JPS6176620A - Manufacture of composite structure type high strength cold rolled steel sheet - Google Patents

Manufacture of composite structure type high strength cold rolled steel sheet

Info

Publication number
JPS6176620A
JPS6176620A JP19917284A JP19917284A JPS6176620A JP S6176620 A JPS6176620 A JP S6176620A JP 19917284 A JP19917284 A JP 19917284A JP 19917284 A JP19917284 A JP 19917284A JP S6176620 A JPS6176620 A JP S6176620A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
phase
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19917284A
Other languages
Japanese (ja)
Inventor
Masatoshi Sudo
正俊 須藤
Hiroshi Hori
堀 広巳
Zenichi Shibata
柴田 善一
Ichiro Tsukatani
一郎 塚谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19917284A priority Critical patent/JPS6176620A/en
Publication of JPS6176620A publication Critical patent/JPS6176620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain the titled sheet having improved yield behaviour, by heating and holding at a specified temp. a cold rolled steel sheet having specified quantities of C, Si, Mn, Al, P and S, next, applying slow and rapid coolings thereto. CONSTITUTION:The cold rolled steel sheet composed of 0.04-0.12wt% C, 0.1-1.0% Si, 1.0-2.0% Mn, 0.02-0.06% Al, 0.005-0.7% P, <=0.015% S and the balance Fe with inevitable impurities is heated to 750-850 deg.C, held at the attained temp. for >=5min, to vary a part of alpha phase to gamma phase and to form austenite. Next, said sheet is cooled slowly to >=500 deg.C temp. at 5-20 deg.C/sec average rate to transfer solid soln. C in alpha phase into gamma phase. Further, it is cooled rapidly to 350-200 deg.C range at 50-500 deg.C/sec average rate, and held at the end temp. of cooling for 1-5min. In this way, bainite or bainite + martensite is allowed to appear effectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フェライト+ベイナイト(又は更にマルテン
サイト)の複合組織を有する高強度冷延鋼板の製造法に
関するものであシ、詳細には連続焼鈍における冷却条件
を工夫することによって降伏挙動の良好な複合組織型高
強度冷延鋼板を製造する方法である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a high-strength cold-rolled steel sheet having a composite structure of ferrite + bainite (or even martensite), and in particular, it relates to a method for manufacturing a high-strength cold-rolled steel sheet having a composite structure of ferrite + bainite (or even martensite). This is a method for manufacturing high-strength cold-rolled steel sheets with a composite structure with good yield behavior by modifying the cooling conditions during annealing.

〔従来の技術〕[Conventional technology]

自動車の安全対策及び燃費節減を主眼とする鋼板の軽量
化は、デュアル・フェーズ(DualPhase )@
の出現に°よって犬きく前進した。特にフェライト+マ
ルテンナイトからなるデュアル・7エーズ鋼は降伏比が
低く良好な成形性を示すということ、或は急冷tまでも
降伏伸びの現出がないという製造上の利点を有するとこ
ろから大きな期待が寄せられた。しかしとの鋼は伸び7
ランジ性や深絞シ性が低いという欠点を内包する為、実
用化の隘路となっている。
Dual Phase@
The appearance of the dog caused the dog to move forward. In particular, dual 7A steel consisting of ferrite and martenite has high expectations because it has a low yield ratio and good formability, and also has the manufacturing advantage of not exhibiting yield elongation even after quenching. was received. However, the steel elongates by 7
It has the disadvantage of poor lunge properties and deep drawing properties, making it a bottleneck for practical application.

この様なところから本発明者等は、フェライト+マルテ
ンサイトという2相組織にこだわるべきではないと考え
かねてよシ研究を行なってきた。
For these reasons, the inventors of the present invention have been unable to decide whether to stick to the two-phase structure of ferrite and martensite, and have therefore conducted research.

