JPS6251383B2 - - Google Patents

Info

Publication number
JPS6251383B2
JPS6251383B2 JP3019481A JP3019481A JPS6251383B2 JP S6251383 B2 JPS6251383 B2 JP S6251383B2 JP 3019481 A JP3019481 A JP 3019481A JP 3019481 A JP3019481 A JP 3019481A JP S6251383 B2 JPS6251383 B2 JP S6251383B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
valve
accumulator
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3019481A
Other languages
Japanese (ja)
Other versions
JPS57144854A (en
Inventor
Hiroshi Yuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3019481A priority Critical patent/JPS57144854A/en
Publication of JPS57144854A publication Critical patent/JPS57144854A/en
Publication of JPS6251383B2 publication Critical patent/JPS6251383B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、能力制御圧縮機を用いた冷房機に関
するもので、圧縮機の高低2段階出力に応じて、
適正な冷凍サイクルを構成し、負荷に応じた冷房
能力を得る、効率のよい冷房機を提供することを
目的としている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner using a capacity control compressor.
The objective is to provide an efficient air conditioner that configures an appropriate refrigeration cycle and obtains cooling capacity according to the load.

例えば、極数変換圧縮機により冷媒吐出量を負
荷に応じて変化させる場合、4極時は2極時に比
べて、圧縮機回転数が半分になり、冷媒吐出量を
半減させるため、低負荷に応じて、効率よい運転
を行うことができる。
For example, when using a pole converter compressor to change the refrigerant discharge amount according to the load, when using a 4-pole compressor, the compressor rotational speed is halved compared to when using 2 poles, which reduces the refrigerant discharge amount by half, resulting in a lower load. Accordingly, efficient operation can be performed.

しかし、この場合4極時において、吐出圧力が
低下するため、絞り抵抗の入口で、過冷却度が小
さく、冷房能力が低下して、成積係数が低下す
る。更に、冷房負荷の異なる2極運転時と、4極
運転時では冷凍サイクル内に必要とする適正な冷
媒量が異なるため、単に極数変換圧縮機を使用し
ても必ずしも効率のよい運転を行えるものではな
かつた。
However, in this case, at the time of four poles, the discharge pressure decreases, so the degree of supercooling is small at the inlet of the throttling resistor, the cooling capacity decreases, and the growth coefficient decreases. Furthermore, the appropriate amount of refrigerant required in the refrigeration cycle is different between two-pole operation and four-pole operation, which have different cooling loads, so simply using a pole converter compressor does not necessarily result in efficient operation. It wasn't something.

更に、低負荷の4極運転時に蒸発器内で冷媒が
完全に蒸発しきれず、圧縮機に戻るいわゆる液バ
ツク現象が生じるなどの欠点を有していた。ま
た、冷房負荷が更に小さい場合、圧縮機が発停を
繰り返すが、圧縮機始動時、蒸発器に留り込んだ
液冷媒を圧縮機が液圧縮するという欠点を有して
いた。特に、このような運転条件では圧縮機吸入
冷媒の過熱度が小さく、湿り圧縮気味であるた
め、顕著な欠点として指摘されていた。
Furthermore, during low-load four-pole operation, the refrigerant cannot be completely evaporated in the evaporator, causing a so-called liquid back phenomenon in which the refrigerant returns to the compressor. Furthermore, when the cooling load is even smaller, the compressor repeatedly starts and stops, but the compressor has the disadvantage that when starting the compressor, the compressor compresses the liquid refrigerant that has remained in the evaporator. In particular, under such operating conditions, the degree of superheating of the refrigerant sucked into the compressor is small and the refrigerant tends to be compressed wet, which has been pointed out as a significant drawback.

また冷房機の運転効率を上げる方式として、絞
り抵抗入口の冷媒管と、圧縮機吸入管を熱交換さ
せて、絞り抵抗入口の冷媒の過冷却度を増加させ
る方法が公知である。
Furthermore, as a method for increasing the operating efficiency of an air conditioner, a method is known in which the degree of subcooling of the refrigerant at the throttle resistor inlet is increased by exchanging heat between the refrigerant pipe at the throttle resistor inlet and the compressor suction pipe.

