JPS6177608A - Production of fine powdery alpha silicon nitride - Google Patents

Production of fine powdery alpha silicon nitride

Info

Publication number
JPS6177608A
JPS6177608A JP19913284A JP19913284A JPS6177608A JP S6177608 A JPS6177608 A JP S6177608A JP 19913284 A JP19913284 A JP 19913284A JP 19913284 A JP19913284 A JP 19913284A JP S6177608 A JPS6177608 A JP S6177608A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
particle size
silicon oxide
fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19913284A
Other languages
Japanese (ja)
Other versions
JPH0610082B2 (en
Inventor
Tadanori Hashimoto
橋本 忠紀
Kazuhiko Nakano
和彦 中野
Norio Matsuda
憲雄 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP19913284A priority Critical patent/JPH0610082B2/en
Priority to US06/747,851 priority patent/US4590053A/en
Publication of JPS6177608A publication Critical patent/JPS6177608A/en
Publication of JPH0610082B2 publication Critical patent/JPH0610082B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Abstract

PURPOSE:To produce fine powdery silicon nitride having superior particle characteristics with good yield inexpensively by using Mg and an Mg compd. as nitridation accelerator in the reduction nitridation process of silicon oxide, and using fine silicon nitride powder having a specified specific surface area. CONSTITUTION:Silicon nitride is produced by heat-treating a mixture of silicon oxide powder and carbon powder at high temp. in an atmosphere contg. N2. In this case, at least one selected from Mg and Mg compds. and fine silicon nitride powder having 15-100m<2>/g specific surface area (determined by BET process) are added to the above-described mixture. By this method, inexpensive SiO2 having coarse particles having ca. 1-100mu median particle size is also useful. Moreover, uniform and fine alpha-Si3N4 particles having <=1mu particle size and almost spherical shape are obtd.

Description

【発明の詳細な説明】 本発明はα型窒化ケイ素(α−”13N4)微粉末の製
造方法に関する。より詳しくは高品位で微細なα型窒化
ケイ素微粉末を収率よくかつ安価に得る方法を提供する
ものである。
Detailed Description of the Invention The present invention relates to a method for producing α-type silicon nitride (α-”13N4) fine powder. More specifically, a method for obtaining high-grade, fine α-type silicon nitride fine powder with good yield and at low cost. It provides:

窒化ケイ素焼結体は耐熱性高温強度にすぐれており、高
強度耐熱材料、高精密耐摩耗性材料  ゛としてジーゼ
ル、ガスタービン等の熱機関の高温化、軽量化、高効率
化が実現できる材料として期待されている。これら焼結
体の熱的、機械的性質は焼結体原料粉末の性状に依存す
るところが大きく、1μm以下の球状に近い形状で粒径
分布の狭い高品位のα型窒化ケイ素微粉末の安価な供給
が望まれている。
Silicon nitride sintered bodies have excellent heat resistance and high temperature strength, and are used as high-strength heat-resistant materials and high-precision wear-resistant materials that can achieve higher temperatures, lighter weight, and higher efficiency in heat engines such as diesels and gas turbines. It is expected that The thermal and mechanical properties of these sintered bodies largely depend on the properties of the raw material powder for the sintered bodies. Supply is desired.

窒化ケイ素合成法の中で酸化ケイ素の還元窒化法は反応
操作が比較的容易であること、装置を腐食したり、爆発
等の危険性のある原料を用いないことおよびα型窒化ケ
イ素比率の高い窒化ケイ素が得られ易いことなど工業的
に有利な方法として注目されている。
Among the silicon nitride synthesis methods, the reduction nitridation method of silicon oxide has the following advantages: the reaction operation is relatively easy, it does not corrode the equipment, it does not use raw materials that are hazardous to explosions, etc., and it has a high proportion of α-type silicon nitride. This method is attracting attention as an industrially advantageous method because silicon nitride can be easily obtained.

しかし、この方法は原料として十分精選された酸化ケイ
素徹粉末および炭素粉末を用いても通常数μmの大きさ
の窒化ケイ素粉末しか得られず、場合によっては針状結
晶、棒状の粒子が混在し、1μm以下の球状に近い形状
を有する均一なα型窒化ケイ素微粉末が得られないとい
う問題と原料中の炭素/酸化ケイ素比率が小さい場合に
は窒化反応率が低く、未反応酸化ケイ素が残るという問
題を有している。また、これらの問題は中心粒径1μm
以との粗粒酸化ケイ素粉末を用いる程顕著であり、より
安価にα型窒化ケイ素粉末を得るための大きな障壁とな
っている。
However, even if this method uses carefully selected silicon oxide powder and carbon powder as raw materials, it usually only yields silicon nitride powder with a size of several μm, and in some cases, needle-shaped crystals and rod-shaped particles are mixed. The problem is that uniform α-type silicon nitride fine powder with a shape close to a spherical shape of 1 μm or less cannot be obtained, and when the carbon/silicon oxide ratio in the raw material is small, the nitriding reaction rate is low and unreacted silicon oxide remains. There is a problem. In addition, these problems are caused by the central particle size of 1 μm
The more coarse-grained silicon oxide powder is used, the more pronounced this becomes, and it becomes a major barrier to obtaining α-type silicon nitride powder at a lower cost.