その結果第2相がベイナイト(若しくは更にマルテンサ
イトを含んでいてもよい)である様な複合組織としたも
のでは、特に深絞シ性(7値)が大きく改善され、又伸
び7ランジ性や焼付き硬化性(B、H,性)も改善され
ることを知シ、先に特許出願を行なった(特開昭57−
123956.同57−123957)。
As a result, in the case of a composite structure in which the second phase is bainite (or may further contain martensite), the deep drawability (value 7) is greatly improved, and the elongation and lunge properties are significantly improved. Knowing that the bake hardenability (B, H, properties) would also be improved, he filed a patent application (Japanese Patent Application Laid-Open No. 1983-1999).
123956. 57-123957).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記発明を更に発展させたもので、特に降伏挙
動が一層改善された複合組織型高強度冷延鋼板の製造方
法を提供しようとするものである。
The present invention is a further development of the above-mentioned invention, and particularly aims to provide a method for manufacturing a composite structure type high-strength cold-rolled steel sheet with further improved yield behavior.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明方法の要点は、 C:0.04〜0.12重量Lf6(以下単にチという
)Si:0.1〜1.0チ Mn : 1.0〜2.0 % A1:0.02〜0,06チ P:0.005〜0.07% S:0.015%以下 を含有し、残部がFc及び不可避不純物からなる冷延鋼
板を、750〜850℃まで加熱した後到達温度で5分
以下保持し、冷却に当たっては、500℃以上の温度ま
では5〜200C/秒の平均冷却速度で冷却し、更に4
50〜200℃の温度範囲までは50〜b 冷却し、当該冷却による冷却終了温度で1〜5分間保持
せしめる点に存在する。
The main points of the method of the present invention are: C: 0.04-0.12 weight Lf6 (hereinafter simply referred to as "chi") Si: 0.1-1.0 mass Mn: 1.0-2.0% A1: 0.02-0.02% A cold-rolled steel sheet containing 0.06% P: 0.005-0.07% S: 0.015% or less, with the remainder consisting of Fc and unavoidable impurities, is heated to 750-850°C and then reaches a temperature of 5%. When cooling, cool at an average cooling rate of 5 to 200C/sec until the temperature exceeds 500℃, and
A temperature range of 50 to 200° C. is achieved by cooling at a temperature of 50 to 200° C. and maintaining the temperature at the end of cooling for 1 to 5 minutes.

〔作用〕[Effect]

本発明における鋼板の化学成分及び連続焼鈍条件を上記
の如く定めた理由を明らかとすることによって本発明の
構成と作用効果を説明する。
The structure and effects of the present invention will be explained by clarifying the reason why the chemical composition and continuous annealing conditions of the steel plate in the present invention are determined as described above.

Cは強化及び焼入性向上機能元素として知られているが
、その他ベイナイト相の現出を招き、また点溶接部の組
織を健全にする為の必須元素である。そして本発明の目
的を満足させるという主旨からは0.04%以上の配合
が必要である。しかしC量が過剰になると7値が小さく
なって冷間加工性を著しく低下させ、しかも点溶接部の
硬化を顕著にするので、上限は0.12%と定めた。尚
特に優れた冷間加工性が要求される場合には0.07チ
以下とするのが望ましい。
C is known as a functional element that strengthens and improves hardenability, but it also causes the appearance of a bainite phase and is an essential element for making the structure of the spot weld healthy. In order to satisfy the purpose of the present invention, it is necessary to add 0.04% or more. However, if the amount of C is excessive, the 7 value becomes small, resulting in a significant decrease in cold workability and significant hardening of spot welds, so the upper limit was set at 0.12%. In addition, when particularly excellent cold workability is required, it is desirable that the thickness be 0.07 inch or less.

Si及びPはオーステナイト中へのCの濃縮を促進しオ
ーステナイトを安定化すると共に、ベイナイト相の現出
を容易にする元素であり、これによって冷延鋼板に高強
度と高延性を与える。但しこれらの効果を発揮する為に
は、Slとして0.1チ以上、Pとして0.005%以
上の添加が必要であシ、配合量の増加につれて上記効果
も高められていくが、Stについては1.0%、PKつ
いては0.07%程度で上記の効果が飽和に達するだけ
でなく、多量のSiは鋼板の表面性状を悪化し、又多量
のPは鋼を脆化するので、Si:1.0%及びP:0.
07%を夫々上限と定めた。
Si and P are elements that promote the concentration of C in austenite, stabilize the austenite, and facilitate the appearance of a bainite phase, thereby imparting high strength and high ductility to a cold rolled steel sheet. However, in order to exhibit these effects, it is necessary to add 0.1% or more of Sl and 0.005% or more of P, and the above effects will be enhanced as the amount added increases, but regarding St. Not only does the above effect reach saturation at around 1.0% for PK and 0.07% for PK, but also a large amount of Si deteriorates the surface quality of the steel sheet, and a large amount of P makes the steel brittle. :1.0% and P:0.
The upper limit was set at 0.7%.

