JP2001099750A - Optical pulse tester - Google Patents

Optical pulse tester

Info

Publication number
JP2001099750A
JP2001099750A JP27574499A JP27574499A JP2001099750A JP 2001099750 A JP2001099750 A JP 2001099750A JP 27574499 A JP27574499 A JP 27574499A JP 27574499 A JP27574499 A JP 27574499A JP 2001099750 A JP2001099750 A JP 2001099750A
Authority
JP
Japan
Prior art keywords
light
optical
pulse tester
optical pulse
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27574499A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Takatsu
辰彦 高津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ando Electric Co Ltd
Original Assignee
Ando Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ando Electric Co Ltd filed Critical Ando Electric Co Ltd
Priority to JP27574499A priority Critical patent/JP2001099750A/en
Publication of JP2001099750A publication Critical patent/JP2001099750A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical pulse tester having an optical detection means of accurate sensitivity. SOLUTION: An optical pulse tester is provided with a light emitting means 1 radiating an optical pulse to an optical fiber 7 to be measured, an optical coupler 2 for separating the back-scattered light from the optical fiber 7 to be measured, a light detection means 4 detecting the back-scattered light separated by the optical coupler 2, and a signal processing means 5 processing the detected signals. An incident end mounted on the optical coupler 2 is connected to the light emitting means 1 having known and stable light intensity, thereby the sensitivity of the light emitting means 4 can be measured directly and adjusted to the desired sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光パルス試験器に
関する。
[0001] The present invention relates to an optical pulse tester.

【0002】[0002]

【従来の技術】光ファイバの製造、光通信網の敷設及び
保守に光パルス試験器(別名を光時間領域反射測定器、
英語呼称の頭文字を取って「OTDR」という)が用い
られている。光パルス試験器は、従来、同軸ケーブルや
平行対ケーブルで用いられていたパルス法による障害点
探索(TDRという)を光ファイバ測定に応用したもの
である。
2. Description of the Related Art An optical pulse tester (also known as an optical time domain reflectometer,
"OTDR" is used for the acronym of English name). The optical pulse tester applies a fault point search (referred to as TDR) by a pulse method, which has been conventionally used for a coaxial cable or a parallel pair cable, to optical fiber measurement.

【0003】以下、従来の光パルス試験器について図3
を参照して説明する。図3に従来の光パルス試験器の構
成図を示す。図において、従来の光パルス試験器は、発
光手段21、光カプラ22、出射端23、光検出手段2
4、信号処理手段25、被測定光ファイバ27で構成さ
れている。
A conventional optical pulse tester will be described below with reference to FIG.
This will be described with reference to FIG. FIG. 3 shows a configuration diagram of a conventional optical pulse tester. In the figure, a conventional light pulse tester includes a light emitting means 21, an optical coupler 22, an emission end 23, and a light detecting means 2.
4, the signal processing means 25 and the measured optical fiber 27.

【0004】次に、動作について説明する。光パルス試
験器の発光手段21により短時間の光パルスを被測定光
ファイバ27内に出射する。光パルスは被測定光ファイ
バ内を進行するのに伴い、一部が被測定光ファイバの不
純物や分子のブラウン運動等により反射されレイリー散
乱光となる。無指向性に散乱したレイリー散乱光の一部
が被測定光ファイバーに閉じ込められ、光パルスの進行
方向と逆方向に被測定光ファイバー内を進み光パルス試
験器に戻ってくる。この光を「後方散乱光」と呼ぶ。光
パルスが被測定光ファイバーの不連続点(接続点、破断
点、終端、減衰点等)に差し掛かると反射光の発生や、
光パルス強度の減少によるレイリー散乱光の不連続な減
少が生じる。
Next, the operation will be described. A short-time light pulse is emitted into the measured optical fiber 27 by the light emitting means 21 of the light pulse tester. As the light pulse travels through the optical fiber to be measured, a part thereof is reflected by impurities or Brownian motion of molecules of the optical fiber to be measured and becomes Rayleigh scattered light. Part of the Rayleigh scattered light scattered omnidirectionally is confined in the optical fiber to be measured, travels in the optical fiber to be measured in a direction opposite to the traveling direction of the optical pulse, and returns to the optical pulse tester. This light is called "backscattered light". When an optical pulse reaches a discontinuous point (connection point, break point, end point, attenuation point, etc.) of the measured optical fiber, reflected light is generated,
A discontinuous decrease in Rayleigh scattered light occurs due to a decrease in light pulse intensity.

