JPS6176852A - Separation type air conditioner - Google Patents

Separation type air conditioner

Info

Publication number
JPS6176852A
JPS6176852A JP17297184A JP17297184A JPS6176852A JP S6176852 A JPS6176852 A JP S6176852A JP 17297184 A JP17297184 A JP 17297184A JP 17297184 A JP17297184 A JP 17297184A JP S6176852 A JPS6176852 A JP S6176852A
Authority
JP
Japan
Prior art keywords
gas
refrigerant
liquid
evaporator
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17297184A
Other languages
Japanese (ja)
Inventor
木下 光敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP17297184A priority Critical patent/JPS6176852A/en
Publication of JPS6176852A publication Critical patent/JPS6176852A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Drying Of Gases (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、室外ユニット内に設けられた圧縮機および凝
縮器と、室内ユニット内に設けられた蒸発8にとを連絡
管で連結して冷媒回路を形成した分離形空気調和機に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention connects a compressor and condenser provided in an outdoor unit and an evaporator 8 provided in an indoor unit by a connecting pipe. This invention relates to a separate air conditioner with a refrigerant circuit.

[従来の技術] 従来の分離形空気調和機の冷媒回路は、第4図のように
構成されていた。この図において、圧縮像(1)、凝縮
器(2)およびキュピラリチューブ(3)が設けられた
室外ユニット(4)と、蒸発器(5)が設けら九た室内
ユニット(6)とは液側連絡管(7)とガス側連絡管(
8)とによって連結されている。そして、圧縮機(1)
の吐出側から吐出された高温高圧の冷媒が又は、圧縮機
吐出ガス管(9)を介して凝縮器(2)に至り、ここで
外気により冷却されて高圧を保ちながら凝縮液化し、凝
縮器液出管(10)を介してキャピラリチューブ(3)
に至る。このキャピラリチューブ(3)で減圧され、一
部がガス化した低圧低温の冷媒液は、腹側継手(11)
、腹側連絡管(7)および腹側継手(12)を経、蒸発
器液入管(13)を介して蒸発器(5)に至る。この蒸
発器(5)において冷媒液は室内空気の熱を吸収して気
化し、室内の冷房作用が行なわれる。蒸発器(5)で気
化した冷媒ガスは、蒸発器ガス小管(14)、ガス側継
手(15)およびガス側連絡管(8)を経、ガス側継手
(16)を介して圧縮機(1)の吸入側へ吸引される。
[Prior Art] The refrigerant circuit of a conventional separate air conditioner was constructed as shown in FIG. In this figure, an outdoor unit (4) is equipped with a compressed image (1), a condenser (2), and a cupillary tube (3), and an indoor unit (6) is equipped with an evaporator (5). Liquid side communication pipe (7) and gas side communication pipe (
8). And the compressor (1)
The high-temperature, high-pressure refrigerant discharged from the discharge side of the compressor reaches the condenser (2) via the compressor discharge gas pipe (9), where it is cooled by outside air and condensed and liquefied while maintaining high pressure. Capillary tube (3) through liquid outlet tube (10)
leading to. The low-pressure, low-temperature refrigerant liquid that has been depressurized in this capillary tube (3) and partially gasified is transferred to the ventral joint (11).
, the ventral communication pipe (7) and the ventral joint (12), and the evaporator liquid inlet pipe (13) to the evaporator (5). In this evaporator (5), the refrigerant liquid absorbs heat from the indoor air and vaporizes, thereby performing an indoor cooling action. The refrigerant gas vaporized in the evaporator (5) passes through the evaporator gas small pipe (14), the gas side joint (15), the gas side communication pipe (8), and the compressor (1) via the gas side joint (16). ) is sucked into the suction side.

以上のようにして冷凍サイクルが形成されている。The refrigeration cycle is formed as described above.

[発明が解決しようとする問題点コ 第4図に示す従来の分離形空気調和機では、キャピラリ
チューブ(3)の内径、長さなどの形状寸法は、圧縮機
(1)、凝縮器(2)および蒸発器(5)の容量や冷凍
サイクル系内に充填される冷媒量との相関関係を考慮し
て、適正な冷房能力が得られるように決定される。この
ように、冷房能力とキャピラリチューブ(3)の形状寸
法と冷媒充填量とが相関関係を有するので、分離形空気
調和機の設置時に腹側連絡管(7)をあまり長くすると
、充填冷媒量が多くなり、冷房能力の低下を招き適正な
冷房能力の保持が困難になるという問題点があった。
[Problems to be Solved by the Invention] In the conventional separated air conditioner shown in FIG. ), the capacity of the evaporator (5), and the correlation with the amount of refrigerant filled in the refrigeration cycle system, and is determined so as to obtain an appropriate cooling capacity. In this way, there is a correlation between the cooling capacity, the shape and dimensions of the capillary tube (3), and the amount of refrigerant charged, so if the ventral connecting tube (7) is made too long when installing a separate air conditioner, the amount of refrigerant charged will be There is a problem in that this increases the cooling capacity, leading to a decrease in cooling capacity and making it difficult to maintain an appropriate cooling capacity.