MnはSの併存による赤熱脆性を防止するのに有用な元
素であシ、又焼入性を強めて所望の組織とする為にも必
要である。尚従来本発明者等は、o、osq6以上の配
合によって上記効果が発現させることを確認しているが
、高Mn鋼とすることによυ冷延鋼板の高強度化を図る
上では、1.0チ以上の添加が必要であることを見出し
た。し少いb量を多くしていけば7値の低下を招いて当
初の目的に反することとなるので、上限は2.0%にす
べきであるとの結論を得た。
Mn is an element useful for preventing red heat embrittlement due to the coexistence of S, and is also necessary to enhance hardenability and form a desired structure. In the past, the present inventors have confirmed that the above effect is achieved by a blend of o, osq 6 or more, but in order to increase the strength of υ cold rolled steel sheet by using high Mn steel, it is necessary to It has been found that it is necessary to add more than .0 g. However, if the amount of b was increased, the 7 value would decrease, which would be contrary to the original purpose, so it was concluded that the upper limit should be 2.0%.

AIは脱酸元素として必要であるばか)でなく、鋼中の
Nを捕捉する(AINを形成する)ことにより時効の進
行を防止する。但し0.02%未満では当該効果の発揮
が不十分であり、0.02%以上の添加を必要とするが
、0.06%を超えるとAIN系介在物が増加して延性
及び靭性の低下を招くという問題がある。
AI is not only necessary as a deoxidizing element, but also prevents aging by capturing N in the steel (forming AIN). However, if it is less than 0.02%, the effect is insufficient and it is necessary to add 0.02% or more, but if it exceeds 0.06%, AIN inclusions will increase and ductility and toughness will decrease. There is a problem of inviting

Sは伸びフランジ性を悪くするだけでなく、連続焼鈍時
の粒成長を阻害してT値を低下させるので、不純元素と
考え0.015%以下に抑制することが必要である。
S not only deteriorates stretch flangeability but also inhibits grain growth during continuous annealing and lowers the T value, so it is considered an impurity element and needs to be suppressed to 0.015% or less.

上記説明によシ本発明の基本成分元素を明らかにしたが
、本発明の目的を達成する上で有意義な役割シを果すこ
とのできる他の元素について補足説明を加える。
Although the basic constituent elements of the present invention have been clarified through the above description, supplementary explanations will be added regarding other elements that can play a significant role in achieving the objects of the present invention.

Crはオーステナイトの安定化元素であシ、本発明の複
合組り、型冷延鍋板の高強度化に大きく寄与することが
できる。この様な効果は極く微量の存在によっても発揮
するので特に下限は設定しないが、1チ以上配合しても
それ以上の効果が出る訳ではなくコストの上昇を招くだ
けであるから、1チを上限とする。
Cr is an austenite stabilizing element, and can greatly contribute to increasing the strength of the composite structure and cold-rolled pan plate of the present invention. There is no particular lower limit set because such an effect can be achieved even with the presence of a very small amount, but adding more than 1 chlorine will not produce any greater effect and will only increase the cost. is the upper limit.

次にBはAIと同じく鋼中のNを捕捉して時効の進行を
防止する他、Crと同じくオーステナイト安定化作用を
発揮し高強度化に寄与する。そしてこれらの効果は0.
0002%以上の添加によって発揮され、0.005%
に至ってその効果が飽和されるので、推奨添加範囲は0
.0002〜0.005チと定めた。
Next, like AI, B traps N in the steel to prevent aging, and like Cr, it also exerts an austenite stabilizing effect and contributes to high strength. And these effects are 0.
It is exhibited by adding 0.002% or more, and 0.005%
The recommended addition range is 0 because the effect is saturated when
.. It was set at 0002 to 0.005.