しかし、この方式を極数変換圧縮機の冷媒回路
に応用すると、4極時には、過冷却度も過熱度も
大きく取れるが、2極運転時には、もともと過冷
却度も過熱度も大きく、圧縮機の吐出温度が高い
ため更に過熱度が大きくなり、吐出冷媒温度が高
くなりすぎるという欠点を有していた。
However, when this method is applied to the refrigerant circuit of a pole conversion compressor, the degree of subcooling and superheating can be large in the case of four-pole operation, but in the case of two-pole operation, the degree of subcooling and superheating are originally large, and the compressor Since the discharge temperature is high, the degree of superheating further increases, resulting in a disadvantage that the discharge refrigerant temperature becomes too high.

本発明は以上の点に鑑みなされたもので、以下
図によつて詳細を説明する。第1図は本発明の極
数変換圧縮機搭載の冷媒回路である。1は極数変
換圧縮機、2は凝縮器、3は第一減圧器、4は蒸
発器で冷媒回路を構成している。7は前記第一減
圧器3と蒸発器4の間に設け、圧縮機1の2極運
転時に開成する第1電磁開閉弁であり、5はこの
開閉弁7と並列に設けた第二の減圧器、8はアキ
ユームレータで、上記圧縮機1から直ちに凝縮器
2に入る吐出回路13から分岐し、途中絞り抵抗
9を設け、該アキユームレータ8内を通過し吐出
回路13と合流する分岐回路14を連通状態に形
成している。10は上記蒸発器4の中間部に設け
た分岐部で、途中に二方電磁開閉弁11を設ける
とともに、上記アキユームレータ8内を蛇行させ
た伝熱管12に至り、かつ上記圧縮機1の吸入管
16と接続する低圧冷媒管15を分岐接続してい
る。17は蒸発器側吸入管で、上記吸入管16に
連通接続している。
The present invention has been made in view of the above points, and will be explained in detail below with reference to the drawings. FIG. 1 shows a refrigerant circuit equipped with a pole change compressor according to the present invention. Reference numeral 1 is a pole conversion compressor, 2 is a condenser, 3 is a first pressure reducer, and 4 is an evaporator, which constitute a refrigerant circuit. Reference numeral 7 denotes a first electromagnetic on-off valve that is provided between the first pressure reducer 3 and the evaporator 4 and opens when the compressor 1 is in bipolar operation, and 5 is a second pressure reduction valve that is provided in parallel with this on-off valve 7. 8 is an accumulator, which is branched from the discharge circuit 13 which immediately enters the condenser 2 from the compressor 1, is provided with a throttling resistor 9 in the middle, passes through the accumulator 8, and joins the discharge circuit 13. The circuit 14 is formed in a communicating state. Reference numeral 10 denotes a branch section provided in the middle of the evaporator 4, which is provided with a two-way electromagnetic on-off valve 11 in the middle, and which leads to a heat transfer tube 12 that meandered inside the accumulator 8, and which connects the compressor 1. The low pressure refrigerant pipe 15 connected to the suction pipe 16 is connected in a branched manner. Reference numeral 17 denotes an evaporator side suction pipe, which is connected to the suction pipe 16 described above.

次に本発明の作用について説明する。圧縮機1
より吐出された冷媒は、直ちに凝縮器2に入る吐
出回路13とアキユームレータ8に入つた後、絞
り抵抗9を通つて、凝縮器2に入る分岐回路14
に分岐される。さらに蒸発器4の中間部に設けた
分岐部10に低圧冷媒管15が接続され、該管1
5の冷媒ガスは二方電磁開閉弁11を通り、前述
のアキユームレータに入り、伝熱管12により吐
出ガス冷媒と熱交換状態をなした後吸入管16に
合流して圧縮機1に吸入される冷媒回路と、蒸発
器側吸入管17から吸入管16を通り圧縮機1吸
入される冷媒回路の並列回路を形成する。
Next, the operation of the present invention will be explained. Compressor 1
The refrigerant discharged from the refrigerant immediately enters the discharge circuit 13 which enters the condenser 2 and the accumulator 8, passes through the throttle resistor 9, and enters the branch circuit 14 which enters the condenser 2.
It is branched into. Further, a low pressure refrigerant pipe 15 is connected to a branch part 10 provided in the middle of the evaporator 4.
The refrigerant gas No. 5 passes through the two-way electromagnetic on-off valve 11, enters the aforementioned accumulator, exchanges heat with the discharged gas refrigerant through the heat transfer tube 12, joins the suction pipe 16, and is sucked into the compressor 1. A parallel circuit is formed of a refrigerant circuit in which the refrigerant is drawn into the compressor 1 from the evaporator-side suction pipe 17 through the suction pipe 16.