【0005】被測定光ファイバの状態が一定の場合、被
測定光ファイバを進行する光パルスの減衰に伴い後方散
乱光も減少する。単位時間当たりの後方散乱光の減衰率
より、後方散乱光の発生地点での被測定光ファイバの通
過損失を推定できる。被測定光ファイバの不連続点での
反射光や後方散乱光強度の不連続な変化を観測すること
で、不連続点の被測定光ファイバの状態を推定できる。
光パルス試験器は、光パルスの出射を起点として時系列
に後方散乱光や反射光の強度を取得し、被測定光ファイ
バ内部の状態を被測定光ファイバの一方の端から観測で
きる測定器である。
[0005] When the state of the optical fiber to be measured is constant, the backscattered light also decreases with the attenuation of the light pulse traveling through the optical fiber to be measured. From the attenuation rate of the backscattered light per unit time, the passage loss of the measured optical fiber at the point where the backscattered light is generated can be estimated. The state of the measured optical fiber at the discontinuous point can be estimated by observing the discontinuous change in the reflected light or the backscattered light intensity at the discontinuous point of the measured optical fiber.
An optical pulse tester is a measuring instrument that obtains the intensity of backscattered light and reflected light in time series starting from the emission of an optical pulse and can observe the state inside the measured optical fiber from one end of the measured optical fiber. is there.

【0006】後方散乱光は、被測定光ファイバの通過損
失の一部であるため、その光強度は非常に小さい。長距
離の光ファイバを光パルス試験器で測定する条件として
一般的に用いられている、パルス幅1マイクロ秒の光パ
ルスを単一モード被測定光ファイバに入射した場合、後
方散乱光強度は光パルス強度のマイナス50からマイナ
ス60デシベルの割合に過ぎない。光パルスは、被測定
光ファイバ内を進行するとともに被測定光ファイバの通
過損失により減衰していく。後方散乱光は発生点から被
測定光ファイバを逆にたどってパルス試験器に戻る。光
パルスが被測定光ファイバ内をある程度進行した後発生
した後方散乱光は、近距離の被測定光ファイバ内で発生
した後方散乱光の光強度に比べて、大きな減衰をする。
その量は、光パルス測定器と後方散乱光発生点までの被
測定光ファイバを往復したことに相当する。現在の単一
モード光ファイバの通過損失は、波長1.31マイクロ
メータ帯で0.35デシベル/キロメートル、波長1.
55マイクロメータ帯で0.2デシベル/キロメートル
程度である。数十キロメートルから百キロメートル前後
の光ファイバを観測するためには、光パルス試験器は、
極微弱な光信号を観測できなければならない。
[0006] Since the backscattered light is a part of the transmission loss of the optical fiber to be measured, its light intensity is very small. When an optical pulse having a pulse width of 1 microsecond, which is generally used as a condition for measuring a long-distance optical fiber with an optical pulse tester, is incident on a single-mode measured optical fiber, the backscattered light intensity is It is only a ratio of minus 50 to minus 60 dB of the pulse intensity. The optical pulse travels through the measured optical fiber and attenuates due to the passage loss of the measured optical fiber. The backscattered light returns to the pulse tester from the point of occurrence back through the measured optical fiber. The backscattered light generated after the light pulse has traveled to some extent in the measured optical fiber is greatly attenuated compared to the light intensity of the backscattered light generated in the measured optical fiber at a short distance.
The amount corresponds to the reciprocation of the optical pulse measuring instrument and the optical fiber to be measured to the backscattered light generation point. The transmission loss of the present single mode optical fiber is 0.35 dB / km in the 1.31 micrometer wavelength band, and the wavelength is 1.3.
It is about 0.2 dB / km in the 55-micrometer band. In order to observe optical fibers from several tens to hundreds of kilometers, the optical pulse tester
We must be able to observe very weak optical signals.

【0007】光パルス試験器で被測定光ファイバの遠端
が開放された短距離のファイバを測定した場合、出射し
た光パルス強度に対しマイナス17デシベル程度の反射
が生じる。光パルス試験器は、この反射を飽和せずに検
出できなくてはならない。そのため光検出手段は、レン
ジ切り替えを有し感度を可変できるようになっている。
光パルス試験器は、レンジを切り替えながら複数回測定
した結果を繋ぎあわせて広範囲の測定結果を得ることが
できる。
When an optical pulse tester measures a short-distance fiber with the far end of the optical fiber to be measured opened, the intensity of the emitted optical pulse is reflected by about minus 17 dB. The optical pulse tester must be able to detect this reflection without saturating it. Therefore, the light detecting means has a range switch and can change the sensitivity.
The optical pulse tester can obtain a wide range of measurement results by connecting the results of multiple measurements while switching the range.