次に連続焼鈍条件について説明する。Next, continuous annealing conditions will be explained.

まず加熱については、前工程で製造された冷延鋼板を連
続焼鈍炉に導入し、走行させつつ750〜850℃まで
加熱した後、到達温度において5分以下保持する。上記
温度まで加熱するのはAc1変態点とAc3変態点の間
まで加熱することによってα相の一部をγ相に変化させ
オーステナイトを出現させる為である。即ち上記加熱に
よって7エライト相とオーステナイト相を併存させ複合
組織形成の準備とするものである。尚5分以下と定めた
のは、5分までの保持によってγ相を十分析出させるこ
とができるからであり、5分を超えて保持することは全
炉長がいたずらに長くなシ設備経済性を悪くするからで
ある。
First, regarding heating, the cold rolled steel sheet manufactured in the previous step is introduced into a continuous annealing furnace, heated to 750 to 850° C. while running, and then held at the reached temperature for 5 minutes or less. The reason for heating to the above temperature is to change a part of the α phase to the γ phase and make austenite appear by heating to between the Ac1 transformation point and the Ac3 transformation point. That is, the heating described above causes the hepterythrite phase and austenite phase to coexist, thereby preparing for the formation of a composite structure. The reason why the period was set at 5 minutes or less is that sufficient γ phase can be extracted by holding for up to 5 minutes, and holding for more than 5 minutes will result in an unnecessarily long total reactor length, resulting in equipment economical problems. This is because it makes sex worse.

冷却過程の最初は、上記保持温度から500℃に至る迄
の徐冷段階であプ、との段階は平均冷却速度5〜b 中の固溶Cをγ相中へ移行させる為の手段であ)、α相
中の固溶Cが減少することによってα相ひいては冷延鋼
板としての延性向上に寄与すると共に、γ相中のCが増
加することによってγ相の焼入性を高め、更に重大な作
用として冷却終了組織にベイナイト(或はベイナイト+
マルテンサイト)を効果的に現出させる為に行なわれる
ものである。
The beginning of the cooling process is a gradual cooling step from the above-mentioned holding temperature to 500°C. This step is a means for transferring the solid solution C in the average cooling rate 5~b into the γ phase. ), the decrease in solid solution C in the α phase contributes to the improvement of the α phase and thus the ductility of the cold-rolled steel sheet, and the increase in C in the γ phase improves the hardenability of the γ phase, making it even more important. Bainite (or bainite +
This is done to effectively bring out martensite.

従って徐冷効果を発揮する為には固溶Cをα相中からγ
相中へ十分拡散させていく必要があシ、冷却速度は20
℃/秒よシ遅くしなければならない。
Therefore, in order to exhibit the slow cooling effect, the solid solution C must be removed from the α phase to the γ phase.
It is necessary to diffuse it sufficiently into the phase, and the cooling rate is 20
It must be slowed down by more than ℃/second.