また、Ir縮機(1)を冷媒のもれ防止上吊も適した全
密閉式とした場合、腹側連絡管(7)を長くして充填冷
媒量が多くなると、運転中に冷媒と一緒に循環Vろ圧5
縮機(1,)の潤滑油が、圧縮機(1)に戻り難くなり
、圧縮機(1)の損傷を招き易いという問罪点があった
5 上述の問題点を防止するため、従来は腹側連絡管(7)
の長さを規制(例えば15m以下)していた。このため
、室外ユニット(4)と室内ユニット(6)との設置距
離が長くなるような場合に、上述の問題点を防1にでき
ないという問題点があった。
In addition, if the Ir compressor (1) is a completely hermetically sealed type that is suitable for hanging from the top to prevent refrigerant leaks, if the vent side connecting pipe (7) is lengthened and the amount of refrigerant charged increases, it will be possible for the Ir compressor (1) to leak together with the refrigerant during operation. Circulation V filtration pressure 5
There was a problem in that the lubricating oil in the compressor (1,) became difficult to return to the compressor (1), which could easily cause damage to the compressor (1).5 In order to prevent the above problems, conventional Side connecting pipe (7)
The length was regulated (for example, 15 m or less). Therefore, when the installation distance between the outdoor unit (4) and the indoor unit (6) becomes long, there is a problem that the above-mentioned problem cannot be prevented.

本発明は上記の問題点を解決するためになされたもので
、室外ユニットと室内ユニットとの設置距離が長くなり
、腹側連絡管が長くなっても、冷凍効果が低下せず、適
正な冷房運転を維持する分離形空気調和機を丑共するこ
とを目的とするものである。
The present invention has been made to solve the above problems, and even if the installation distance between the outdoor unit and the indoor unit becomes long and the ventral communication pipe becomes long, the refrigeration effect will not deteriorate and the cooling effect will be maintained properly. The purpose is to use a separate air conditioner that maintains operation.

[問罪点を解決するための手段] 従来、室外ユニット内に設けられたキャピラリチューブ
をなくし、腹側連絡管の内径を従来より小さくシ、かつ
、この腹側連絡管の後段に気液分離器を結合し、この気
液分離器の液溜部とガス溜部とを室内ユニット内に設け
られた蒸兇器の冷媒入口側と冷媒出口側とにそれぞれ結
合し、圧縮機、凝縮器、腹側連絡管、気液分離器および
蒸発器を閉回路状に結合することによって冷媒回路を形
成したことを特徴とするものである。
[Means for solving the problem] The conventional capillary tube installed in the outdoor unit was eliminated, the inner diameter of the ventral connecting tube was made smaller than before, and a gas-liquid separator was installed downstream of the ventral connecting tube. The liquid reservoir part and the gas reservoir part of this gas-liquid separator are respectively connected to the refrigerant inlet side and the refrigerant outlet side of the evaporator provided in the indoor unit, and the compressor, condenser, vent side A refrigerant circuit is formed by connecting a communication pipe, a gas-liquid separator, and an evaporator in a closed circuit.

[作用] 腹側連絡管の内径を従来より小さく(例えば従来の半分
)したので、腹側連絡管の長さを従来の2倍にしても腹
側連絡管内の冷媒量は従来の半分で済み、ガス側連絡管
内の冷媒量を考慮しても全体の冷媒充填量は従来より少
なくなる。また、凝縮器から出力した高圧冷媒液が小さ
な内径の液側連!3管を通過することによって中圧冷媒
液に変化し、このときに発生したフラッシュガスは、気
液分離器で分雛されて蒸発器を通らない。このため蒸発
器中の冷媒の圧力損失が低下し、蒸発圧力を比較的低く
保持でき、かつ蒸発器中の冷媒液の冷媒ガスに対する比
率が増大するので熱伝達率が向にする。したがって、唇
発器を通る冷媒循環量はffi来例よりフラッシュガス
分だけ少ないが、このフラッシュガスは冷却作用に関与
しないものであるので、冷媒の単位@環量当りの冷凍効
果は従来より大きくなる。
[Function] The inner diameter of the ventral communicating tube is smaller than before (for example, half of the conventional one), so even if the length of the ventral communicating tube is doubled, the amount of refrigerant in the ventral communicating tube is only half that of the conventional one. Even if the amount of refrigerant in the gas side communication pipe is taken into account, the total amount of refrigerant charged is smaller than that of the conventional method. In addition, the high-pressure refrigerant liquid output from the condenser is connected to the liquid side with a small inner diameter! By passing through three pipes, the refrigerant changes to medium-pressure refrigerant liquid, and the flash gas generated at this time is separated by a gas-liquid separator and does not pass through the evaporator. Therefore, the pressure loss of the refrigerant in the evaporator is reduced, the evaporation pressure can be kept relatively low, and the ratio of refrigerant liquid to refrigerant gas in the evaporator is increased, so that the heat transfer coefficient is improved. Therefore, the amount of refrigerant circulated through the lip generator is smaller than that of the conventional ffi model by the amount of flash gas, but since this flash gas does not participate in the cooling effect, the refrigerating effect per unit of refrigerant @ ring volume is greater than before. Become.