【0008】微弱な光信号を検出する素子にアバランジ
ェフォトダイオード(以下「APD」という)がある。
これは、電子なだれ現象を応用し、微弱な光信号で生じ
た遊離電子を増倍させることができる。光パルス試験装
置の光検出手段内の光−電気変換手段にはAPDが用い
られる。電子なだれ現象を発生させるためにはAPDの
降伏電圧付近の電圧を印加する必要がある。通信用に用
いられる波長で感度があるInGaAsAPDの場合、
印加電圧は70ボルト前後になる。
An element for detecting a weak optical signal is an avalanche photodiode (hereinafter referred to as "APD").
This applies the electron avalanche phenomenon and can multiply the free electrons generated by a weak optical signal. An APD is used for the light-to-electricity conversion means in the light detection means of the light pulse test apparatus. In order to generate the avalanche phenomenon, it is necessary to apply a voltage near the breakdown voltage of the APD. In the case of InGaAs APD which is sensitive at the wavelength used for communication,
The applied voltage is around 70 volts.

【0009】APDが光電効果で発生した遊離電子を電
子なだれ現象で増倍する割合を増倍度(記号にMを用い
る)という。これは比率なので単位は無い。光パルス試
験器は、微弱な後方散乱光を検出する場合は増倍度を高
くする。強い反射光を検出する場合は増倍度を低くす
る。増倍度は、APDの降伏電圧の直前で急激に増加す
る。増倍度を大きくして使う場合には、APDに印加す
る電圧はAPDの降伏電圧よりやや小さな電圧が設定さ
れる。その値は、APDの降伏電圧の95パーセント以
上になる。APDの降伏電圧は負の温度係数をもってい
る。印加電圧が一定の場合、APDの温度により増倍度
が変化し、所望の値から大きくはずれてしまう。APD
の増倍度が所望の値でない場合、前記、測定結果を繋ぎ
あわせて広範囲の測定結果を得ようとした場合、繋ぎ合
わせようとする測定値同士の倍率が合わず、継ぎ目に段
差が生じてうまく繋がらないという問題が起こる。
The rate at which the APD multiplies the free electrons generated by the photoelectric effect by the electron avalanche phenomenon is called the multiplication degree (M is used for the symbol). Since this is a ratio, there is no unit. The optical pulse tester increases the multiplication factor when detecting weak backscattered light. When detecting strong reflected light, the multiplication factor is reduced. The multiplication factor increases rapidly just before the breakdown voltage of the APD. When the multiplication factor is increased, the voltage applied to the APD is set to a voltage slightly smaller than the breakdown voltage of the APD. That value is over 95% of the breakdown voltage of the APD. The breakdown voltage of APD has a negative temperature coefficient. When the applied voltage is constant, the degree of multiplication changes depending on the temperature of the APD, and greatly deviates from a desired value. APD
If the degree of multiplication is not the desired value, the above, when trying to obtain a wide range of measurement results by joining the measurement results, the magnification of the measurement values to be joined do not match, a step occurs at the seam The problem of poor connection occurs.

【0010】光パルス試験器ではAPDの増倍度を所望
の値に保つため、大別して二つの方策が採られていた。
一つは、恒温槽の中にAPDを入れ使用温度を安定化し
た。もう一つは所望の値に保つため、APD近傍の温度
を測定し、所望の増倍度を得るための印加電圧を計算に
より推定する。推定した電圧をAPDに印加し、間接的
に増倍度を調節した。しかし、恒温槽は測定器が高価に
なる。さらに、温度調節に多大の電力を使用するため電
池を用いた携帯用には応用できない。温度補正は、温度
検出手段とAPDの間に温度差が生じ易い。APDの温
度係数は一意ではなく、その値は使用温度で変化する。
APDそのものも素子ごとにばらつきがあるため一意の
補正係数では増倍度を一定に保つことができない。両者
に共通の問題として、APDに電圧を印加する電源も安
定でなければならない。増倍度を高く保とうとするほ
ど、印加電圧は降伏電圧に近づき増倍度を一定に保つこ
とが困難となる。
[0010] In the optical pulse tester, in order to keep the multiplication degree of the APD at a desired value, roughly two measures have been adopted.
One was to put the APD in a thermostat to stabilize the working temperature. The other is to measure the temperature in the vicinity of the APD in order to maintain the desired value, and to estimate the applied voltage for obtaining the desired multiplication factor by calculation. The estimated voltage was applied to the APD to indirectly adjust the multiplication factor. However, a thermometer requires an expensive measuring instrument. Further, since a large amount of power is used for temperature control, it cannot be applied to a portable device using a battery. In the temperature correction, a temperature difference easily occurs between the temperature detection unit and the APD. The temperature coefficient of the APD is not unique, and its value varies with the operating temperature.
Since the APD itself also varies from element to element, the multiplication factor cannot be kept constant with a unique correction coefficient. As a problem common to both, a power supply for applying a voltage to the APD must be stable. As the degree of multiplication is kept high, the applied voltage approaches the breakdown voltage, and it becomes difficult to keep the degree of multiplication constant.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0011】しかしながら、従来の光パルス試験器で
は、感度調整時に光検出手段の感度を直接測定していな
いため、光検出手段の感度が所望の値からずれる問題が
あった。このため、光検出手段の感度が正確な光パルス
試験器が求められている。本発明は、前記問題を解決
し、感度が正確な光パルス試験器を提供することを目的
とする。
However, in the conventional optical pulse tester, since the sensitivity of the light detecting means is not directly measured at the time of sensitivity adjustment, there is a problem that the sensitivity of the light detecting means deviates from a desired value. Therefore, there is a need for an optical pulse tester in which the sensitivity of the light detection means is accurate. An object of the present invention is to solve the above-mentioned problem and to provide an optical pulse tester with accurate sensitivity.