通常の冷房負荷が大きめの時、即ち、2極運転
時は、二方電磁開閉弁11を閉成しているため、
蒸発器4において蒸発した冷媒はアキユームレー
タ8内の伝熱管12を通過せず直接全循環冷媒が
蒸発器側吸入管17から圧縮機1に吸入されるた
め、圧縮機1から吐出された冷媒の一方は常にア
キユームレータ8内に流入するが、蒸発器4から
の低圧・低温冷媒が流入しないため、吐出冷媒と
吸入冷媒の熱交換がなくなり吐出冷媒は液化せ
ず、従来と同様の冷凍サイクルを構成する。
When the normal cooling load is large, that is, during two-pole operation, the two-way electromagnetic on-off valve 11 is closed.
The refrigerant evaporated in the evaporator 4 does not pass through the heat transfer tube 12 in the accumulator 8 and is directly sucked into the compressor 1 from the evaporator side suction pipe 17, so that the refrigerant discharged from the compressor 1 One side always flows into the accumulator 8, but since the low-pressure and low-temperature refrigerant from the evaporator 4 does not flow in, there is no heat exchange between the discharged refrigerant and the suctioned refrigerant, and the discharged refrigerant does not liquefy, resulting in the same refrigeration as before. Configure the cycle.

冷房負荷が小さめの時、即ち、4極運転時は圧
縮機回転数が低く、従つて冷媒循環量が少いため
冷媒の絞り抵抗を大きくする必要があり、電磁開
閉弁7を閉成す。同時に二方電磁開閉弁11を開
成し、アキユームレータ8内の伝熱管12に蒸発
器4内の低圧・低温冷媒を流入させる。このた
め、圧縮機から吐出され、分岐した一方の高温高
圧冷媒は、伝熱管12により、アキユームレータ
8内に液化され溜る。高圧側のアキユームレータ
8の出口管には、絞り抵抗9が配設されているた
め、この管の冷媒流量は、他方の吐出管13より
非常に少ないため、吸入冷媒のスーパーヒートを
大きく変えることなく、2極運転時と同レベルの
スーパーヒートを維持できる。
When the cooling load is small, that is, during four-pole operation, the compressor rotation speed is low, and therefore the amount of refrigerant circulating is small, so it is necessary to increase the throttling resistance of the refrigerant, and the electromagnetic on-off valve 7 is closed. At the same time, the two-way electromagnetic on-off valve 11 is opened to allow the low-pressure, low-temperature refrigerant in the evaporator 4 to flow into the heat transfer tubes 12 in the accumulator 8 . Therefore, one of the branched high-temperature, high-pressure refrigerants discharged from the compressor is liquefied and stored in the accumulator 8 by the heat transfer tube 12 . Since the outlet pipe of the accumulator 8 on the high pressure side is provided with a throttle resistor 9, the refrigerant flow rate in this pipe is much smaller than that in the other discharge pipe 13, which greatly changes the superheat of the suction refrigerant. It is possible to maintain the same level of super heat as during two-pole operation without any problems.

このようにすると極数変換時にはアキユームレ
ータ内に液冷媒が溜り、冷凍サイクル中の循環冷
媒量を調整できる。すなわち、4極運転時はアキ
ユームレータ8内に冷媒が溜るため、2極運転時
に比し凝縮器2、蒸発器4他配管内の冷媒分布量
が少くなり、負荷に応じた効率のよい運転を行え
る。
In this way, liquid refrigerant accumulates in the accumulator when changing the number of poles, and the amount of refrigerant circulated during the refrigeration cycle can be adjusted. In other words, during 4-pole operation, refrigerant accumulates in the accumulator 8, so the amount of refrigerant distributed in the condenser 2, evaporator 4, and other piping is smaller than during 2-pole operation, resulting in more efficient operation according to the load. can be done.