窒化反応速度をあげるために、触媒として鉄、マンガン
、マグネシウム等の酸化物を添加する方法(窯業協会誌
vo1.85〔11j 1977年P、587〜542
参照)が提案されている。しかし、ここに窒化反応を促
進する物質として述べられている酸化鉄、62化マグネ
シウム、酸化カルシウム、二酸化マンガン、酸化コバル
ト、酸化クロム、および五酸化バナジウムを触媒として
添加しても窒化率は向上するが、生成する窒化ケイ素の
粒子径は通常数μmで、かつ針状結晶や棒状の粒子が混
在する。この傾向は粒子径の大きい酸化ケイ酸を原料と
して用いる程著るしい。また、酸化鉄、二酸化マンガン
、酸化コバルト、酸化クロムの添加では炭化ケイ素が共
に生成し易すく、五酸化バナジウムの添加ではβ型窒化
ケイ素が生成し易すい。すなわち、ここで述べられてい
るような物質は窒化反応を促進させる触媒としては効果
があるが、生成する窒化ケイ素粒子の粒径や形状の制御
という点では問題があり、粒子形状のそろった球状の微
粉末を生成させるという目的には殆んど効果がない。
In order to increase the nitriding reaction rate, a method of adding oxides such as iron, manganese, magnesium, etc. as a catalyst (Ceramic Industry Association Journal vol. 1.85 [11j 1977 P, 587-542)
) has been proposed. However, the nitriding rate can be improved even if iron oxide, magnesium 62ide, calcium oxide, manganese dioxide, cobalt oxide, chromium oxide, and vanadium pentoxide, which are mentioned here as substances that promote the nitriding reaction, are added as catalysts. However, the particle diameter of the silicon nitride produced is usually several μm, and needle-like crystals and rod-like particles are mixed therein. This tendency is more pronounced as silicic acid oxide with a larger particle size is used as a raw material. Further, when iron oxide, manganese dioxide, cobalt oxide, and chromium oxide are added, silicon carbide is likely to be produced together, and when vanadium pentoxide is added, β-type silicon nitride is likely to be produced. In other words, although the substances described here are effective as catalysts for promoting the nitriding reaction, there is a problem in controlling the particle size and shape of the silicon nitride particles that are produced. It has little effect on the purpose of producing fine powder.

窒化反応を促進させると共に粒子形状を制御する方法と
して2μm以下の窒化ケイ素微粉末を添加する方法(特
公昭54−28917号公報、特開昭58−91005
号公報、第1回次世代産業基盤技術シンポジウム予稿集
、昭和58年11月11日P、27〜46参照)が提案
されている。
A method of adding silicon nitride fine powder of 2 μm or less as a method of accelerating the nitriding reaction and controlling the particle shape (Japanese Patent Publication No. 54-28917, Japanese Patent Application Laid-Open No. 58-91005)
No. Publication, Proceedings of the 1st Next Generation Industrial Infrastructure Technology Symposium, November 11, 1988, p. 27-46) has been proposed.

しかし、この方法は上記公報および文献にも記載されて
いるように、原料酸化ケイ素粉末の粒径が20−40m
μの微粉末であれば効果は顕著であるが、粒径が1μm
以上の粗粒酸化ケイ素粉末を用いた場合には、窒化反応
速度も遅く、α型窒化ケイ素含有率も低く、かつ、生成
する窒化ケイ素の粒子形状制御が出来ず、針状結晶や棒
状の粒子が混在した不均一な粒子形状の窒化ケイ素しか
得られない、すなわちこの方法は原料として使用する酸
化ケイ素の粒径が1μm以とと大きい場合には効果があ
る方法ではない。
However, as described in the above-mentioned publications and literature, this method requires that the particle size of the raw material silicon oxide powder be 20-40 m.
The effect is remarkable if it is a fine powder of μ, but the particle size is 1 μm.
When using the above coarse-grained silicon oxide powder, the nitriding reaction rate is slow, the α-type silicon nitride content is low, and the particle shape of the silicon nitride produced cannot be controlled, resulting in needle-like crystals and rod-like particles. In other words, this method is not effective when the particle size of silicon oxide used as a raw material is as large as 1 μm or more.

酸化ケイ素の還元・窒化反応による窒化ケイ素の合成に
おいては、その生産コストに占める原料コストの比重は
大きく重要である。
In the synthesis of silicon nitride by the reduction and nitriding reaction of silicon oxide, the raw material cost is a very important proportion of the production cost.

特に原料として用いる酸化ケイ素の価格はその粒径等に
依存しており、粒径20−40mμの酸化ケイ素微粉末
は高価であり、生産コストを大幅に下げるために安価な
粒径1μm以上の粗粒酸化ケイ素を用いることが可能な
方法の開発が切望されているヵ 本発明者らはこのような実情に鑑み、酸化ケイ素および
炭素を原料とする還元・窒化法において還元・窒化反応
触媒としてMgおよびMg化合物から選ばれた少なくと
も1種を添加すると共に、BFT比表面積15〜100
ゴ/fの窒化ケイ素微粉末を添加すると、中心粒径1μ
m以上の酸化ケイ素粗粒子を用いた場合においてもこれ
らの添加物の相乗効果により、窒化率が高く、かつ中心
粒径1μm以下の球状に近い形状をもつ均一なα型窒化
ケイ素微粉末が収率よく得られることを見出し、本発明
に到達した。
In particular, the price of silicon oxide used as a raw material depends on its particle size, etc. Fine silicon oxide powder with a particle size of 20-40 mμ is expensive, and in order to significantly reduce production costs, coarse powder with a particle size of 1 μm or more is used. There is a strong desire to develop a method that can use granular silicon oxide. In view of these circumstances, the present inventors have developed Mg as a reduction/nitriding reaction catalyst in a reduction/nitriding method using silicon oxide and carbon as raw materials. and Mg compounds, and a BFT specific surface area of 15 to 100.
When adding fine silicon nitride powder of
Even when silicon oxide coarse particles with a particle size of 1 μm or more are used, the synergistic effect of these additives makes it possible to obtain uniform α-type silicon nitride fine powder with a high nitriding rate and a shape close to a spherical shape with a center particle diameter of 1 μm or less. It has been found that this can be obtained efficiently, and the present invention has been achieved.

すなわち本発明は酸化ケイ素粉末および炭素粉末の混合
物を窒素を含む雰囲気下、高温で加熱処理して窒化ケイ
素を製造する方法において該混合物にMgおよびMg化
合物から選ばれた少くとも1種、およびBET比表面積
15〜100d/1/を有する窒化ケイ素微粉末を添加
せしめておくことを特徴とするα−型窒化ケイ素微粉末
の製造方法を提供するものである。
That is, the present invention provides a method for producing silicon nitride by heat-treating a mixture of silicon oxide powder and carbon powder at high temperature in a nitrogen-containing atmosphere, in which at least one selected from Mg and Mg compounds and BET are added to the mixture. The present invention provides a method for producing α-type silicon nitride fine powder, which comprises adding silicon nitride fine powder having a specific surface area of 15 to 100 d/1/.