【0012】[0012]

【課題を解決するための手段】以上の課題を解決すべく
本発明は、光パルス試験器の構成を、次のとおりにし
た。 1.被測定光ファイバへ光パルスを出射する発光手段
と、被測定光ファイバからの後方散乱光を分離するため
の光カプラと、光カプラより分離した後方散乱光を検出
する増倍効果をもつ光検出手段と、検出信号を処理する
信号処理手段とを有する光パルス試験器において、前記
光カプラの入射端に光強度が既知で、かつ、安定な発光
手段を接続し、前記光検出手段の感度が所望の感度にな
るまで、前記光検出手段の増倍度を変化させながら繰り
返し直接測定して感度調整することを特徴とする構成と
する(請求項1)。 2.前記光検出手段は、光カプラ(2)からの光信号を電
気信号に変換し、かつ、増倍効果をもつ光検出素子(11)
と、光検出素子(11)からの電気信号を増幅して信号処理
手段5へ出力する増幅器(13)と、前記光検出素子印加電
圧用可変電圧源(12)と、からなることを特徴とする構成
とする(請求項2)、 3.前記光検出素子は、変換した電気信号を可変電圧源
(12)の印加電圧により生じた増倍効果により増倍し、増
倍した電気信号を増幅器(13)に出力する光検出素子(11)
であることを特徴とする構成とする(請求項3)。 4.前記光検出素子は、アバランジェフォトダイオード
であることを特徴とする構成とする(請求項4)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, according to the present invention, the configuration of an optical pulse tester is as follows. 1. Light emitting means for emitting a light pulse to the optical fiber to be measured, an optical coupler for separating backscattered light from the optical fiber to be measured, and light detection having a multiplication effect for detecting the backscattered light separated from the optical coupler. Means, a signal processing means for processing the detection signal, in the optical pulse tester, the light intensity is known at the incident end of the optical coupler, and connected to a stable light emitting means, the sensitivity of the light detection means Until the desired sensitivity is obtained, the sensitivity is adjusted by repeatedly performing direct measurement while changing the degree of multiplication of the light detecting means (claim 1). 2. The light detecting means converts an optical signal from the optical coupler (2) into an electric signal, and a light detecting element (11) having a multiplication effect.
And an amplifier (13) for amplifying an electric signal from the photodetector (11) and outputting the amplified signal to the signal processing means 5, and a variable voltage source (12) for applying a voltage to the photodetector. (Claim 2); The light detecting element converts the converted electric signal into a variable voltage source.
Photodetector (11) that multiplies by the multiplication effect generated by the applied voltage of (12) and outputs the multiplied electric signal to amplifier (13)
(Claim 3). 4. The light detecting element is an avalanche photodiode (claim 4).

【0013】[0013]

【発明の実施の形態】以下、本発明に係る光パルス試験
器の好ましい実施の形態について、図面を用いて詳細に
説明する。図1は、本発明に係る光パルス試験器の実施
の形態の構成を示した図である。図1において、光パル
ス試験器は、発光手段1、光カプラ2、出射端3、光検
出手段4、信号処理手段5、発光手段6により構成され
ており、被測定光ファイバ7を試験するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the optical pulse tester according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing a configuration of an embodiment of an optical pulse tester according to the present invention. In FIG. 1, the optical pulse tester comprises a light emitting means 1, an optical coupler 2, an emitting end 3, a light detecting means 4, a signal processing means 5, and a light emitting means 6, and tests an optical fiber 7 to be measured. It is.