もっとも余シ遅い速度(具体的には5℃/秒よりも遅い
速度)にしようとすれば炉長を長いものにする必要があ
って設備経済性が低下する。尚との徐冷過程で500℃
を下回わる温度まで下げてしまうと、最初の加熱によっ
て折角形成されていたγ相が消失してα相に戻ってしま
い、複合組織を形成することができなくなる。即ち目的
とする複合組織を得る為には、α相とγ相が適当に分散
・共存している500℃以上の時点から次に述べる急冷
を開始しなければならない。さてその急冷段階は、鋼板
が450〜200℃の範囲に入る迄であり、又平均冷却
速度は50〜bけ ればならない。この急冷によってγ相からベイナイト(
或はベイナイトとマルテンサイト)が生成する。従って
急冷が450℃よ)高温側で終了した場合や50℃/秒
よりも遅い速度で進行した場合には、前記ベイナイト等
の生成が不十分であ゛  リ、前者の場合はγ相が残留
し以後の空冷(連続焼鈍炉を出た後の空冷)によってα
相に戻るし、後者の場合は該低速冷却過程中にγ相がα
相に戻る。いずれにせよ焼鈍終了後の製品はα相に由来
するフェライト単独組織となり、本発明の目的が達成さ
れない。一方急冷が進行し過ぎて200℃未満までいっ
てしまったり、或は冷却速度が早過ぎて500℃/秒を
超えてしまうと、マルテンサイトの生成が過剰となって
延性の劣化を招く。
However, if a slower speed (specifically, slower than 5° C./second) is desired, the furnace length will need to be increased, which will reduce the economic efficiency of the equipment. 500℃ during slow cooling process with Nao
If the temperature is lowered to below , the γ phase that was painstakingly formed during the initial heating disappears and returns to the α phase, making it impossible to form a composite structure. That is, in order to obtain the desired composite structure, the rapid cooling described below must be started at a temperature of 500° C. or higher, at which the α phase and the γ phase are appropriately dispersed and coexist. Now, the quenching stage is performed until the temperature of the steel plate falls within the range of 450 to 200°C, and the average cooling rate must be 50 to 200°C. This rapid cooling changes the γ phase to bainite (
or bainite and martensite). Therefore, if the rapid cooling ends at a high temperature (450°C) or if it proceeds at a rate slower than 50°C/sec, the formation of the bainite etc. is insufficient, and in the former case, the γ phase remains. α due to subsequent air cooling (air cooling after leaving the continuous annealing furnace)
In the latter case, the γ phase changes to α during the slow cooling process.
Return to phase. In any case, the product after annealing will have a ferrite-only structure derived from the α phase, and the object of the present invention will not be achieved. On the other hand, if the rapid cooling progresses too much to less than 200°C, or if the cooling rate is too fast and exceeds 500°C/sec, martensite will be produced excessively, leading to deterioration of ductility.

こうして急冷が終わった鋼板は、当該冷却終了温度で1
〜5分間保持する。この工程はフェライト中の固溶Cを
粒界へ拡散させFe、Cとして析出される為に必須であ
シ、これによりフェライト中の固溶Cが多いことによる
延性低下を防止する。
The steel plate that has been rapidly cooled in this way has a temperature of 1
Hold for ~5 minutes. This step is essential because the solid solution C in the ferrite is diffused to the grain boundaries and precipitated as Fe and C, thereby preventing a decrease in ductility due to a large amount of solid solution C in the ferrite.

尚保持時間が1分未満では固溶Cの拡散が不十分となっ
て前記効果が得られないので1分を下限とした。従って
保持時間を長くすればする程FすCの粒界析出効果は高
められるが、この効果は5分程度で飽和に達するので5
分を上限と定めた。尚5分を超える保持時間を確保しよ
うとすれば炉長が長くなるという経済上の不利益も出℃
くる。又この保持工程では若干例えば±30℃程度の幅
以内で変化しても差支えないが、温度低下が著しいと固
溶Cの拡散速度が遅くなり過ぎて上記効果が得られず、
逆に温度が上がってしまうとα相中の固溶Cが結晶粒内
に微細なFe5Cとして析出し延性を低下させるという
問題が生じる。
If the holding time is less than 1 minute, the diffusion of solid solution C becomes insufficient and the above effect cannot be obtained, so 1 minute was set as the lower limit. Therefore, the longer the holding time is, the more the grain boundary precipitation effect of FC is enhanced, but this effect reaches saturation in about 5 minutes, so 5
The upper limit was set at 10 minutes. Furthermore, if you try to secure a holding time exceeding 5 minutes, there will be an economic disadvantage in that the length of the furnace will become longer.
come. In addition, in this holding step, there is no problem if the temperature changes slightly within a range of, for example, ±30°C, but if the temperature decreases significantly, the diffusion rate of solid solution C becomes too slow and the above effect cannot be obtained.
On the other hand, if the temperature rises, a problem arises in that solid solution C in the α phase precipitates as fine Fe5C within the crystal grains, reducing ductility.