本発明によれば粒子性状が良好な窒化ケイ素微粉末が安
価に得られ、その工業的価値は非常iこ大きい。
According to the present invention, silicon nitride fine powder with good particle properties can be obtained at low cost, and its industrial value is extremely large.

本発明について以下に詳述する。The present invention will be explained in detail below.

本発明において使用される酸化ケイ素粉末は中心粒径が
100μm以下で出来るだけ高純度のものが望ましい。
The silicon oxide powder used in the present invention preferably has a center particle size of 100 μm or less and is as pure as possible.

中心粒径1μm以下の酸化ケイ素微粉末を使用しても本
発明に従えば中心粒径1μm以下の球状に近い均一なα
型窒化ケイ素微粉末を得ることが出来るが、その価格は
中心粒径1〜100μmの酸化ケイ素粉末に比べて10
倍近い価格であり、より安価にa型室化ケイ素微粉本を
得ることが出来ないので工業的にみて中心粒径が1〜1
00μmの粗粒子が好適である。また、中心粒径100
μm以上の酸化ケイ素粉末を用いる場合には炭素粉末等
との混合を均一にするために、ボールミル等での混合時
間を長くし、粉砕効果をも期待するか、あらかじめボー
ルミル、振動ミル等で酸化ケイ素粉末を100μm以下
に粉砕してから使用することが必要である。酸化ケイ素
粉末中にB、Al、Zn化合物等の不純物が含まれてい
る場合、これらが還元・窒素反応を抑制する働きを示し
、一方V、 Nb、 Ta、 Cr、 Mo、 W、 
Mn、 Fe、 Co、 Ni。
Even if silicon oxide fine powder with a center particle size of 1 μm or less is used, according to the present invention, a nearly spherical uniform α with a center particle size of 1 μm or less can be obtained.
type silicon nitride fine powder can be obtained, but its price is 10 μm compared to silicon oxide powder with a center particle size of 1 to 100 μm.
Since the price is almost twice as high and it is not possible to obtain A-type chambered silicon fine powder at a cheaper price, from an industrial perspective, the central particle size is 1 to 1.
Coarse particles of 00 μm are preferred. Also, the center particle size is 100
When using silicon oxide powder of μm or larger, in order to ensure uniform mixing with carbon powder, etc., either increase the mixing time in a ball mill, etc. to obtain a pulverizing effect, or oxidize it in advance with a ball mill, vibration mill, etc. It is necessary to use the silicon powder after pulverizing it to 100 μm or less. When silicon oxide powder contains impurities such as B, Al, and Zn compounds, these act to suppress reduction and nitrogen reactions, while V, Nb, Ta, Cr, Mo, W,
Mn, Fe, Co, Ni.

Cu化合物等の不純物はSiCを生成させると共に、針
状結晶を生成し易すくするため、原料酸化ケイ素粉末中
に出来るだけ含まれていないことが望ましい。
It is desirable that impurities such as Cu compounds are contained in the raw silicon oxide powder as little as possible because they cause SiC to form and also facilitate the formation of needle-shaped crystals.

したがって、これらの金属を含む不純物が夫々の金属元
素の総量として0.8重量%以上含まれていない酸化ケ
イ素を使用まるごとが望ましい。このような酸化ケイ素
粉末として、無水ケイ酸、石英、クリストバライト、石
英ガラスおよびシリカゲルが挙げられるが、安価に入手
出来るものとして天然石英粉末を用いることが最も好ま
しい。
Therefore, it is desirable to use silicon oxide that does not contain impurities containing these metals in a total amount of 0.8% by weight or more of each metal element. Examples of such silicon oxide powder include anhydrous silicic acid, quartz, cristobalite, quartz glass, and silica gel, but it is most preferable to use natural quartz powder because it can be obtained at low cost.

炭素粉末も同様に上記の金属を含む不純物を夫々の金属
元素の総量として0.8重量%以上含まないものを使用
することが望ましい。その代表的なものはアセチレンブ
ラックファーネスブラック等の粉末である。またその粒
径は数mμのものから使用出来る。取扱いの点からいう
と混合の際粉末化できるものであれば造粒した0、3〜
1.5IIII程度の粒状のもの、プレス成型した粒状
のものを使用するのが有利である。
Similarly, it is desirable to use a carbon powder that does not contain impurities containing the above-mentioned metals in an amount of 0.8% by weight or more based on the total amount of each metal element. A typical example thereof is powder such as acetylene black furnace black. Moreover, the particle size can be used from several millimicrons. In terms of handling, if it can be powdered during mixing, granulated 0,3~
It is advantageous to use granules of about 1.5III or press-molded granules.

酸化ケイ素粉末1重量部に対して炭素が0.4重量部よ
り少ないと、還元・窒化反応式3SiO2+6G+2N
、→S 13N4 + 6 COにおいて反応当量より
少な(なり未反応S i O。
If the carbon content is less than 0.4 parts by weight per 1 part by weight of silicon oxide powder, the reduction/nitriding reaction formula 3SiO2+6G+2N
, →S 13N4 + 6 CO is less than the reaction equivalent (and unreacted S i O.

が残留する。一方、4重量部より多いと、α型窒化ケイ
素の反応収率が低下すると共に、未反応炭素が多く残り
、その除去が困難、かつ、コスト的にも高くつくので好
ましくない。従って炭素粉末の添加量としては0.4〜
4重量部が好ましくより好ましくは0.5〜1.2重量
部である。
remains. On the other hand, if the amount is more than 4 parts by weight, the reaction yield of α-type silicon nitride decreases, and a large amount of unreacted carbon remains, making it difficult to remove and increasing the cost, which is not preferable. Therefore, the amount of carbon powder added should be 0.4~
The amount is preferably 4 parts by weight, more preferably 0.5 to 1.2 parts by weight.

