ 日 光ファイバ灸(km)
Fig. 1 is a block diagram showing a conventional optical pulse tester, Fig. 2 is a diagram showing a psychotropic coupler used in the conventional optical pulse tester, and Fig. 3 is an example of the optical pulse tester of the present invention. 4 is a time flowchart showing the operation example of FIG. 3, FIG. 5 is a block diagram showing an embodiment of the optical pulse tester pond of the present invention, and FIG. FIGS. 7 and 8 are time flow charts illustrating an example of the operation of FIG. 11: Semiconductor laser beam i, 12: Optical directional coupler, 13
: optical fiber to be measured, 14: photodetector, 15: signal processor, 16: display section, 17: load resistor, 18: electric pulse generator, 27: analog switch, 28: delay control circuit. Patent applicant: Representative of Nippon Telegraph and Telephone Public Corporation Takuo Kusano 17 O 2 Figure O 3 Figure IP 4 Figure + ■ 2i77 Figure point fiber moxibustion (kml 2t78 Length (km) Optical fiber & (km) This Nikko fiber moxibustion (km)

Claims (1)

【特許請求の範囲】[Claims] (1)光パルスを被測定ファイバの一端に入射し、その
被測定光ファイバからのレイリー散乱光を検出し、その
検出出力を測定信号として前記被測定ファイバの障害点
探索および損失測定の少くとも一方を行う光パルス試験
器において、前記光パルスを放射する光源として半導体
レーザが用いられ、光パルスの送出を行う間において、
切替え手段により前記半導体レーザのバイアス電圧を制
御してその半導体レーザを光検出器として作用させ、そ
の光検出器とされた半導体レーザの光電流が前記測定信
号とされることを特徴とする光パルス試験器。
(1) Inject a light pulse into one end of the optical fiber under test, detect the Rayleigh scattered light from the optical fiber under test, and use the detection output as a measurement signal to at least search for fault points and measure loss in the optical fiber under test. In an optical pulse tester that performs one of the above, a semiconductor laser is used as a light source that emits the optical pulse, and while transmitting the optical pulse,
A light pulse characterized in that a bias voltage of the semiconductor laser is controlled by a switching means to cause the semiconductor laser to act as a photodetector, and a photocurrent of the semiconductor laser serving as the photodetector is used as the measurement signal. Test device.
JP20095884A 1984-09-25 1984-09-25 Optical pulse tester Pending JPS6177737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20095884A JPS6177737A (en) 1984-09-25 1984-09-25 Optical pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20095884A JPS6177737A (en) 1984-09-25 1984-09-25 Optical pulse tester

Publications (1)

Publication Number Publication Date
JPS6177737A true JPS6177737A (en) 1986-04-21

Family

ID=16433134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20095884A Pending JPS6177737A (en) 1984-09-25 1984-09-25 Optical pulse tester

Country Status (1)

Country Link
JP (1) JPS6177737A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216988A (en) * 1975-07-28 1977-02-08 Philips Nv Reversible photoelectric device
JPS5676027A (en) * 1979-11-27 1981-06-23 Fujitsu Ltd Faulty point detection system for optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216988A (en) * 1975-07-28 1977-02-08 Philips Nv Reversible photoelectric device
JPS5676027A (en) * 1979-11-27 1981-06-23 Fujitsu Ltd Faulty point detection system for optical fiber

Similar Documents

Publication Publication Date Title
EP0294836B1 (en) Voltage detector
US4012149A (en) Measuring method and equipment for locating a break in an optical cable
US4960989A (en) Optical time domain reflectometer having a receiver with selectively controlled gain
KR100401347B1 (en) Optically driven driver, optical output type voltage sensor, and ic testing equipment using these devices
US4982151A (en) Voltage measuring apparatus
JPS6177737A (en) Optical pulse tester
JP3688544B2 (en) Measurement signal output device
US6912046B2 (en) Instrument measuring chromatic dispersion in optical fibers
CN207703454U (en) A kind of hand-held optical fiber detector
JP2972973B2 (en) Optical pulse tester
JPS58113832A (en) Detector for breaking point of optical fiber
CN217238262U (en) Optical fiber quality detection device
CN108287057A (en) A kind of hand-held optical fiber detector
JP3059580B2 (en) Optical pulse tester
JPH01178847A (en) Optical pulse tester
GB2361532A (en) Electrooptic probe signal outputting apparatus
JPS63133068A (en) Apparatus for detecting voltage of circuit
JPH0244225A (en) Optical pulse tester
WO2002016901A2 (en) Instrument measuring chromatic dispersion in optical fibers
JP2001099750A (en) Optical pulse tester
JP2563767Y2 (en) Optical pulse tester
JPS6154421A (en) Light pulse testing instrument
JP2582588B2 (en) Multi-channel voltage detector
JPH0130097B2 (en)
JPH0362212B2 (en)