【0014】次に、本実施の形態の動作について説明す
る。図1の光パルス試験器は、信号処理手段5にて全て
の動作が制御される。発光手段1は、信号処理手段5よ
りの制御信号で光パルスを発生する。発光手段1は一般
的にパルス幅は1ナノ秒から数十マイクロ秒までのいく
つかの値が設定できる。繰り返し周期は数マイクロ秒か
ら数十ミリ秒が使われる。発光手段1を出た光パルスは
光カプラ2を通り出射端3より被測定光ファイバ7へ出
射される。被測定光ファイバ7で発生した後方散乱光や
反射光は、出射端3を経由し光カプラ2で発光手段1側
と光検出手段4側に分割される。発光手段1側に出力さ
れた後方散乱光や反射光は、発光手段1で反射又は吸収
され消滅する。光検出手段4側に出力された後方散乱光
や反射光は、光検出手段4で光−電気変換された後、電
気的に増幅され信号処理手段5に出力される。信号処理
手段5は、光検出手段4の信号を離散的に取得し時系列
測定値として保持する。このとき取得するデータは光パ
ルスを発生した時刻を起点としている。信号処理手段5
は、保持した時系列測定値を処理し、記録、表示する機
能を有する。信号処理手段5の処理の主なものを以下に
列挙する。 (A)雑音を除去するために複数回測定した測定結果と
加算平均すること。 (B)表示のため対数変換すること。 (C)前記、複数の測定結果を繋ぎ合わせる。
Next, the operation of this embodiment will be described. All operations of the optical pulse tester of FIG. 1 are controlled by the signal processing means 5. The light emitting means 1 generates a light pulse based on a control signal from the signal processing means 5. Generally, the light emitting means 1 can set several values of the pulse width from 1 nanosecond to several tens of microseconds. A repetition period of several microseconds to several tens of milliseconds is used. The light pulse exiting the light emitting means 1 passes through the optical coupler 2 and is emitted from the emission end 3 to the optical fiber 7 to be measured. Backscattered light and reflected light generated by the measured optical fiber 7 are split by the optical coupler 2 through the emission end 3 into the light emitting means 1 side and the light detecting means 4 side. The backscattered light and reflected light output to the light emitting means 1 are reflected or absorbed by the light emitting means 1 and disappear. The backscattered light and reflected light output to the light detecting means 4 are subjected to light-to-electric conversion by the light detecting means 4, and then are electrically amplified and output to the signal processing means 5. The signal processing unit 5 discretely acquires the signal of the light detection unit 4 and holds the signal as a time-series measurement value. The data acquired at this time starts from the time when the light pulse is generated. Signal processing means 5
Has a function of processing, recording and displaying the stored time-series measurement values. The main processes of the signal processing means 5 are listed below. (A) Averaging with a measurement result measured a plurality of times to remove noise. (B) Logarithmic conversion for display. (C) The plurality of measurement results are joined.

【0015】次に、光検出手段4の感度を調整する動作
について説明する。光パルス試験器が測定開始時、又は
レンジ切り替えを行った時、信号処理手段5は光検出手
段4の感度を測定し感度調整を行う。光検出手段4の内
部構成を図2に示す。以下の説明では、図1と併せて図
2も説明に使用する。図2のAPD11は光カプラ2か
らの光信号を電気信号に変換する。APD11は、変換
した電気信号を可変電圧源12の印加電圧により生じた
増倍効果により増倍する。APD11は増倍した電気信
号を増幅器13に出力する。増幅器13は、APD11
からの電気信号を増幅して信号処理手段5へ出力する。
可変電圧源12は、例えば、信号処理手段5の中の処理
における感度設定手段(図示せず)等から送られた制御
信号により設定された電圧を出力する。この感度設定手
段は、信号処理手段5の中の処理において、光検出手段
4の出力を測定し、感度を設定感度と比較し、設定感度
になったとき光パルスの試験器の感度とするように、可
変電圧源12に制御信号を送る。この結果、可変電圧源
12の出力電圧を可変とすることができる。
Next, the operation of adjusting the sensitivity of the light detecting means 4 will be described. When the optical pulse tester starts measurement or switches the range, the signal processing unit 5 measures the sensitivity of the light detection unit 4 and adjusts the sensitivity. FIG. 2 shows the internal configuration of the light detecting means 4. In the following description, FIG. 2 will be used in conjunction with FIG. The APD 11 in FIG. 2 converts an optical signal from the optical coupler 2 into an electric signal. The APD 11 multiplies the converted electric signal by a multiplication effect generated by the voltage applied to the variable voltage source 12. The APD 11 outputs the multiplied electric signal to the amplifier 13. The amplifier 13 is an APD 11
And amplifies the electric signal from the signal processor and outputs it to the signal processing means 5.
The variable voltage source 12 outputs a voltage set by a control signal sent from, for example, a sensitivity setting unit (not shown) in the processing in the signal processing unit 5. The sensitivity setting means measures the output of the light detecting means 4 in the processing in the signal processing means 5, compares the sensitivity with the set sensitivity, and when the set sensitivity is reached, sets the sensitivity of the light pulse tester. Then, a control signal is sent to the variable voltage source 12. As a result, the output voltage of the variable voltage source 12 can be made variable.

