JPS6177325A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS6177325A
JPS6177325A JP19880784A JP19880784A JPS6177325A JP S6177325 A JPS6177325 A JP S6177325A JP 19880784 A JP19880784 A JP 19880784A JP 19880784 A JP19880784 A JP 19880784A JP S6177325 A JPS6177325 A JP S6177325A
Authority
JP
Japan
Prior art keywords
resist
gate
resist film
substrate
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19880784A
Other languages
Japanese (ja)
Inventor
Seiichi Yoda
養田 聖一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19880784A priority Critical patent/JPS6177325A/en
Publication of JPS6177325A publication Critical patent/JPS6177325A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To contrive to improve the MOS FET-manufacturing yield by enabling the formation of gates of T-type in cross-section with good accuracy in a small number of processes by a method wherein only a layer of resist film is formed on a substrate, exposed to light to a specific degree with charged beams, and developed; thereafter, a resist pattern with an enlarged space in the upper pat and narrowed space in the lower part, and the gate material is deposited. CONSTITUTION:A resist film 2 is produced by coating the substrate 1 with a resist 1, which is irradiated with hydrogen ions (H<+>) 3; successively, the resist film irradiated with H<+> 3 is irradiated over a narrower area. Then, the resist if exposed by this irradiation until reaching the substrate. Next, a resist pattern of cross-section shape is formed by development in the mixed solution of methylisobutylketone: isopropyl-alcohol=1:3, and a metallic layer 4 is deposited by evaporating aluminum over the whole surface as the gate-forming material. When the resist is removed by the lift-off method with the same developer, a gate 46 T-type in cross-section can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はパターン形成方法、例えばMO5型電界効果ト
ランジスタ(MOS FET )のゲート形成において
、ゲート長を短かく、ゲート抵抗の増加を抑えるために
開発された断面T字型ゲートを、従来より少ない工程数
で形成する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a pattern forming method, for example, in gate formation of an MO5 field effect transistor (MOS FET), in order to shorten the gate length and suppress an increase in gate resistance. The present invention relates to a method for forming the developed T-shaped cross-sectional gate using fewer steps than the conventional method.

〔従来の技術〕[Conventional technology]

?IOS PETのゲート長を小にし、かつ、ゲート抵
抗の増加を抑える目的で、ゲートを断面T字型に形成し
てゲート長を細くし、ゲート面積を大にして低抵抗化を
図る技術が研究されている。
? In order to reduce the gate length of IOS PET and suppress the increase in gate resistance, research is underway on a technology to reduce resistance by forming the gate into a T-shaped cross section to reduce the gate length and increase the gate area. has been done.

かかる技術を第3図の断面図を参照して説明すると、先
ず第3図(alに示される如く、基板31上に低感度レ
ジストを被着して下層レジスト膜32を形成する。
This technique will be explained with reference to the sectional view of FIG. 3. First, as shown in FIG. 3 (al), a low-sensitivity resist is deposited on a substrate 31 to form a lower resist film 32.

次に第3図(blに示される如く、下層レジスト膜32
の上に高感度レジストを被着して上層レジスト膜33を
形成する。
Next, as shown in FIG. 3 (bl), the lower resist film 32
A high-sensitivity resist is deposited thereon to form an upper resist film 33.

次いで第3図telに示される如く荷電ビーム34(1
1ビーム、イオンビームなど)を照射する。
Next, as shown in FIG. 3, the charged beam 34 (1
1 beam, ion beam, etc.).

次に、高感度レジストのみを現像する液を用いて上層レ
ジスト膜33を現像すると、第3図+d+に示される上
層レジスト膜のパターンが得られる。
Next, the upper resist film 33 is developed using a solution that develops only the high-sensitivity resist, thereby obtaining the pattern of the upper resist film shown in FIG. 3+d+.

次いで第3図(e)に示される如く低感度レジストのみ
を現像する液を用いて下層レジスト膜32のバターニン
グをなす。
Next, as shown in FIG. 3(e), the lower resist film 32 is patterned using a solution that develops only the low-sensitivity resist.

次いで、第3図(flに示される如く、例えばスパッタ
または茎着法でゲート材t135を堆積する。
Next, as shown in FIG. 3 (fl), a gate material t135 is deposited, for example, by sputtering or by a sputtering method.