本発明において用いられるMgまたはその化合物として
は、金属マグネシウムおよび硝酸マグネシウム、塩化マ
グネシウムおよび硫酸マグネシウム等の水溶性化合物、
水酸化マグネシウム、酸化マグネシウム、炭酸マグネシ
ウム、塩基性炭酸マグネシウム、マグネシウムイソプロ
ポキサイド、窒化マグネシウム等から用いることが出来
るが、粗粒酸化ケイ素粉末、炭素粉末等の原料粉末は混
合をより均一にするため、水を加えて湿式ボールミル等
で混合されるので、上記の中でも水溶性のMg化合物を
用いる方が好ましい。水に不溶性の場合にはあらかじめ
酸性の水溶液に溶解した後、添加することが出来る。
Mg or its compounds used in the present invention include metal magnesium and water-soluble compounds such as magnesium nitrate, magnesium chloride and magnesium sulfate;
Magnesium hydroxide, magnesium oxide, magnesium carbonate, basic magnesium carbonate, magnesium isopropoxide, magnesium nitride, etc. can be used, but raw material powders such as coarse silicon oxide powder and carbon powder can be used to make the mixing more uniform. Among the above, it is preferable to use a water-soluble Mg compound, since water is added thereto and mixed using a wet ball mill or the like. If it is insoluble in water, it can be added after being dissolved in an acidic aqueous solution in advance.

また、上に列挙した物質を単独で添加しても2種類以上
添加してもよいが、その添加量としては、Mg元素の重
量換算で酸化ケイ素粉末1重量部に対し、0.0005
〜0.1重量部の範囲であることが望ましい。0.00
05重量部以下の添加量では還元・窒化反応の促進およ
び生成するα−3i3N4の形状制御・微粒化に殆んど
効果がな(、一方、0.12量部以上では生成したα−
5i3N、中にMgが多量含有され、焼結体原料として
好ましくない。より好ましい添加量としてはo、oot
〜0.03重量部の範囲である。また、この際、Mgと
共に、Be、Sr、Ca、Zr1Ti。
In addition, the above-listed substances may be added alone or two or more types, but the amount added is 0.0005 parts by weight of silicon oxide powder in terms of the weight of Mg element.
It is desirable that the amount is in the range of 0.1 parts by weight. 0.00
If the addition amount is less than 0.05 parts by weight, there is almost no effect on promoting the reduction/nitriding reaction and controlling the shape and atomization of the generated α-3i3N4 (on the other hand, if the amount is more than 0.12 parts by weight, the α-
5i3N contains a large amount of Mg and is not preferred as a raw material for a sintered body. A more preferable addition amount is o, oot
-0.03 parts by weight. Moreover, at this time, Be, Sr, Ca, and Zr1Ti are added together with Mg.

Hf、Sn、Ge等の金属またはそれらの化合物が共存
していてもよいが、それぞれの金属元素の総量としIで
0.1重量部を越えることは好ましくない。
Although metals such as Hf, Sn, and Ge or their compounds may coexist, it is not preferable that the total amount of each metal element I exceeds 0.1 part by weight.

本発明に用いられる窒化ケイ素微粉末はそのBET比表
面積が15〜10077//Vのα型窒化ケイ素微粉末
であり、好ましくはα相含有率が90%以上のものであ
る。
The silicon nitride fine powder used in the present invention is an α-type silicon nitride fine powder having a BET specific surface area of 15 to 10077//V, and preferably has an α phase content of 90% or more.

中心粒径が1μm以下の微粒子であってもそのBET比
表面積が1571f/f未満の場合、本発明効果が発現
せず、生成するα型窒七ケイ素の中心粒径が1μm以と
と大きくなるうえ針状結晶、棒状粒子が混在するように
なる。特にこの現象は1μm以上の酸化ケイ素の粗粒子
を原料として用いた場合顕著となる。
Even if the particle has a center particle size of 1 μm or less, if its BET specific surface area is less than 1571 f/f, the effect of the present invention will not be exhibited, and the center particle size of the α-type nitrosilicon produced will be large to 1 μm or more. Moreover, needle-like crystals and rod-like particles become mixed. This phenomenon is particularly noticeable when silicon oxide coarse particles of 1 μm or more are used as the raw material.

また比表面積10077//yを超えても効果にそれ以
上向上がみられない。一方製造が、困難であり、コスト
的、工業的不利となるので100rrr’79以下が好
ましい。より好ましくは15〜50フイ/yの範囲であ
る。
Moreover, even if the specific surface area exceeds 10077//y, no further improvement in the effect is observed. On the other hand, it is difficult to manufacture, resulting in cost and industrial disadvantages, so it is preferably 100rrr'79 or less. More preferably, it is in the range of 15 to 50 fi/y.

また窒化ケイ素微粉末のα相含有率が90%未満でβ相
やアモルファス相を多量に含むものを使用すると生成す
る窒化ケイ素のα相含有率が低くなったり、針状結晶、
棒状粒子が混在するようになるので、90%以上のα−
相含有率の窒化ケイ素微粉末を用いるのが好ましい。
In addition, if a fine silicon nitride powder with an α phase content of less than 90% and a large amount of β phase or amorphous phase is used, the α phase content of the silicon nitride produced will be low, and acicular crystals,
Since rod-shaped particles are mixed, more than 90% α-
It is preferred to use fine phase content silicon nitride powder.

本発明において添加するα−5i3N4微粉末の粒径は
通常中心粒径1μmn以下好ましくは0.8〜0.8μ
mである。
The particle size of the α-5i3N4 fine powder added in the present invention is usually a center particle size of 1 μm or less, preferably 0.8 to 0.8 μm.
It is m.