[実施例] 第1図は本発明の一実施例を示すもので、第4図と同一
部分は同一符号とする。第1図において、(・1)は室
外ユニットで、この室外ユニット(4)内には圧、¥d
 It% (例えば全密閉式の)(1)と、この圧縮機
(1)の吐出側に圧縮機吐出ガス管(9)を介して結合
された凝縮器(2)とが設けられている。前記凝縮(社
)(2)の出口側は、凝縮器液出管(10)、腹側継手
(11)、内径を従来(例えば8mmφ)より小さく(
例えば4mmφ)した腹側連絡管(7)を経、腹側継手
(12)ヲ介して室内ユニノ1〜(6)内に設けられた
気液分:(L jljl (j 7 )に結合されてい
る。前記気液分離器(17)の下部に形成された液溜部
(17a)は、キャピラリチューブ(18)を経、蒸発
器液入管(]3)を介して蒸発器(5)の人口側に結合
されている。前°記気沙分離器(17)の上部に形成さ
れたガス溜部(17b)はフラッシュガス逃がし管(1
9)を介して前記蒸発器(5)の出1コ側に結合されて
いる。前記蒸発器(5)の出口側は蒸発器ガス小管(1
4)、ガス側継手(15)およびガス側連絡管(8)を
経、ガス側継手(16)を介して前記圧縮機(1)の吸
入側に結合されている。このようにして冷媒回路か形成
されている。
[Embodiment] FIG. 1 shows an embodiment of the present invention, and the same parts as in FIG. 4 are given the same reference numerals. In Figure 1, (.1) is an outdoor unit, and inside this outdoor unit (4) there is pressure,
A compressor (1) (of a completely hermetic type, for example) (1) and a condenser (2) connected to the discharge side of the compressor (1) via a compressor discharge gas pipe (9) are provided. On the outlet side of the condenser (2), there is a condenser liquid outlet pipe (10), a ventral joint (11), and the inner diameter is smaller (for example, 8 mmφ) than the conventional one (for example, 8 mmφ).
For example, through the ventral connecting pipe (7) with a diameter of 4 mm, and the ventral joint (12), the gas-liquid components provided in the indoor units 1 to (6) are connected to (L jljl (j 7 )). The liquid reservoir (17a) formed at the lower part of the gas-liquid separator (17) is connected to the evaporator (5) through the capillary tube (18) and the evaporator liquid inlet pipe (]3). The gas reservoir (17b) formed at the upper part of the gas separator (17) is connected to the flash gas relief pipe (1).
9) to the output side of the evaporator (5). The outlet side of the evaporator (5) is connected to the evaporator gas small pipe (1).
4) is connected to the suction side of the compressor (1) via a gas side joint (15) and a gas side communication pipe (8), and via a gas side joint (16). In this way, a refrigerant circuit is formed.

つぎに、前記実施例の作用を第2図を用いて説明する。Next, the operation of the above embodiment will be explained using FIG. 2.