【0016】図1の発光手段6は、光強度が既知かつ安
定な光信号を出力できる光源である。信号処理手段5
は、発光手段6を発光させ光カプラ2に光信号を出力す
る。発光手段6より出力された光信号は光カプラ2で発
光手段1側と光検出手段4側に分割出力される。発光手
段1側に出力された光信号は、反射又は吸収され消滅す
る。光検出手段4側に出力された光信号は、光検出手段
4で光−電気変換された後、電気的に増幅され信号処理
手段5に出力される。
The light emitting means 6 shown in FIG. 1 is a light source capable of outputting a light signal whose light intensity is known and stable. Signal processing means 5
Causes the light emitting means 6 to emit light and output an optical signal to the optical coupler 2. The optical signal output from the light emitting means 6 is divided and output by the optical coupler 2 to the light emitting means 1 side and the light detecting means 4 side. The optical signal output to the light emitting means 1 is reflected or absorbed and disappears. The optical signal output to the light detecting means 4 is optically-electrically converted by the light detecting means 4, and then electrically amplified and output to the signal processing means 5.

【0017】発光手段6は、光強度が既知かつ安定であ
る。発光手段6から光検出手段4までの経路の通過損失
も既知かつ安定である。よって、信号処理手段5は、光
検出手段4の電気信号強度を測定することにより光検出
手段4の感度を知ることができる。信号処理手段5は、
光検出手段4の感度が所望の値でない場合、図2の可変
電圧源12の出力電圧を変化させ、図2のAPD11の
増倍度を変化することで光検出手段4の感度を変化させ
る。信号処理手段5は、再度、光検出手段4の出力を測
定して光検出手段4の感度がが所望の値に調整できたか
を判定する。光検出手段4の感度が所望の値でなけれ
ば、再度図2の可変電圧源12の出力電圧を変化させ、
図2のAPD11の増倍度を変化させる。以上の動作を
繰り返すことで信号処理手段5は、光検出手段4の感度
を所望の値に調節する。
The light emitting means 6 has a known and stable light intensity. The passage loss in the path from the light emitting means 6 to the light detecting means 4 is also known and stable. Therefore, the signal processing means 5 can know the sensitivity of the light detecting means 4 by measuring the electric signal intensity of the light detecting means 4. The signal processing means 5
If the sensitivity of the light detecting means 4 is not a desired value, the output voltage of the variable voltage source 12 in FIG. 2 is changed, and the sensitivity of the light detecting means 4 is changed by changing the multiplication factor of the APD 11 in FIG. The signal processing unit 5 measures the output of the light detection unit 4 again to determine whether the sensitivity of the light detection unit 4 has been adjusted to a desired value. If the sensitivity of the light detection means 4 is not a desired value, the output voltage of the variable voltage source 12 in FIG.
The multiplication factor of the APD 11 in FIG. 2 is changed. The signal processing means 5 adjusts the sensitivity of the light detection means 4 to a desired value by repeating the above operation.

【0018】[0018]