本発明で得られるα型窒化ケイ素微粉末で中心粒径が0
.3〜0.5μmと微粒の場合でも、その比表面積はL
5yd/Iよりかなり小さいので通常は強力な衝撃破壊
力(WX撃値3G〜15G)を有する振動ミル等の粉砕
機等に比表面積が15rr179以上になるまでかけ、
得るのが好ましい。
The α-type silicon nitride fine powder obtained by the present invention has a center particle size of 0.
.. Even in the case of fine particles of 3 to 0.5 μm, the specific surface area is L
Since it is considerably smaller than 5yd/I, it is usually applied to a crusher such as a vibrating mill that has a strong impact destructive force (WX impact value 3G to 15G) until the specific surface area becomes 15rr179 or more.
It is preferable to obtain

これら粉砕機にかけても径が1μm以下の窒化ケイ素粉
末の粒径はほとんど変化しないのでむしろ粒子表面が荒
されることにより比表面積が大きくなると考えられる。
Since the particle size of silicon nitride powder having a diameter of 1 μm or less hardly changes even when subjected to these crushers, it is thought that the specific surface area increases by roughening the particle surface.

なお、一般に使用されるボールミルでは破壊力が小さい
ので200時間程度では比表面積はほとんど増加しない
In addition, since the destructive force of commonly used ball mills is small, the specific surface area hardly increases after about 200 hours.

粉砕の際、振動ミル等の粉砕機の材質裔こよっては、A
I、Fe、Ni、W等の金属不純物が混在してくる。こ
のような窒化ケイ素微粉末を用いた場合、その効果が顕
著に現れず生成する窒化ケイ素中に針状結晶や棒状の粒
子が混在する。
During pulverization, due to the material of the pulverizer such as a vibrating mill, A
Metal impurities such as I, Fe, Ni, and W are mixed. When such a silicon nitride fine powder is used, its effect is not noticeable and needle-like crystals and rod-like particles are mixed in the silicon nitride produced.

そのような場合には振動ミル等の粉砕機により処理され
BET比表面積を15ゴ/f〜100扉/fに調整され
たα−3i3N、微粉末をフッ酸を含む鉱酸で洗浄処理
した後、使用することが望ましい。
In such cases, α-3i3N, which has been processed with a crusher such as a vibrating mill and adjusted to have a BET specific surface area of 15 g/f to 100 g/f, is used after cleaning the fine powder with mineral acid containing hydrofluoric acid. , it is desirable to use.

また、粉砕機にかけた場合、粒子の表面層が酸化物で覆
われる場合もあるのでこれらを除くためにも上記の洗滌
は好ましいことである。
Furthermore, when the particles are subjected to a pulverizer, the surface layer of the particles may be covered with oxides, so the above-mentioned washing is preferable in order to remove these.

α−5i3N4微粉末の添加量は酸化ケイ素粉末1重量
部に対し、0.01〜1重量部が適当である。α−5i
3N、微粉末の添加量が0.01重量部より少ないと、
その効果は殆んどみられず、針状結晶や棒状の粒子が混
在1/た1μm以上のα−5i3N4粉末しか得られな
い。また、tXX郡部り多いと新しく生成したα−3i
3N4より添加物のα−5i3N4の方が多くなり生産
効率tよく、したがってより好ましくは0.01〜0.
1重量部の範囲である。
The appropriate amount of α-5i3N4 fine powder to be added is 0.01 to 1 part by weight per 1 part by weight of silicon oxide powder. α-5i
3N, if the amount of fine powder added is less than 0.01 part by weight,
This effect is hardly seen, and only α-5i3N4 powder with a diameter of 1/1 μm or more can be obtained in which needle-like crystals and rod-like particles are mixed. In addition, when there is a large amount of tXX, the newly generated α-3i
Since the amount of additive α-5i3N4 is higher than that of 3N4, the production efficiency is higher, and therefore it is more preferably 0.01 to 0.
It is in the range of 1 part by weight.

本発明において上記の原料、添加物を均一に混合する方
法としては公知の方法が採用でき、特に限定されるもの
ではないが、好ましくは酸化ケイ素粉末、炭素粉末、M
gまたはMg化合物、および窒化ケイ素粉末を水と共に
湿式混合する。
In the present invention, any known method can be used to uniformly mix the above raw materials and additives, and is not particularly limited, but preferably silicon oxide powder, carbon powder, M
Wet mix g or Mg compound and silicon nitride powder with water.

混合方法としてはボールミル、セラミック混線機等の混
合手段をとることができるが、Fe。
As a mixing method, mixing means such as a ball mill or a ceramic mixer can be used, but Fe.

At等の反応の害となる不純物が混入しない°ように材
質を選定する必要がある。通常、ボールミルの場合、石
英ガラス、窒化ケイ素もしくはプラスチックで被覆され
たボールを用い、プラスチック製ポット中で混合するこ
とが好ましい。
It is necessary to select the material so that impurities such as At which may harm the reaction are not mixed in. Usually, in the case of a ball mill, it is preferable to use balls coated with quartz glass, silicon nitride or plastic, and mix in a plastic pot.

また炭素粉末は二股に数百mμ以下で比重も小さく取扱
い難いため、前述のように一担これらを0.8〜1.5
闘程度(ζ造粒、もしくはプレス成型した粒子を用い、
これを他原料と上記の手段で混合する方法が好ましい。
In addition, carbon powder has a bifurcated shape of several hundred micrometers or less and has a small specific gravity, making it difficult to handle.
(Using ζ granulated or press-molded particles,
A method of mixing this with other raw materials by the above-mentioned means is preferred.

混合が湿式で行われる場合、混合物を乾燥させるが、乾
燥時に酸化ケイ素と炭素粉末等が比重差等に分離しない
ように噴霧乾燥、ロータリーエバポレーター等の手段を
とることが好ましい。
When mixing is carried out wet, the mixture is dried, but it is preferable to use a method such as spray drying or a rotary evaporator to prevent silicon oxide and carbon powder from separating due to differences in specific gravity during drying.