第2図は冷媒の状態変化をモリエル線図上に描いた冷凍
サイクルを示す。 第2図において、a点は圧縮機(1
)の吸入側へ吸入される冷媒ガスを示し、この冷媒ガス
は圧縮n(1)によって圧縮されることにより、b点に
示すような高層(例えば90°C)、高圧の(P3)の
冷媒ガスとなる。この圧縮機(1)の吐出側から吐出さ
れた高温、高圧の冷媒ガスは圧縮機吐出ガス管(9)を
介して凝縮器(2)に至り、ここで外気により冷却され
て等圧変化で凝縮液化してe点に示すような高圧(P3
)の冷媒液となる。すなわち、b点から乾燥飽和蒸気線
(△ンと交わる0点までは急激に冷却され、0点から飽
和液線(13)と交わるd点までの気液混合状態では温
度一定(例えば45〜55°C)で変化し、d点ではは
ゾ液化が′、b了し0点に至ると、;a度が若干下がる
。凝縮器(2)の出口側から出るe点に示すような高圧
(1〕・、)の冷媒液は、/1縮器液出管(10)およ
び油側継手(1F)を経、腹側連絡管(7)および腹側
e千、(+2)G−介してf点に示すような中圧(P2
)の状態となって気液分離器(17)に至る。すなわち
、腹側連絡管(7)は内径が従来より(例えば8mmφ
)より小さく(例えば4mmφ)、長さが従来(例えば
10m)より長く(例えば20m)形成されているので
、減圧機能を不j1ている。このため、腹側連絡管(7
)によって冷媒液が高圧(P3)から中圧(P2)に変
化するとともに、フラッシュガスが発生する。このよう
な気液混合の冷媒は気液分離器(17)に至ると、その
流速が急激に落ちるので、第2図g点とh点とに示すよ
うな液溜部(17a)に溜まる冷媒液とガス溜部(+7
b)に溜まる冷媒ガスとに分離される。気液分#器(1
7)中において5g点に示す冷媒液はキャピラリチュー
ブ(18)により等エントロピー変化で膨張し、中圧(
P2)から低圧(Pl)に変化して同図(1)に示すよ
うな低圧(Pl)低温の冷媒となろう この低圧(P、)低温のiの状態の冷媒は蒸発器(5)
に至ると、ここで室内の熱を吸収して完全に気化し、蒸
発器(5)から出る冷媒ガスは第2図(j)に示すよう
な状態となるにの蒸発器(5)における冷凍効果q、は
次式で与えられる。
FIG. 2 shows a refrigeration cycle in which state changes of the refrigerant are plotted on a Mollier diagram. In Figure 2, point a is the compressor (1
) shows the refrigerant gas drawn into the suction side of It becomes gas. The high-temperature, high-pressure refrigerant gas discharged from the discharge side of the compressor (1) reaches the condenser (2) via the compressor discharge gas pipe (9), where it is cooled by outside air and undergoes constant pressure change. It condenses and liquefies, resulting in high pressure as shown at point e (P3
) as a refrigerant liquid. In other words, from point b to point 0, which intersects the dry saturated vapor line ( °C), and at point d, liquefaction completes ',b and when it reaches point 0, ;a degree decreases slightly.The high pressure ( 1]・,) The refrigerant liquid passes through the /1 condenser liquid outlet pipe (10) and oil side joint (1F), and through the ventral side communication pipe (7) and ventral side e, (+2) G-. Medium pressure (P2
) and reaches the gas-liquid separator (17). That is, the ventral communication tube (7) has an inner diameter smaller than that of the conventional one (for example, 8 mmφ).
) is smaller (for example, 4 mmφ) and has a longer length (for example, 20 m) than the conventional one (for example, 10 m), so it does not have a pressure reducing function. For this reason, the ventral communicating canal (7
), the refrigerant liquid changes from high pressure (P3) to intermediate pressure (P2) and flash gas is generated. When such a gas-liquid mixture of refrigerant reaches the gas-liquid separator (17), its flow rate drops rapidly, so that the refrigerant accumulates in the liquid reservoir (17a) as shown at points g and h in Figure 2. Liquid and gas reservoir (+7
b) and the refrigerant gas that accumulates in the refrigerant gas. Gas-liquid separator (1
In 7), the refrigerant liquid shown at the 5g point expands with isentropic change through the capillary tube (18), and the medium pressure (
The refrigerant changes from P2) to low pressure (Pl) and becomes a low-pressure (Pl) low-temperature refrigerant as shown in (1) in the same figure.This low-pressure (P,) low-temperature refrigerant is transferred to the evaporator (5).
At this point, the heat in the room is absorbed and the refrigerant gas is completely vaporized, and the refrigerant gas exiting the evaporator (5) is frozen in the evaporator (5) until it reaches the state shown in Figure 2 (j). The effect q is given by the following equation.

q+=Ij−ri      (1) ここでTjは3点におけるエンタルピ、■lはi点にお
けるエンタルピを示す。
q+=Ij-ri (1) Here, Tj represents the enthalpy at three points, and ■l represents the enthalpy at the i point.

一方、気液分離器(17)で分離された冷媒カスはフラ
ッシュガス逃がし管(19)を通過することによって中
圧(P2)から低圧(Pl)に変化し、第2回(k)に
示すような状態となって蒸発器(5)の出口側に導かれ
、環93器(5)からの冷媒ガスと合流して蒸発器ガス
小管(14)およびガス側継手(15)を経、ガス側連
絡管(8)およびガス側継手(16)を介して第2図(
a)に示す状態となって圧縮機(1)の吸入側へ吸引さ
れ、冷凍サイクルが構成される。
On the other hand, the refrigerant scum separated by the gas-liquid separator (17) changes from medium pressure (P2) to low pressure (Pl) by passing through the flash gas relief pipe (19), as shown in Part 2 (k). The state is such that the gas is guided to the outlet side of the evaporator (5), joins with the refrigerant gas from the ring 93 (5), passes through the evaporator gas small pipe (14) and the gas side joint (15), and the gas Figure 2 (
In the state shown in a), it is sucked into the suction side of the compressor (1), and a refrigeration cycle is constructed.