【発明の効果】本発明の光パルス試験器によれば、被測
定光ファイバへ光パルスを出射する発光手段と、被測定
光ファイバからの後方散乱光を分離するための光カプラ
と、光カプラより分離した後方散乱光を検出する増倍効
果をもつ光検出手段と、検出信号を処理する信号処理手
段とを有する光パルス試験器において、前記光カプラの
入射端に光強度が既知で、かつ、安定な発光手段を接続
し、前記光検出手段の感度が所望の感度になるまで、前
記光検出手段の増倍度を変化させながら繰り返し直接測
定して感度調整すること、さらに、前記光検出手段は、
光カプラ(2)からの光信号を電気信号に変換し、かつ、
増倍効果をもつ光検出素子(11)と、光検出素子(11)から
の電気信号を増幅して信号処理手段5へ出力する増幅器
(13)と、前記光検出素子印加電圧用可変電圧源(12)と、
からなること、前記光検出素子は、変換した電気信号を
可変電圧源(12)の印加電圧により生じた増倍効果により
増倍し、増倍した電気信号を増幅器(13)に出力する光検
出素子(11)であること、アバランジェフォトダイオード
であること、を特徴とする構成により、光検出手段の感
度が所望の値になるまで、より細かく調整できるため、
より正確な測定結果を得られる光パルス試験器を提供で
きる。また、光検出手段側に出力された後方散乱光や反
射光を、光検出手段で光−電気変換し、電気的に増幅し
て、信号処理手段に出力するので、信号処理手段の主な
処理である以下(A)、(B)、(C)の処理を実行す
ることができる。 (A)雑音を除去するために複数回測定した測定結果と
加算平均すること。 (B)表示のため対数変換すること。 (C)前記、複数の測定結果を繋ぎ合わせる。 さらに、上記(C)の繋ぎ合わせ処理で、つなぎ目に段
差が生じない測定結果を得られる光パルス試験器を提供
できる。
According to the optical pulse tester of the present invention, a light emitting means for emitting an optical pulse to an optical fiber to be measured, an optical coupler for separating backscattered light from the optical fiber to be measured, and an optical coupler In a light pulse tester having a light detecting means having a multiplication effect of detecting more separated backscattered light and a signal processing means for processing a detection signal, a light intensity is known at an incident end of the optical coupler, and Connecting a stable light-emitting means, and repeatedly adjusting the sensitivity by directly measuring while changing the degree of multiplication of the light detection means until the sensitivity of the light detection means reaches a desired sensitivity; Means are
The optical signal from the optical coupler (2) is converted into an electric signal, and
A photodetector (11) having a multiplication effect, and an amplifier for amplifying an electric signal from the photodetector (11) and outputting the amplified signal to the signal processing means 5
(13), the photodetector applied voltage variable voltage source (12),
Wherein the light detection element multiplies the converted electric signal by a multiplication effect generated by a voltage applied to the variable voltage source (12), and outputs the multiplied electric signal to the amplifier (13). Since the element (11) is an avalanche photodiode, the sensitivity of the light detection means can be adjusted more finely until the sensitivity becomes a desired value.
An optical pulse tester that can obtain more accurate measurement results can be provided. In addition, since the backscattered light or reflected light output to the light detecting means is converted from light to electricity by the light detecting means, electrically amplified and output to the signal processing means, the main processing of the signal processing means is performed. The following processes (A), (B), and (C) can be executed. (A) Averaging with a measurement result measured a plurality of times to remove noise. (B) Logarithmic conversion for display. (C) The plurality of measurement results are joined. Furthermore, an optical pulse tester that can obtain a measurement result in which a step does not occur at the joint by the joining process (C) can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る実施の形態の光パルス試験器の構
成図である。
FIG. 1 is a configuration diagram of an optical pulse tester according to an embodiment of the present invention.

【図2】本発明に係る実施の形態の光パルス試験器にお
ける光検出手段の内部構成図である。
FIG. 2 is an internal configuration diagram of a light detecting unit in the optical pulse tester according to the embodiment of the present invention.

【図3】従来の光パルス試験器の構成図である。FIG. 3 is a configuration diagram of a conventional optical pulse tester.

【符号の説明】[Explanation of symbols]