混合物は窒素を含む雰囲気中で加熱処理され還元・窒化
反応に供せられるが、その雰囲気としてN2. NH8
,N2−H,、N、−Ar等の窒素を含有した反応ガス
系を使用することが出来る。加熱処理温度は1,400
〜1,600℃、好ましくは1.450〜1,550℃
の範囲が選択出来る。1,400℃未満では窒化反応を
十分進めるためには長時間を要し、1,600℃を超え
るとSiCの生成が多くなる。経済的な点も含めて、1
,450〜1,550℃の温度で2〜6時間呆持するの
が最も適当である。さらに、還元・窒化反応後、残存し
ている過剰炭素の除去を目的として酸化性雰囲気中で加
熱処理を行うが、その処理は一般に600〜800℃、
1〜4時間が適当である。
The mixture is heat treated in an atmosphere containing nitrogen and subjected to a reduction/nitriding reaction, but the atmosphere is N2. NH8
, N2-H, , N, -Ar, etc., can be used. Heat treatment temperature is 1,400℃
~1,600°C, preferably 1.450-1,550°C
The range can be selected. If the temperature is lower than 1,400°C, it will take a long time for the nitriding reaction to proceed sufficiently, and if the temperature exceeds 1,600°C, a large amount of SiC will be produced. Including economic points, 1.
, 450 DEG C. to 1,550 DEG C. for 2 to 6 hours. Furthermore, after the reduction/nitridation reaction, heat treatment is performed in an oxidizing atmosphere to remove remaining excess carbon, but this treatment is generally performed at 600-800°C.
1 to 4 hours is appropriate.

本発明方法ではMgまたはその化合物の還元・窒化反応
に対する触媒効果だけでな゛く、これらの物質とBET
比表面積15〜100y#/fのα−3i3N4微粉末
の相乗作用による微粒化効果が発現するため、安価な粒
径1〜100μmの粗粒酸化ケイ素を用いても粒径1μ
m以下の球状に近い形状をもつ均一なα−5i3N4微
粉末を容易に得ることが出来る。また、本発明により得
られたα−5i3N4微粉末は水およびイソプロピルア
ルコール等のアルコール系溶剤によく分散する特性を持
っている。
The method of the present invention not only has a catalytic effect on the reduction/nitriding reaction of Mg or its compounds, but also has a BET effect on these substances.
Since the atomization effect is produced by the synergistic effect of α-3i3N4 fine powder with a specific surface area of 15 to 100y#/f, even if inexpensive coarse silicon oxide with a particle size of 1 to 100μm is used, the particle size is 1μ.
A uniform α-5i3N4 fine powder having a shape close to a spherical shape of less than m can be easily obtained. Further, the α-5i3N4 fine powder obtained according to the present invention has the property of being well dispersed in water and alcoholic solvents such as isopropyl alcohol.

本発明により耐熱性、および高温強度にすぐれた窒化ケ
イ素焼結体用の原料粉末の製造を工業的により有利に行
うことが出来る。
According to the present invention, raw material powder for silicon nitride sintered bodies having excellent heat resistance and high-temperature strength can be produced industrially more advantageously.

以下、実施例により本発明を具体的に説明するが、本発
明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

実施例1 酸化ケイ素粉末として市販石英砂粉末(中心粒径6pm
、BET比表面積1.2 d/ダ)、炭素粉末として市
販アセチレンブラックプレス品を用いた。
Example 1 Commercially available quartz sand powder (center particle size 6 pm) was used as silicon oxide powder.
, BET specific surface area 1.2 d/da), and a commercially available acetylene black pressed product was used as the carbon powder.

Mgの化合物としてはMg (NOx )2・6H鵞O
を用いた。窒化ケイ素粉末は市販されている中心粒径9
.5μm、BET比表面積17vf/fa相含有率96
%のα−8i3N4微粉末(シュタルク社製LC−12
)を用いた。これらの粉末を表1に示す組成側合にし、
水を加えてプラスチック被覆ボール、プラスチック製ポ
ットを用いて2時間湿式ボールミル混合を行った。
As a compound of Mg, Mg (NOx)2.6H
was used. Silicon nitride powder has a commercially available center particle size of 9.
.. 5μm, BET specific surface area 17vf/fa phase content 96
% of α-8i3N4 fine powder (LC-12 manufactured by Starck)
) was used. These powders were made into the composition shown in Table 1,
Water was added and wet ball mill mixing was performed for 2 hours using a plastic covered ball and a plastic pot.

得られたスラリー状の混合物をロータリーエバポレータ
ーを用い、回転させながら加熱減圧下で乾燥させた。
The obtained slurry-like mixture was dried using a rotary evaporator under heating and reduced pressure while rotating.

乾燥された混合物を黒鉛製容器に入れ、N2ガスを流し
なからり、500℃および1,550℃の温度で4〜6
時間加熱処理して5in2を還元・窒化させた。得られ
た粉末をさらに空気中で700℃4時間加熱処理し、未
反応Cを燃焼除去してSi3N4微粉末を得た。
The dried mixture was placed in a graphite container and heated at temperatures of 500°C and 1,550°C for 4 to 6 hours without flowing N2 gas.
5in2 was reduced and nitrided by heat treatment for a period of time. The obtained powder was further heat-treated in air at 700° C. for 4 hours, and unreacted C was burned off to obtain Si3N4 fine powder.

このようにして合成したそれぞれのSi3N4微粉末に
ついて平均粒径、N含有率、α−5i3N4含有率(X
線回折図から求めた)を測定し、その値を表1に示した
For each Si3N4 fine powder synthesized in this way, the average particle size, N content, α-5i3N4 content (X
) was measured, and the values are shown in Table 1.

実施例2 窒化ケイ素粉末として実施例1で合成した。Example 2 It was synthesized in Example 1 as silicon nitride powder.

中心粒!0.5μm、BET比表面積7d/9、α相含
有率98%の粉末をイソプロピルアルコールを分散媒と
し、窒化ケイ素製ボールとポットを用いて75時間およ
び100時間湿式振動ミル処理を行なった粉末を用いた
。75時時間式振動ミル処理の窒化ケイ素粉末は中心粒
径0.5μm、BET比表面積17rtUI、α相含有
率96%であり、これを窒化ケ、イ素粉末Aとした。
Center grain! Powders with a diameter of 0.5 μm, a BET specific surface area of 7 d/9, and an α phase content of 98% were subjected to wet vibration mill treatment for 75 hours and 100 hours using isopropyl alcohol as a dispersion medium using silicon nitride balls and pots. Using. The silicon nitride powder subjected to the 75-hour vibration mill treatment had a center particle size of 0.5 μm, a BET specific surface area of 17 rtUI, and an α phase content of 96%, and was designated as silicon nitride powder A.