また、第21mにおいて点線Cは第4図に示す従来例に
おける冷凍サイクルを示すもので、その冷凍効果q2は
・ ’T2”I  ノ −I  Q、        (2
)で与えられる。ここでIQは、第4図に示す従来例の
蒸発器(5)入口側の冷媒のエンタルピを示す。
Moreover, in the 21st m, the dotted line C shows the refrigeration cycle in the conventional example shown in FIG. 4, and its refrigeration effect q2 is
) is given by Here, IQ represents the enthalpy of the refrigerant on the inlet side of the conventional evaporator (5) shown in FIG.

第2図より明らかなように、IQ>1iであるから(1
)、 (2)式より ql〉C12 となり、蒸発a:y(s)a通過する冷媒の単位循環景
!11りの冷凍効果は本発明の方が従来例より大きいこ
とを示している。すなわち、I凝縮器(2)から出力し
た高圧冷媒液が従来より小さな内径の腹側連絡管(7)
を通過することによって中圧冷媒に変化し、このときに
発生したフラッシュガスは気液分離器(17)によ−、
で公然され、蒸発器(5)を通らない。このため、蒸発
器(5)中の冷媒の圧力損失が低下し、蒸発圧力を比較
的低く保持でき、かつ蒸発器(5)中の冷媒液の冷媒ガ
スに対する比率が増大するので、熱伝達率が向上する。
As is clear from Figure 2, since IQ>1i (1
), From equation (2), ql〉C12, and evaporation a:y(s)a unit circulation scene of the refrigerant passing through! The refrigeration effect of 11 indicates that the present invention is greater than the conventional example. In other words, the high-pressure refrigerant liquid output from the I condenser (2) is transferred to the ventral communication pipe (7), which has a smaller inner diameter than before.
The flash gas generated at this time is passed through the gas-liquid separator (17), where it changes into medium-pressure refrigerant.
and does not pass through the evaporator (5). Therefore, the pressure loss of the refrigerant in the evaporator (5) is reduced, the evaporation pressure can be kept relatively low, and the ratio of refrigerant liquid to refrigerant gas in the evaporator (5) increases, so that the heat transfer coefficient will improve.

したがって、蒸発器(5)を通る冷媒@環量は従来例よ
りフラッシュガス分だけ少ないが、このフラッシュガス
は冷却作用に関与しないものなので、冷媒の単位循環量
当りの冷凍効果は従来より大きくなる。
Therefore, the amount of refrigerant @ring that passes through the evaporator (5) is smaller than the conventional example by the amount of flash gas, but since this flash gas does not participate in the cooling effect, the refrigeration effect per unit circulating amount of refrigerant is greater than that of the conventional example. .

前記実施例では、液態連絡管(7)の内径は従来(8m
mφ)の半分(4mmφ)としたが、これら限るもので
なく、従来より小さい適正なものであればよい。
In the above embodiment, the inner diameter of the liquid communication pipe (7) is the conventional (8 m).
mφ) (4 mmφ), but the present invention is not limited to this, and any appropriate size smaller than the conventional one may be used.