したがつて本発明によれば、冷房負荷が小さい
場合、従来、湿り圧縮気味であつたものを、循環
冷媒量を少なくすることと、アキユームレータ内
での吸入冷媒の熱交換によつてスーパーヒートを
必要量取れることにより上記欠点が解消される。
同時に負荷に見合つた適正な冷媒量で運転するこ
とができることによりサイクルの成績係数が向上
する。
Therefore, according to the present invention, when the cooling load is small, the refrigerant that was conventionally compressed due to dampness can be reduced to a super high temperature by reducing the amount of circulating refrigerant and by heat exchange of the suction refrigerant in the accumulator. The above-mentioned drawbacks can be solved by obtaining the necessary amount of heat.
At the same time, by being able to operate with an appropriate amount of refrigerant commensurate with the load, the coefficient of performance of the cycle improves.

また、圧縮機の発停において蒸発器に溜つた冷
媒が再起動時、圧縮機に流れ込み、大きな起動員
荷となつていたものを、本発明の場合、圧縮機停
止時は室内の負荷が小さいため、4極運転してお
り、アキユームレータ内に冷媒が溜つている場合
であるため、圧縮機への急激な液冷媒を含んだ冷
媒の流入がなく、圧縮機の保護装置として機能す
ると共に、起動時の負荷を軽減することができ
る。
In addition, the refrigerant that accumulates in the evaporator when the compressor is started and stopped flows into the compressor when restarted, which was a large startup load.In the case of the present invention, the indoor load is small when the compressor is stopped. Therefore, since 4-pole operation is performed and refrigerant is accumulated in the accumulator, there is no sudden inflow of refrigerant containing liquid refrigerant into the compressor, and it functions as a protection device for the compressor. , the load at startup can be reduced.

また、圧縮機の停止中、冷媒液が低圧側に流れ
続け、蒸発器内で再び凝縮し、蒸発器を暖め冷凍
効果を減少させ、前述の液圧縮を行うという欠点
に対しては、本発明のアキユームレータが圧縮機
の吐出側にあるため、圧縮機停止時の低圧側への
冷媒流入を微量に押えることができると共に、再
起動時の損失を最少に抑えることができる。
In addition, while the compressor is stopped, the refrigerant liquid continues to flow to the low pressure side and is condensed again in the evaporator, warming the evaporator and reducing the refrigeration effect, thereby solving the above-mentioned liquid compression problem. Since the accumulator is located on the discharge side of the compressor, the inflow of refrigerant into the low pressure side when the compressor is stopped can be suppressed to a very small amount, and losses when the compressor is restarted can be minimized.

以上本発明の効果を極数変換圧縮機を例として
説明したが、本発明は極数変換のみならず、圧縮
機の出力を高低段階的に変えるものに対しても同
様な効果があるものである。
The effects of the present invention have been explained above using a pole number changing compressor as an example, but the present invention has similar effects not only on pole number changing, but also on compressors that change the output of the compressor in stages. be.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による空気調和機の冷媒回路を示す
図である。 図中、7は電磁開閉弁、8はアキユームレー
タ、9は絞り抵抗、10は分岐部、12は伝熱管
である。
The figure is a diagram showing a refrigerant circuit of an air conditioner according to the present invention. In the figure, 7 is an electromagnetic on-off valve, 8 is an accumulator, 9 is a throttle resistor, 10 is a branch part, and 12 is a heat exchanger tube.

Claims (1)