一方、100時間湿式振動ミル処理の窒化ケイ素粉末は
中心粒径0.5μm、BET比表面積21vf/f、α
相含有率96%であり、これを窒化ケイ素粉末Bとした
On the other hand, silicon nitride powder treated with a wet vibration mill for 100 hours has a center particle size of 0.5 μm, a BET specific surface area of 21 vf/f, and α
The phase content was 96%, and this was designated as silicon nitride powder B.

窒化ケイ素粉末として窒化ケイ素粉末AおよびBを用い
、実施例1の操作に従ってSi3N4粉末を合成した。
Si3N4 powder was synthesized according to the procedure of Example 1 using silicon nitride powders A and B as silicon nitride powders.

それぞれの粉末について平均粒径、N含有率、α−3i
3N4含有率を表1に示した。
Average particle size, N content, α-3i for each powder
Table 1 shows the 3N4 content.

比較例1 窒化ケイ素粉末として実施例1および2で合成した粉末
を用いた。実施例1で合成した粉末は中心粒径0.5μ
m、BET比表面積7 d/ fα相含有率98%で窒
化ケイ素粉末Cとした。
Comparative Example 1 The powders synthesized in Examples 1 and 2 were used as silicon nitride powder. The powder synthesized in Example 1 had a center particle size of 0.5μ.
Silicon nitride powder C was prepared with m, BET specific surface area of 7 d/f and α phase content of 98%.

また実施例2で合成した粉末は中心粒径0.4μmBE
T比表面積9d/9、α相含有率99%で窒化ケイ素粉
末りとした。
Furthermore, the powder synthesized in Example 2 has a center particle size of 0.4 μm BE.
It was made into silicon nitride powder with a T specific surface area of 9 d/9 and an α phase content of 99%.

窒化ケイ素粉末として窒化ケイ素粉末CおよびDを用い
、実施例1の操作に従ってSi3N4粉末を合成しtコ
。それぞれの粉末に2とは異なり、得られる窒化ケイ素
粉末の粒径が大きくかつ、針状結晶が混在したものが得
られた。
Using silicon nitride powders C and D as silicon nitride powders, Si3N4 powder was synthesized according to the procedure of Example 1. Unlike No. 2, the obtained silicon nitride powder had a large particle size and contained needle-like crystals in each powder.

実施例8 窒化ケイ素粉末として実施例1で合成した中心粒径0.
5μm、BET比表面積7ゴ/f、α相含有率98%の
粉末をイソプロピルアルコールを溶媒とし、窒化ケイ素
製ボールと高アルミナ質製ポフトを用いて100時間湿
式振動ミル処理を行って粉末を得t−0 この窒化ケイ素粉末を50%フッ酸水溶液と70%硝酸
水溶液の体積比1:5の混合溶液に509/lの濃度に
なるよう加え、1時間攪拌処理した後、洗浄・乾燥した
粉末を用いた。この粉末は中心粒径0.5μm1BET
比表面積22ゴ/f1α相含有率96%でA1含有量は
0.02%であり、これを窒化ケイ素粉末Eとした。
Example 8 Silicon nitride powder synthesized in Example 1 with a center particle size of 0.
A powder with a diameter of 5 μm, a BET specific surface area of 7 g/f, and an α phase content of 98% was subjected to wet vibration milling for 100 hours using isopropyl alcohol as a solvent and a silicon nitride ball and a high alumina pot to obtain a powder. t-0 This silicon nitride powder was added to a mixed solution of 50% hydrofluoric acid aqueous solution and 70% nitric acid aqueous solution at a volume ratio of 1:5 to a concentration of 509/l, stirred for 1 hour, and then washed and dried. was used. This powder has a center particle size of 0.5μm1BET
The specific surface area was 22g/f1α phase content was 96% and the A1 content was 0.02%, and this was designated as silicon nitride powder E.

窒化ケイ素粉末として窒化ケイ素粉末Eを用い、実施例
1の操作に従ってSi3N4粉末を合成した。それぞれ
の粉末について平均粒径N含有率、α−3i3N、含有
率を表1に示した。
Si3N4 powder was synthesized according to the procedure of Example 1 using silicon nitride powder E as the silicon nitride powder. Table 1 shows the average particle diameter N content, α-3i3N, and content of each powder.

実施例4 酸化ケイ素粉末として、市販無水ケイ酸(中心粒径17
μm、BET比表面積o、5nt7y)、炭素粉末とし
てアセチレンブラック粒状品を用いた。Mgの化合物は
Mg(NOx)z・6H20、窒化ケイ素粉末は窒化ケ
イ素粉末Bを用いた。
Example 4 As silicon oxide powder, commercially available silicic anhydride (center particle size 17
μm, BET specific surface area o, 5nt7y), and acetylene black granules were used as the carbon powder. Mg(NOx)z·6H20 was used as the Mg compound, and silicon nitride powder B was used as the silicon nitride powder.

これらの粉末を用い、実施例1の操作に従ってSi3N
4粉末を合成し、それぞれの粉末について平均粒径、N
含有率、α−5i3N4含有率を測定し、表1に示した
Using these powders, Si3N was prepared according to the procedure of Example 1.
4 powders were synthesized, and the average particle size, N
The content rate and α-5i3N4 content rate were measured and shown in Table 1.

実施例5 Mgの化合物としてMg (OH)2を用いた以外は実
施例1で用いたと同じ粉末を用い、実施例1の操作に従
ってSi3N、粉末を合成した。
Example 5 Si3N powder was synthesized according to the procedure of Example 1 using the same powder as used in Example 1 except that Mg (OH)2 was used as the Mg compound.