最後にリフトオフ法でレジストを除去し、第3図fgl
に示されるゲート35Gを形成する。ゲート35Gは図
示の如く断面T字型で、基板31と接触する部分(ゲー
ト長)は細く、しかもゲート全体としては十分な面積を
4)つものである。
Finally, the resist was removed using the lift-off method, as shown in Figure 3 fgl.
A gate 35G shown in FIG. As shown in the figure, the gate 35G has a T-shaped cross section, the portion (gate length) in contact with the substrate 31 is narrow, and the gate has a sufficient area as a whole.

〔発明が1117決しようとする問題点〕前記した断面
T字型ゲートを加工する従来方法においては、基板上に
感度の異なるレジストを2層形成する。この2Fiのレ
ジストのうち、上層を高移度、下層は低感度の解像度の
ものとし、露光後、上層レジストのみを現像する液で上
層レジスト膜をパターニングし、次に下層レジストのみ
の現@!液で下層レジスl−MWをパターニングし、蒸
着またはスパッタによりゲート材料を堆積し、リフトオ
フ法でレジストを除去して断面T字型ゲートを形成する
ものである。かくして、2層のレジスト19を形成し、
現像液を使い分けて2度現像しなければならず工程数が
多くなる点に問題がある。
[Problems to be Solved by the Invention] In the conventional method for processing the above-described T-shaped cross-section gate, two layers of resists having different sensitivities are formed on a substrate. Of this 2Fi resist, the upper layer has a high mobility and the lower layer has a low sensitivity resolution. After exposure, the upper resist film is patterned with a solution that develops only the upper resist, and then only the lower resist is developed. The lower resist l-MW is patterned with a liquid, a gate material is deposited by vapor deposition or sputtering, and the resist is removed by a lift-off method to form a gate with a T-shaped cross section. In this way, two layers of resist 19 are formed,
The problem is that development must be performed twice using different developing solutions, which increases the number of steps.

〔問題点をh1″決″4−るための手段〕本発明は上記
問題点を解消したパターン形成方法を提伊するもので、
その手段は、基板上に形成されたレジスト膜の所定面積
にわたって該レジストIK!の途中まで現像されうる程
度に@電ビームの照射を行う工程、前記面積内のより狭
い面積にわたって該レジスト膜のすべてを現像する程度
に前記荷電ビームの照射を行う工程、レジストを現像し
露光部分を除去する工程、全面にゲート形成材料を堆積
する工程、およびリフトオフにより残存レジストとその
上のゲート形成材料を除去する工程を含むことを特徴と
するパターン形成方法によってなされる。
[Means for resolving the problems] The present invention proposes a pattern forming method that solves the above problems.
The means for doing so includes resist IK! over a predetermined area of a resist film formed on a substrate. A step of irradiating the charged beam to such an extent that the resist film can be developed halfway, a step of irradiating the charged beam to the extent that all of the resist film is developed over a narrower area within the area, and developing the resist and exposing the exposed portion. A pattern forming method is performed, which includes the steps of removing the remaining resist and the gate forming material thereon, depositing a gate forming material on the entire surface, and removing the remaining resist and the gate forming material thereon by lift-off.

〔作用〕[Effect]

上記方法は、MOS FETのゲート形成において、基
板上にただ1層のレジス)IQを形成し、ゲートを形成
する所定の部分に、荷電ビームにより、前記レジスト膜
の途中まで現像(レジスト除去)される程度に露光し、
次いで前記の如く露光したしく4) シスト面積内においてそれより狭い面積のレジスト膜が
すべて現像(レジスl去)される程度に露光し、現@後
、上が広く下が狭い空間となった断面形状のレジストパ
ターンを形成し、しかる後にゲート材料の堆積を行い、
リフトオフによって所望の断面T字型のゲートを形成す
るものである。
In the above method, when forming a gate of a MOS FET, a single layer of resist (IQ) is formed on a substrate, and a predetermined portion where a gate is to be formed is developed (resist removed) halfway through the resist film using a charged beam. Exposure to light until
Next, as described above, the resist film was exposed to light as described above. A resist pattern is formed in the shape, and then a gate material is deposited.
A gate having a desired T-shaped cross section is formed by lift-off.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本出願人に所ヱする研究者グループは、イオンビームに
よるレジスト PMMAの露光特性につき、イオン種と
してH’ 、F ” 、As”を用いた場合の露光可能
なレジスト膜について測定をなし、第2図に示される結
果を得た(日本学術振興会第132委員会第81回研究
会試f−t (57,9,24) )。
A group of researchers belonging to the present applicant conducted measurements on resist films that can be exposed using ion beams such as H', F'', and As'' with respect to the exposure characteristics of resist PMMA using an ion beam. The results shown in the figure were obtained (Japan Society for the Promotion of Science 132nd Committee 81st Study Group Exam f-t (57, 9, 24)).