1、21 発光手段 2、22 光カプラ 3、23 出射端 4、24 光検出手段 5、25 信号処理手段 6 発光手段 7、27 被測定光ファイバ 11 APD 12 可変電圧源 13 増幅器 DESCRIPTION OF SYMBOLS 1, 21 Light emitting means 2, 22 Optical coupler 3, 23 Outgoing end 4, 24 Light detecting means 5, 25 Signal processing means 6 Light emitting means 7, 27 Optical fiber to be measured 11 APD 12 Variable voltage source 13 Amplifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定光ファイバへ光パルスを出射する
発光手段と、被測定光ファイバからの後方散乱光を分離
するための光カプラと、光カプラより分離した後方散乱
光を検出する増倍効果をもつ光検出手段と、検出信号を
処理する信号処理手段とを有する光パルス試験器におい
て、 前記光カプラの入射端に光強度が既知で、かつ、安定な
発光手段を接続し、前記光検出手段の感度が所望の感度
になるまで、前記光検出手段の増倍度を変化させながら
繰り返し直接測定して感度調整する、ことを特徴とする
光パルス試験器。
1. A light emitting means for emitting a light pulse to an optical fiber to be measured, an optical coupler for separating backscattered light from the optical fiber to be measured, and a multiplier for detecting the backscattered light separated from the optical coupler. An optical pulse tester having a light detecting means having an effect and a signal processing means for processing a detection signal, wherein a light emitting means having a known light intensity and a stable light emitting means is connected to an incident end of the optical coupler; An optical pulse tester, wherein the sensitivity is adjusted by repeatedly performing direct measurement while changing the multiplication factor of the light detecting means until the sensitivity of the detecting means reaches a desired sensitivity.
【請求項2】 前記光検出手段は、光カプラ(2)からの
光信号を電気信号に変換し、かつ、増倍効果をもつ光検
出素子(11)と、光検出素子(11)からの電気信号を増幅し
て信号処理手段5へ出力する増幅器(13)と、前記光検出
素子印加電圧用可変電圧源(12)と、からなることを特徴
とする請求項1記載の光パルス試験器。
2. The photodetector converts an optical signal from an optical coupler (2) into an electric signal, and has a multiplication effect between a photodetector (11) and a photodetector (11). 2. The optical pulse tester according to claim 1, further comprising an amplifier for amplifying an electric signal and outputting the amplified signal to the signal processing means, and a variable voltage source for applying a voltage to the photodetector. .
【請求項3】 前記光検出素子は、変換した電気信号を
可変電圧源(12)の印加電圧により生じた増倍効果により
増倍し、増倍した電気信号を増幅器(13)に出力する光検
出素子(11)である、ことを特徴とする請求項2記載の光
パルス試験器。
3. A light detecting element for multiplying a converted electric signal by a multiplication effect generated by a voltage applied to a variable voltage source, and outputting the multiplied electric signal to an amplifier. 3. The optical pulse tester according to claim 2, wherein the optical pulse tester is a detection element.
【請求項4】 前記光検出素子は、アバランジェフォト
ダイオードである、ことを特徴とする請求項3または4
のいずれかに記載の光パルス試験器。
4. The photodetector according to claim 3, wherein the photodetector is an avalanche photodiode.
An optical pulse tester according to any one of the above.
JP27574499A 1999-09-29 1999-09-29 Optical pulse tester Pending JP2001099750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27574499A JP2001099750A (en) 1999-09-29 1999-09-29 Optical pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27574499A JP2001099750A (en) 1999-09-29 1999-09-29 Optical pulse tester

Publications (1)

Publication Number Publication Date
JP2001099750A true JP2001099750A (en) 2001-04-13

Family

ID=17559801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27574499A Pending JP2001099750A (en) 1999-09-29 1999-09-29 Optical pulse tester

Country Status (1)

Country Link
JP (1) JP2001099750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432333B1 (en) * 2002-06-17 2004-05-20 한국건설기술연구원 Optical fiber model of otdr measurement system for landslides protection
KR100893752B1 (en) 2008-04-11 2009-04-17 주식회사 케이티엔티 Terminal board using monitoring system of fiber line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432333B1 (en) * 2002-06-17 2004-05-20 한국건설기술연구원 Optical fiber model of otdr measurement system for landslides protection
KR100893752B1 (en) 2008-04-11 2009-04-17 주식회사 케이티엔티 Terminal board using monitoring system of fiber line

Similar Documents

Publication Publication Date Title
CN108199767B (en) Method and device for detecting high dynamic range optical time domain reflection
JP3033677B2 (en) Optical fiber characteristics measurement device
US8213002B2 (en) PON tester
WO2003042652A1 (en) Wavelength dispersion probing system
US8913235B2 (en) Fiber measurement device
JP3094917B2 (en) Optical fiber strain measurement device
JPWO2019186914A1 (en) Laser radar device
JP6658256B2 (en) Gas detection system
US11782078B2 (en) Method and apparatus for pulsed power measurement
WO2020098277A1 (en) Distributed optical fiber sensing system and control method and control device therefor, and storage medium
JP2001099750A (en) Optical pulse tester
US7016023B2 (en) Chromatic dispersion measurement
CN110375960A (en) A kind of device and method based on super continuum source OTDR
CN111189619B (en) Device and method for measuring laser tuning precision
US6417926B1 (en) Wavelength measuring system
JP4119886B2 (en) Optical pulse tester
JPH05322695A (en) Light pulse tester
JP3088031B2 (en) Optical pulse tester
JP2515018B2 (en) Backscattered light measurement method and device
WO2023160490A1 (en) Signal transmission method and apparatus
CN214096342U (en) Vibration signal automatic checkout device based on OFDR
JPS58113832A (en) Detector for breaking point of optical fiber
JP7351365B1 (en) Optical fiber sensor and Brillouin frequency shift measurement method
JP2763586B2 (en) Optical fiber fault point searching method and apparatus
Gorlov et al. Distributed Fiber-Optic Probing using the Optical Reflectometry Method