前記実施例では、気液分離器は室内ユニット内に設けた
が、本発明はこれに限るものでなく、室内ユニットの近
傍に設けるようにしてもよい。また、前記実施例では、
気液分離器の液溜部はキャピラリチューブを介して蒸発
器の入口側に結合したが、これに限るものでなく、気液
分離器の液溜部から出る冷媒の圧力が所定値まで下がっ
ていれば、この液溜部の出口を直接蒸発器の入口側に結
合するようにしてもよい。第3図は上述の点を考慮し、
かつ、切換部によって本発明と従来例との切換えをでき
るようにした冷媒回路を示すものである。すなわち、気
液分離器(17)を室内ユニット(6)の近傍に設けら
れた気液分離装置(20)内に設けたことを第1の特徴
とし、第1切換部(21)の一方の開閉弁<210)を
開とし、他方の開閉弁(21b)を閉とするとともに、
第2切換部(22)の一方の5)閉弁(22a)を開と
し、他方の開閉弁(22b)を閉とした場合は、第11
:ンlに示す本発明の変形例となり、第1、第2切換部
(21)(22)の開閉弁(21a) (21b)、(
22a)(22b)の開閉を前述と従にした場合は第4
図に示す従来例となるようにしたことを第2の特徴とす
る。第3図において、(7a)は従来より内径の小さい
(例えば4mmφ)液態連絡管を示し、(7b)は従来
と同様の内径(例えば8mmφ)の液態連絡管を示す、
また、(23)は気液分離器(17)のガス溜部(17
b)の出口と蒸発器(5)の出口側との間に挿入された
キャピラリチューブである。この第3図の利点の第1は
、気液分離器(17)を室内ユニット(6)内に設(す
る必要がないので、室内ユニット(6)を小形化かつ薄
形化することができることである。利点の第2は、室外
ユニット(4)と室内ユニット(6)との距1vが短か
い(例えば15m以下)設置場所においては、第1、第
2切換部(21)(22)によって内径の大きい液態連
絡管(7b)を用いた従来の冷媒回路とし、室外ユニッ
ト(4)と室内ユニット(6)との距離が長い(例えば
15m以上)設置場所においては、第1、第2切換部(
21) (22)によって内径の小さい液態連絡管(7
)を用いた本発明の冷媒回路とすることができることで
ある。
In the above embodiment, the gas-liquid separator was provided within the indoor unit, but the present invention is not limited to this, and may be provided near the indoor unit. Furthermore, in the above embodiment,
Although the liquid reservoir of the gas-liquid separator is connected to the inlet side of the evaporator via a capillary tube, the present invention is not limited to this. If so, the outlet of this liquid reservoir may be directly connected to the inlet side of the evaporator. Figure 3 takes into consideration the above points,
It also shows a refrigerant circuit in which switching between the present invention and the conventional example can be performed using a switching section. That is, the first feature is that the gas-liquid separator (17) is provided in the gas-liquid separator (20) provided near the indoor unit (6), and one of the first switching parts (21) The on-off valve <210) is opened and the other on-off valve (21b) is closed,
When one of the 5) closing valves (22a) of the second switching part (22) is opened and the other opening/closing valve (22b) is closed, the 11th
This is a modification of the present invention shown in Figure 1, in which the on-off valves (21a) (21b), (21b), (
If the opening and closing of 22a) and (22b) are as described above, the fourth
The second feature is that it is similar to the conventional example shown in the figure. In FIG. 3, (7a) shows a liquid communication pipe with an inner diameter smaller than the conventional one (for example, 4 mmφ), and (7b) shows a liquid communication pipe with the same inner diameter as the conventional one (e.g., 8 mmφ).
(23) is the gas reservoir part (17) of the gas-liquid separator (17).
b) is a capillary tube inserted between the outlet of the evaporator (5) and the outlet side of the evaporator (5). The first advantage of FIG. 3 is that there is no need to install the gas-liquid separator (17) inside the indoor unit (6), so the indoor unit (6) can be made smaller and thinner. The second advantage is that in installation locations where the distance 1v between the outdoor unit (4) and the indoor unit (6) is short (for example, 15 m or less), the first and second switching parts (21) (22) A conventional refrigerant circuit using a liquid communication pipe (7b) with a large inner diameter is used, and in installation locations where the distance between the outdoor unit (4) and the indoor unit (6) is long (for example, 15 m or more), the first and second refrigerant circuits are used. Switching part (
21) By (22), a small internal diameter liquid communication pipe (7
) can be used as the refrigerant circuit of the present invention.

[発明の効果] 本発明は上記のように室外ユニット内に従来設けられて
いたキャピラリチューブをなくし、液態連絡管の内径を
従来より小さく(例えば1/2)形成し、この液態連絡
管の出力側に気液分離器を結合し、この気液分離器の液
溜部とガス溜部とを蒸発器の入口側と出口側とにそれぞ
れ結合するように゛したので、液態連絡管を従来より長
く(例えば2倍)しても冷JJ!tc1を従来より少な
くすることができる。このため、つぎのような特有の効
果を有する。
[Effects of the Invention] As described above, the present invention eliminates the capillary tube conventionally provided in the outdoor unit, forms the inner diameter of the liquid communication pipe smaller (for example, 1/2) than the conventional one, and reduces the output of this liquid communication pipe. A gas-liquid separator is connected to the side, and the liquid reservoir and gas reservoir of the gas-liquid separator are connected to the inlet and outlet sides of the evaporator, respectively. Cold JJ even if it is longer (for example, twice as long)! tc1 can be made smaller than before. Therefore, it has the following specific effects.

(イ)液態連絡管を従来より長くすることができるので
、室外ユニットと室内二二ノ1−との距離が長くなるよ
う戸C場所(例えば海外)にも分離形空気調和機の設置
が可詣である。
(b) Since the liquid communication pipe can be made longer than before, it is possible to install a separate air conditioner in a location such as Door C (for example, overseas) to increase the distance between the outdoor unit and the indoor unit. It is a pilgrimage.