それぞれの粉末について平均粒径、BET比表面積、N
含有率、α−3i3N4含有率を表1に示した。
Average particle size, BET specific surface area, N
Table 1 shows the content rate and α-3i3N4 content rate.

比較例2 実施例1で使用したと同じ粉末を用い、窒化ケイ素粉末
を添加しない場合、Mg (NO3)!・6H20を添
加しない場合およびそれらのいずれも添加しない場合に
つき、実施例1の操作に従ってSi、N4粉末を合成し
た。それぞれの粉末について平均粒径、粒子形状、N含
有率、α−5i3N4含有率を表1に示した。
Comparative Example 2 Using the same powder as used in Example 1 and without adding silicon nitride powder, Mg (NO3)! - Si and N4 powders were synthesized according to the procedure of Example 1 in the case where 6H20 was not added or when neither of them was added. Table 1 shows the average particle size, particle shape, N content, and α-5i3N4 content of each powder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1−1で得られたα−型窒化ケイ素微粉
末、第2図は比較例1−9で得られた窒化ケイ素粉末の
電子顕微鏡写真である。
FIG. 1 is an electron micrograph of the α-type silicon nitride fine powder obtained in Example 1-1, and FIG. 2 is an electron micrograph of the silicon nitride powder obtained in Comparative Example 1-9.

Claims (1)

【特許請求の範囲】 1)酸化ケイ素粉末および炭素粉末の混合物を窒素を含
む雰囲気下、高温で加熱処理して窒化ケイ素を製造する
方法において該混合物にMgおよびMg化合物から選ば
れた少くとも1種、およびBET比表面積15〜100
m^2/gを有する窒化ケイ素微粉末を添加せしめてお
くことを特徴とするα型窒化ケイ素微粉末の製造方法。 2)該混合物が酸化ケイ素粉末1重量部に対し、Mgお
よびMg化合物から選ばれた少くとも1種がMg元素重
量に換算して0.0005〜0.1重量部、窒化ケイ素
微粉末0.01〜1重量部、炭素粉末0.4〜4重量部
を含むことを特徴とする特許請求の範囲第1項記載のα
型窒化ケイ素微粉末の製造方法。
[Claims] 1) A method for producing silicon nitride by heat-treating a mixture of silicon oxide powder and carbon powder at high temperature in a nitrogen-containing atmosphere, in which at least one compound selected from Mg and Mg compounds is added to the mixture. species, and BET specific surface area 15-100
A method for producing α-type silicon nitride fine powder, which comprises adding silicon nitride fine powder having m^2/g. 2) The mixture contains 0.0005 to 0.1 part by weight of at least one selected from Mg and Mg compounds, calculated as Mg element weight, and 0.000.1 part by weight of silicon nitride fine powder per 1 part by weight of silicon oxide powder. α according to claim 1, characterized in that it contains 0.01 to 1 part by weight and 0.4 to 4 parts by weight of carbon powder.
Method for producing silicon nitride fine powder.
JP19913284A 1983-07-14 1984-09-21 Method for producing α-type silicon nitride fine powder Expired - Lifetime JPH0610082B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19913284A JPH0610082B2 (en) 1984-09-21 1984-09-21 Method for producing α-type silicon nitride fine powder
US06/747,851 US4590053A (en) 1983-07-14 1985-06-24 Method for producing α-form silicon nitride fine powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19913284A JPH0610082B2 (en) 1984-09-21 1984-09-21 Method for producing α-type silicon nitride fine powder

Publications (2)

Publication Number Publication Date
JPS6177608A true JPS6177608A (en) 1986-04-21
JPH0610082B2 JPH0610082B2 (en) 1994-02-09

Family

ID=16402672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19913284A Expired - Lifetime JPH0610082B2 (en) 1983-07-14 1984-09-21 Method for producing α-type silicon nitride fine powder

Country Status (1)

Country Link
JP (1) JPH0610082B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061602A (en) * 1992-02-18 1994-01-11 Elf Atochem Sa Continuous preparation of silicon nitride by carbon nitridation and silicon nitride obtained thereby
JPH072503A (en) * 1991-07-02 1995-01-06 Elf Atochem Sa Method of producing silicon nitride by carbonitriding of silicon and whisker-free silicon nitride in granular form

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072503A (en) * 1991-07-02 1995-01-06 Elf Atochem Sa Method of producing silicon nitride by carbonitriding of silicon and whisker-free silicon nitride in granular form
JPH061602A (en) * 1992-02-18 1994-01-11 Elf Atochem Sa Continuous preparation of silicon nitride by carbon nitridation and silicon nitride obtained thereby

Also Published As

Publication number Publication date
JPH0610082B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JPS5891005A (en) Production of silicon nitride powder
JPS61151006A (en) Production of aluminum nitride powder
US4590053A (en) Method for producing α-form silicon nitride fine powders
JPH05254830A (en) Finely divided particles of rare earth oxides excellent in dispersibility and production process thereof
JPS6177608A (en) Production of fine powdery alpha silicon nitride
JPS6272507A (en) Preparation of sialon powder
JPS62283900A (en) Production of aln whisker
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
US4724131A (en) Method for producing α-form silicon nitride
JPS6021804A (en) Manufacture of finely powdered alpha type silicon nitride
JPS58213617A (en) Production of titanium carbonitride powder
JPS58115027A (en) Oxide magnetic material and preparation thereof
JPS6191007A (en) Production of alpha type silicon nitride fine powder
JPS60260409A (en) Manufacture of fine alpha-silicon nitride powder
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
WO2000066497A1 (en) Method for preparing potassium octatitanate in particulate form
JPS63166713A (en) Production of aluminum silicate
JPS61242905A (en) Production of alpha-silicon nitride powder
AU648108B2 (en) A proces for the preparation of alpha-silicon nitride powder
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS60141612A (en) Preparation of silicon carbide powder having high purity
JPH026305A (en) Production of ultrafine particle of aluminum nitride
JPS63166714A (en) Production of aluminum silicate fine powder
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPS58217469A (en) Manufacture of silicon nitride-silicon carbide composition