第2図において、横軸には加速エネルギーをKeVで示
し、縦軸には除去されたレジストの厚さをμmで示し、
曲線H+はイオンfffiH″″、ドーズJf 1.6
 X 1O−5C/ cm’ 、曲線F+はイオン種F
+、ドーズ量1.I X 10 ”” C/ cm2 
の場合の加速エネルギーと除去されるレジスト膜厚の関
係を示す。
In FIG. 2, the horizontal axis shows the acceleration energy in KeV, the vertical axis shows the thickness of the removed resist in μm,
Curve H+ is ion fffiH″″, dose Jf 1.6
X 1O-5C/cm', curve F+ is ion species F
+, dose amount 1. I x 10"" C/cm2
The relationship between acceleration energy and removed resist film thickness in the case of is shown.

H+の場合、1μmのレジスト膜を露光するのに80K
eVの加速エネルギーが必要である。感度の高い^rの
場合は0.5μmの膜厚に300 Keν以上の加速エ
ネルギーが必要であり、H4の方が有利であることが判
明した。そこで、本発明の実施例においては、レジスト
にPMMAを、また露光にはH3イオンビームを用いた
。本発明の方法を実施する工程を以下第1図の断面図を
参照して説明する。
In the case of H+, it takes 80K to expose a 1μm resist film.
An acceleration energy of eV is required. In the case of ^r, which has high sensitivity, an acceleration energy of 300 Keν or more is required for a film thickness of 0.5 μm, and it has been found that H4 is more advantageous. Therefore, in the embodiment of the present invention, PMMA was used for the resist and an H3 ion beam was used for exposure. The steps for carrying out the method of the present invention will be explained below with reference to the sectional view of FIG.

第1図(a): 基板1上にレジスト(P聞A)を1μ閣の膜厚に被着し
てレジスト膜2を作り、水素イオン(H”)3を、ドー
ズHH6X 10−’ C/ cm’ 、加速エネルギ
ー40Keνで照射する。第2図を参照すると、このと
きレジスト膜2の表面から0.7μmの深さまで露光さ
れる。
FIG. 1(a): A resist film 2 is formed by depositing a resist (P thickness A) on a substrate 1 to a thickness of 1 μm, and hydrogen ions (H”) 3 are applied at a dose of HH6X 10-' C/ cm' and acceleration energy of 40 Keν. Referring to FIG. 2, at this time, the resist film 2 is exposed to a depth of 0.7 μm from the surface.

第1図中): 引続き、前記したH” 3で照射されたレジスト腔の面
積内で、ドーズm 1.fi x In −’ C/ 
cm’、加速エネルギー80kcVでより狭い面積をj
j:j射する。
(in Fig. 1): Subsequently, within the area of the resist cavity irradiated with the above-mentioned H'' 3, a dose of m 1.fix In -' C/
cm', smaller area with acceleration energy 80 kcV j
j:j to shoot.

この照射によって、レジス1−は基板に達するまで露光
される。
By this irradiation, the resist 1- is exposed until it reaches the substrate.

上記した2度のイオンビーム即射は、可変矩形照射によ
り、先ず第1図(8)に示される広い面留にわたって前
記のイオンビーム照射をなし、次いで、ガスイオン源の
アパチュア(開孔)を狭くして第1図fhlに示される
照射をなしても、またはベクトルスキャン法によって照
射をなしてもよい。
The two instant ion beam injections described above first irradiate the ion beam over a wide area shown in FIG. The illumination may be made narrower as shown in FIG. 1 fhl, or by a vector scanning method.