(ロ)液態連絡Vを長くしても冷媒量が従来より増えず
、しかも、液態連絡管で冷媒液が高圧から中正に変化す
る際に、冷房作用に関与しないフラッシュガスが発生し
、このフラッシュガスは気液分離器によって分離されて
蒸発器を通らないので、蒸発器中の冷媒の圧力損失を低
下させることができ、蒸発圧力を比較的低く保持でき、
かつ蒸発器中の冷媒液の冷媒ガスに対する比率が増大し
て蒸発;(Kにおける熱伝達率が向上する。このため、
冷媒の!1′L1循環に当りの冷凍効果が大きくなり、
冷房能力が低下することがない。
(b) Even if the liquid connection V is lengthened, the amount of refrigerant does not increase compared to the conventional one, and when the refrigerant liquid changes from high pressure to medium pressure in the liquid connection pipe, flash gas that does not participate in the cooling effect is generated, and this flash Since the gas is separated by the gas-liquid separator and does not pass through the evaporator, the pressure loss of the refrigerant in the evaporator can be reduced, and the evaporation pressure can be kept relatively low.
And the ratio of refrigerant liquid to refrigerant gas in the evaporator increases and evaporates; (the heat transfer coefficient at K improves. Therefore,
Refrigerant! The refrigeration effect per 1'L1 circulation increases,
Cooling capacity will not decrease.

また、液態連絡管を長くしても充填冷媒量が増加しない
ので、圧縮機を冷媒のもれ防止上置も適した全密閉式ど
した場合には、冷房運転中に冷媒と一緒に循環する圧縮
機の潤滑油が圧縮機に戻りにくくなることがない。この
ため、圧縮機の損傷を招くことがない。
In addition, since the amount of refrigerant charged does not increase even if the liquid communication pipe is lengthened, if the compressor is a fully enclosed type that is suitable for mounting the refrigerant on top to prevent refrigerant leakage, the refrigerant will circulate together with the refrigerant during cooling operation. The lubricating oil of the compressor does not become difficult to return to the compressor. Therefore, damage to the compressor is not caused.

また、気f4!、i分順器を室内ユニット内でなく、そ
の近傍に設けるようにした場合には、室内ユニットの小
形化、薄形化を図ることができる。
Also, Ki f4! , i-divider is provided not within the indoor unit but near it, the indoor unit can be made smaller and thinner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による分離形空気調和機の一実施例にお
ける冷媒回路図、第2図は第1図の作用を説明するため
の冷媒の変化状態をモリエル線図上に示した冷凍サイク
ル図、第3図は本発明の他の実施例における冷媒回路図
、第4図は従来例における冷媒回路図である。 (1)・・圧縮機、(2)・凝縮器、(4)・・室外ユ
ニット、(5)・蒸発器、(6)−室内ユニット、(7
) (7a)(7b)・・油側連絡管、(8)・・・ガ
ス側連絡管、(17)・・気液分離器、(17a)−気
液分離器(17)の液溜部、(17b)・気液分離器(
17)のガス溜部、(18)・・・キュピラリチューブ
、(19)・・フラッシュガス逃がし管、(20)・気
液分離装置、(21,)(22)・・切換部。 1「−− 代理人  弁理士 古 澤 俊 朔115にン同   
弁理士 加 納 −男
Fig. 1 is a refrigerant circuit diagram in an embodiment of a separate air conditioner according to the present invention, and Fig. 2 is a refrigeration cycle diagram showing the changing state of the refrigerant on a Mollier diagram to explain the action of Fig. 1. , FIG. 3 is a refrigerant circuit diagram in another embodiment of the present invention, and FIG. 4 is a refrigerant circuit diagram in a conventional example. (1) Compressor, (2) Condenser, (4) Outdoor unit, (5) Evaporator, (6) Indoor unit, (7
) (7a) (7b)... Oil side communication pipe, (8)... Gas side communication pipe, (17)... Gas-liquid separator, (17a) - Liquid reservoir of gas-liquid separator (17) , (17b) Gas-liquid separator (
17) gas reservoir section, (18)...cupillary tube, (19)...flash gas relief pipe, (20)...gas-liquid separation device, (21,)(22)...switching section. 1 "-- Agent Patent Attorney Shun Furusawa Saku 115
Patent Attorney Kano - Male

Claims (3)