【特許請求の範囲】 1 圧縮機モータを2極、4極に切換え可能な能
力可変圧縮機、凝縮器、第一減圧器、第二減圧
器、蒸発器を順次連結して成る空気調和機におい
て、圧縮機吐出冷媒を並列状態に分岐し、一方を
アキユムレータに導き、該アキユームレータを通
過後他方の吐出冷媒と合流し凝縮器に入る回路を
構成し、一方蒸発器の途中より低圧冷媒管を分岐
させ、該管に二方電磁開閉弁と伝熱管を介してア
キユームレータを通過後蒸発器吸入管と合流し圧
縮機へ吸入する冷媒回路と、第二減圧器と並列に
電磁開閉弁を備えた冷媒回路を構成し、圧縮機の
高出力運転時は電磁開閉弁を開成し、二方電磁開
閉弁を閉成した運転を行い、圧縮機低出力運転時
は電磁開閉弁を閉成し、二方電磁開閉弁を開成
し、圧縮機からの吐出冷媒と二方電磁開閉弁を通
過する低圧冷媒をアキユームレータ内にて熱交換
させることを特徴とする空気調和機。 2 圧縮機吐出側のアキユームレータ出口管に絞
り抵抗を備えたことを特徴とする特許請求の範囲
第1項記載の空気調和機。
[Claims] 1. In an air conditioner comprising a variable capacity compressor capable of switching the compressor motor between two poles and four poles, a condenser, a first pressure reducer, a second pressure reducer, and an evaporator connected in sequence. A circuit is constructed in which the refrigerant discharged from the compressor is branched in parallel, one is led to an accumulator, and after passing through the accumulator, it joins with the other refrigerant discharged and enters the condenser. A refrigerant circuit is branched into the pipe, which passes through the accumulator via a two-way electromagnetic on-off valve and a heat transfer tube, joins the evaporator suction pipe, and is sucked into the compressor, and a solenoid on-off valve is connected in parallel to the second pressure reducer. When the compressor is operating at high output, the solenoid on-off valve is opened and the two-way solenoid on-off valve is closed.When the compressor is operating at low output, the solenoid on-off valve is closed. An air conditioner characterized in that a two-way electromagnetic on-off valve is opened, and the refrigerant discharged from the compressor and the low-pressure refrigerant passing through the two-way electromagnetic on-off valve are subjected to heat exchange in an accumulator. 2. The air conditioner according to claim 1, characterized in that the accumulator outlet pipe on the discharge side of the compressor is provided with a throttling resistance.
JP3019481A 1981-03-03 1981-03-03 Air conditioner Granted JPS57144854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3019481A JPS57144854A (en) 1981-03-03 1981-03-03 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3019481A JPS57144854A (en) 1981-03-03 1981-03-03 Air conditioner

Publications (2)

Publication Number Publication Date
JPS57144854A JPS57144854A (en) 1982-09-07
JPS6251383B2 true JPS6251383B2 (en) 1987-10-29

Family

ID=12296937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3019481A Granted JPS57144854A (en) 1981-03-03 1981-03-03 Air conditioner

Country Status (1)

Country Link
JP (1) JPS57144854A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108668A (en) * 1983-11-15 1985-06-14 松下冷機株式会社 Decompression device for refrigerator
JP3742852B2 (en) * 1999-01-13 2006-02-08 ダイキン工業株式会社 Air conditioner
CN113646599B (en) 2020-03-10 2022-06-17 Ats日本株式会社 Refrigerant control system and cooling system

Also Published As

Publication number Publication date
JPS57144854A (en) 1982-09-07

Similar Documents

Publication Publication Date Title
JP4123829B2 (en) Refrigeration cycle equipment
JP2865844B2 (en) Refrigeration system
US7104084B2 (en) Heat pump and structure of extraction heat exchanger thereof
CN112629082B (en) Heating control system, multi-split air conditioning system and heating control method
CN110822755A (en) Heat pump system using non-azeotropic refrigerant mixture
CN108106045A (en) A kind of air-conditioning refrigerator combined system of central refrigerating split cooling
US11041667B2 (en) Refrigeration cycle apparatus
JP2001056156A (en) Air conditioning apparatus
JPS6251383B2 (en)
CN214701327U (en) Centrifugal cascade high-pressure ratio series unit
EP3945266A1 (en) Refrigeration system and control method therefor
JP2004061023A (en) Heat pump device
JPH04313647A (en) Heat pump type air conditioner
JP2010236833A (en) Air heat source turbo heat pump and method for controlling the same
JP3723244B2 (en) Air conditioner
JP2615496B2 (en) Two-stage compression refrigeration cycle
JP2646894B2 (en) Refrigeration cycle device
JPH10253171A (en) Air conditioner
CN219177868U (en) Variable-frequency four-pipe air conditioning system
JPH04257660A (en) Two stage compression refrigerating cycle device
CN114413406B (en) Air conditioner with heat storage device
JPH04263742A (en) Refrigerator
JPH11304265A (en) Air conditioner
JPH04292749A (en) Two-stage compression refrigeration cycle device
CN118670010A (en) Heat exchange assembly, control method and device, readable storage medium and refrigeration equipment