第1図(C): 次いで、メチルイソブチルケトン(旧[1M)  :イ
ソブロビルアルコール(II’八)=1:3のン昆合i
fk中で90秒現像し、図示のD=0.7.17m 、
 d =0.3μmの断面形状のレジストパターンを形
成する。
Figure 1 (C): Next, a mixture of methyl isobutyl ketone (old [1M): isobrobyl alcohol (II'8) = 1:3]
Developed in fk for 90 seconds, D = 0.7.17m as shown in the figure,
A resist pattern with a cross-sectional shape of d = 0.3 μm is formed.

第1図(d): 全面にゲート形成材料としてアルミニウム(1)を芦着
し金属石4を0.5μm〜1.0μmの厚さに堆積する
FIG. 1(d): Aluminum (1) is deposited on the entire surface as a gate forming material, and metal stones 4 are deposited to a thickness of 0.5 μm to 1.0 μm.

代表的なゲート材料としては、メタルではアルミニラム
(八7り、モリブデン(Mo) 、半導体ではドープし
た多結晶ソリコン(ドープト・ポリシリコン)、ソリコ
ン・メタルではMoS i2、WSi2があり、これら
のいずれかを膜厚0.5μm〜1.0μMに堆積する。
Typical gate materials include aluminum (aluminum) and molybdenum (Mo) for metals, doped polycrystalline silicon (doped polysilicon) for semiconductors, and MoSi2 and WSi2 for solicon metals. is deposited to a film thickness of 0.5 μm to 1.0 μM.

第1図(e): 前記と同し現像液を用いリフトオフ法によってレジスト
を除去すると、断面T字型のゲー]・4Gが得られる。
FIG. 1(e): When the resist is removed by the lift-off method using the same developing solution as above, a 4G film with a T-shaped cross section is obtained.

図示のゲート長pの寸法は、前記した可変矩形法、ベク
トルスキャン法によりイオンビーム3aの照射の拡がり
を調整することにより、精度良く設定可能である。
The illustrated gate length p can be set with high precision by adjusting the spread of irradiation of the ion beam 3a using the variable rectangle method or vector scan method described above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、MOS FETの
ゲート形成において、ゲート長を小にし、ゲート抵抗の
増加を抑えることの可能な断面T字型ゲートが、従来よ
りも少ない工程で精度良く形成可能であるので、MOS
 FETの製造歩留りの向上に効果大である。なお、上
記の例はMOS FETのゲート形成にイオンビームを
用いる場合に関するものであるが、本発明の適用範囲は
その場合に限られるものでなく、その他のパターン形成
の場合および電子ビームなどを用いる場合にも及ぶもの
である。
As explained above, according to the present invention, a T-shaped cross-sectional gate, which can reduce the gate length and suppress an increase in gate resistance, can be formed with high accuracy in fewer steps than conventional methods in gate formation of a MOS FET. Since it is possible, MOS
This is highly effective in improving the manufacturing yield of FETs. Note that although the above example relates to the case where an ion beam is used to form the gate of a MOS FET, the scope of application of the present invention is not limited to that case, and may be applied to other pattern formation cases and where an electron beam or the like is used. This also applies to cases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta+ないしffi+は本発明の方法を実施する
工程における半導体装置要部の断面図、ff12図はイ
オンビームにより露光可能なレジスト膜厚を示す線図、
第3図は従来例方法の第1図に類似の断面図である。 図中、■は基板、2はレジスト膜、3,3aはイオンビ
ーム、4はゲートメタル材料、4Gはゲート、をそれぞ
れ示す。 第1図 第2図 一訂一] ′2□1 第3図 第3図
FIG. 1 ta+ to ffi+ are cross-sectional views of the main parts of a semiconductor device in the process of implementing the method of the present invention, and FIG. ff12 is a diagram showing the resist film thickness that can be exposed with an ion beam.
FIG. 3 is a sectional view similar to FIG. 1 of the conventional method. In the figure, ■ indicates a substrate, 2 indicates a resist film, 3 and 3a indicate an ion beam, 4 indicates a gate metal material, and 4G indicates a gate, respectively. Figure 1 Figure 2 Figure 1] '2□1 Figure 3 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  基板上に形成されたレジスト膜の所定面積にわたって
該レジスト膜の途中まで現像されうる程度に荷電ビーム
の照射を行う工程、前記面積内のより狭い面積にわたっ
て該レジスト膜のすべてを現像する程度に前記荷電ビー
ムの照射を行う工程、レジストを現像し露光部分を除去
する工程、全面にゲート形成材料を堆積する工程、およ
びリフトオフにより残存レジストとその上のゲート形成
材料を除去する工程を含むことを特徴とするパターン形
成方法。
a step of irradiating the charged beam with a charged beam to the extent that the resist film is developed halfway over a predetermined area of the resist film formed on the substrate; It is characterized by including the steps of irradiating the resist with a charged beam, developing the resist and removing the exposed portion, depositing a gate forming material on the entire surface, and removing the remaining resist and the gate forming material thereon by lift-off. A pattern forming method.
JP19880784A 1984-09-21 1984-09-21 Pattern formation Pending JPS6177325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19880784A JPS6177325A (en) 1984-09-21 1984-09-21 Pattern formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19880784A JPS6177325A (en) 1984-09-21 1984-09-21 Pattern formation