【特許請求の範囲】[Claims] (1)室外ユニット内に圧縮機と、この圧縮機の吐出側
に連結された凝縮器とを設け、前記凝縮器の出口側に内
径の小さな液側連絡管を介して気液分離器を結合し、前
記気液分離器の液溜部とガス溜部とを室内ユニット内の
蒸発器の入口側と出口側とにそれぞれ結合し、前記蒸発
器の出口側をガス側連絡管を介して前記圧縮機の吸入側
に結合して冷媒回路を形成してなることを特徴とする分
離形空気調和機。
(1) A compressor and a condenser connected to the discharge side of the compressor are provided in the outdoor unit, and a gas-liquid separator is connected to the outlet side of the condenser via a liquid side communication pipe with a small inner diameter. The liquid reservoir section and the gas reservoir section of the gas-liquid separator are connected to the inlet side and the outlet side of the evaporator in the indoor unit, respectively, and the outlet side of the evaporator is connected to the A separate air conditioner characterized by being connected to the suction side of a compressor to form a refrigerant circuit.
(2)気液分離器は、室内ユニット内に設けられるとと
もに、その液溜部がキャピラリチューブを介して蒸発器
の入口側に結合されてなる特許請求の範囲第1項記載の
分離形空気調和機。
(2) The separated air conditioner according to claim 1, wherein the gas-liquid separator is provided in the indoor unit, and its liquid reservoir is connected to the inlet side of the evaporator via a capillary tube. Machine.
(3)気液分離器は、室内ユニットの近傍に設けられる
とともに、そのガス溜部がキャピラリチューブを介して
蒸発器の出口側に結合されてなる特許請求の範囲第1項
記載の分離形空気調和機。
(3) The separated air according to claim 1, wherein the gas-liquid separator is provided near the indoor unit, and its gas reservoir is connected to the outlet side of the evaporator via a capillary tube. harmonizer.
JP17297184A 1984-08-20 1984-08-20 Separation type air conditioner Pending JPS6176852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17297184A JPS6176852A (en) 1984-08-20 1984-08-20 Separation type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17297184A JPS6176852A (en) 1984-08-20 1984-08-20 Separation type air conditioner

Publications (1)

Publication Number Publication Date
JPS6176852A true JPS6176852A (en) 1986-04-19

Family

ID=15951750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17297184A Pending JPS6176852A (en) 1984-08-20 1984-08-20 Separation type air conditioner

Country Status (1)

Country Link
JP (1) JPS6176852A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196458A (en) * 1988-02-01 1989-08-08 Sanyo Electric Co Ltd Separation type freezer
JP2008248512A (en) * 2007-03-29 2008-10-16 Taguchi Kogyo:Kk Boom installing adapter
WO2011052055A1 (en) * 2009-10-29 2011-05-05 三菱電機株式会社 Air conditioning device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843696U (en) * 1971-09-25 1973-06-06
JPS5641898A (en) * 1979-09-14 1981-04-18 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for forming liquid-phase epitaxially-grown layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843696U (en) * 1971-09-25 1973-06-06
JPS5641898A (en) * 1979-09-14 1981-04-18 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for forming liquid-phase epitaxially-grown layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01196458A (en) * 1988-02-01 1989-08-08 Sanyo Electric Co Ltd Separation type freezer
JP2008248512A (en) * 2007-03-29 2008-10-16 Taguchi Kogyo:Kk Boom installing adapter
WO2011052055A1 (en) * 2009-10-29 2011-05-05 三菱電機株式会社 Air conditioning device
US9310086B2 (en) 2009-10-29 2016-04-12 Mitsubishi Electric Corporation Air-conditioning apparatus

Similar Documents

Publication Publication Date Title
US3710590A (en) Refrigerant cooled oil system for a rotary screw compressor
JPH03164664A (en) Refrigeration system
US4516407A (en) Refrigerating apparatus
TWI571606B (en) A refrigeration unit using a triple tube heat exchanger
JPS6176852A (en) Separation type air conditioner
JPH0317179Y2 (en)
CN111964188B (en) Thermosiphon-vapor compression composite refrigeration system
JPH0763427A (en) Refrigerating plant
JPS6230693Y2 (en)
JP2646914B2 (en) Refrigeration equipment
JPH02287059A (en) Refrigeration cycle
JPH0113968Y2 (en)
JPH025313Y2 (en)
JPS5818061A (en) Refrigerator
JP2756361B2 (en) Refrigeration system for cooling both low temperature medium and high temperature medium
JPS637808Y2 (en)
JPS6230690Y2 (en)
JPS6251383B2 (en)
JPS5815819Y2 (en) air conditioner
JPS5833068A (en) Two-stage compression refrigerating cycle
JPS6291754A (en) Refrigerator
JPH11257766A (en) Refrigerator
JPS5912528Y2 (en) Refrigerator with wet air-cooled condenser
JPS586233Y2 (en) Refrigeration equipment
JP2596483Y2 (en) Cooling cycle