Publications (1)

Publication Number Publication Date
JPS6177325A true JPS6177325A (en) 1986-04-19

Family

ID=16397232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19880784A Pending JPS6177325A (en) 1984-09-21 1984-09-21 Pattern formation

Country Status (1)

Country Link
JP (1) JPS6177325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206171A (en) * 1989-02-06 1990-08-15 Nec Corp Semiconductor device and manufacture thereof
JPH0465817A (en) * 1990-07-06 1992-03-02 Mitsubishi Electric Corp Device and method for electronic beam exposure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618421A (en) * 1979-07-19 1981-02-21 Hughes Aircraft Co Method of manufacturing semiconductor device using electron beam
JPS5740928A (en) * 1980-08-25 1982-03-06 Mitsubishi Electric Corp Processing method of resist

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618421A (en) * 1979-07-19 1981-02-21 Hughes Aircraft Co Method of manufacturing semiconductor device using electron beam
JPS5740928A (en) * 1980-08-25 1982-03-06 Mitsubishi Electric Corp Processing method of resist

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206171A (en) * 1989-02-06 1990-08-15 Nec Corp Semiconductor device and manufacture thereof
JPH0465817A (en) * 1990-07-06 1992-03-02 Mitsubishi Electric Corp Device and method for electronic beam exposure

Similar Documents

Publication Publication Date Title
JPS6355208B2 (en)
JPS6177325A (en) Pattern formation
JP3612533B2 (en) Manufacturing method of semiconductor device
JPS5819127B2 (en) Fine pattern formation method
JP2664736B2 (en) Method for forming electrode for semiconductor device
JPS6378527A (en) X-ray mask for forming t-shaped control electrode, manufacture of same mask, and formation of t-shaped control electrode using same mask
JPH0414212A (en) Resist pattern formation
JP3434625B2 (en) Method for manufacturing field effect transistor
JPH0360113A (en) Formation of resist pattern for lift-off
JPS63220575A (en) Manufacture of semiconductor device
JPS6052019A (en) Manufacture of semiconductor device
JPH0745639A (en) Method for manufacture of t-gate of 0.1 micrometer or lower for field-effect transistor
JPS5811511B2 (en) Ion etching method
JP3105273B2 (en) Inspection method of resist pattern
JPH03165040A (en) Manufacture of semiconductor device
JP4052872B2 (en) Method for manufacturing compound semiconductor device having T-type gate electrode
JPS6052018A (en) Formation of gallium arsenide high-resistance pattern
JPS61150326A (en) Manufacture of semiconductor device
JPS6249632A (en) Manufacture of semiconductor device
JPS5923565A (en) Manufacture of semiconductor device
JPH03194926A (en) Manufacture of semiconductor device
JPH02139914A (en) Pattern formation
JPS6257221A (en) Minute-pattern forming method
JPH0559991B2 (en)
JPH01169927A (en) Manufacture of x-ray mask