上記の様にして加熱・徐冷・急冷・保熱の工程を完了し
たq板は、連続焼鈍炉を出て空冷を受ける。そして焼針
後の製品鋼板はフェライト+ベイナイト(又は更にマル
テンサイト)からなる複合I!′l(l織を示すが、ベ
イナイトの面積率が5〜50%(特に好ましくは8〜2
0%)のときにもつとも安定した品質の鋼板となり、降
伏挙動の優れた高強度製品となる。尚ベイナイトの他に
マルテンサイトが生成する場合は降伏比の低下及び伸び
の改善という面で好都合である。しかし多くなり過ぎる
と深絞り性の悪化等を招くので、面積率にして15−以
下、望ましくは8チ以下に押えることが推奨される。
After completing the heating, slow cooling, rapid cooling, and heat retention steps as described above, the q-plate exits the continuous annealing furnace and undergoes air cooling. After baking, the product steel sheet is a composite I! consisting of ferrite + bainite (or even martensite). 'l (indicates a weave, but the area ratio of bainite is 5 to 50% (particularly preferably 8 to 2
0%), the resulting steel plate has stable quality, resulting in a high-strength product with excellent yield behavior. In addition, when martensite is produced in addition to bainite, it is advantageous in terms of lowering the yield ratio and improving elongation. However, if the amount is too large, the deep drawability will deteriorate, so it is recommended that the area ratio be kept at 15 inches or less, preferably 8 inches or less.

上記の様な熱処理パターンを確実に行なわせる為の手段
については特に制限がなく、一般的な連続焼鈍操作に従
って行なえば良いが、特に急冷手段について述べると、
水冷ロール方式、沸騰水噴射方式、沸騰水浸漬方式、ヒ
ートバイブ方式等の中から任意に選択することができる
There are no particular restrictions on the means to ensure the heat treatment pattern as described above, and it may be carried out according to a general continuous annealing operation, but the rapid cooling method in particular will be described.
Any method can be selected from among a water-cooled roll method, a boiling water injection method, a boiling water immersion method, a heat vibration method, and the like.

〔実施例〕〔Example〕

第1表に示す化学成分からなる造塊物を連鋳し220m
mtのスラグを作った。粗圧延(30mmj)+熱間圧
延(3,2mmt)及び冷間圧延(0,8mmt)を行
ない、連続焼鈍を行なった。各g4程とも、比較例(A
、W)、実施例(J+Rt*Ra)に分けてヒートパタ
ーンを変化させており、R1の実施例については第1図
に示した。即ち常温から800℃までは30℃/秒の速
度で加熱していき、800℃に到達した後2分間保持す
る。次いで10℃/秒の冷却速度で徐冷し、実施例R0
では700℃に到ってから100℃/秒の急速冷却(水
冷ロール方式)を開始した。300 ’Cで急冷を停止
し、同温度で3分間保持(この間280℃ま℃とし、他
の条件は実施例R1に倣った。また比較例Aは800℃
×2分間の保持後空冷し、いったん室温まで低下したも
のを300℃迄再加熱してから実施例R1と同様に保熱
した。比較例Wは実施例R,に倣う徐冷を600℃迄行
ない、その後水冷して室温まで低下したものを比較例A
と同じ様に再加熱及び保熱した。
Continuously cast 220 m of ingots consisting of the chemical components shown in Table 1.
I made mt slug. Rough rolling (30 mmj) + hot rolling (3.2 mmt) and cold rolling (0.8 mmt) were performed, and continuous annealing was performed. Comparative example (A
, W) and Example (J+Rt*Ra), and the heat pattern was changed for each example (J+Rt*Ra), and the example of R1 is shown in FIG. That is, heating is carried out at a rate of 30°C/sec from room temperature to 800°C, and after reaching 800°C, the temperature is maintained for 2 minutes. Then, it was slowly cooled at a cooling rate of 10° C./second to obtain Example R0.
After the temperature reached 700°C, rapid cooling at 100°C/sec (water-cooled roll method) was started. Rapid cooling was stopped at 300'C, and the same temperature was maintained for 3 minutes (during which time the temperature was increased to 280°C, other conditions were as in Example R1. Comparative Example A was heated to 800°C).
After being held for 2 minutes, it was air cooled, and once it had cooled down to room temperature, it was reheated to 300°C and then kept in the same manner as in Example R1. Comparative Example W is obtained by slow cooling to 600°C as in Example R, and then cooled to room temperature by water cooling.
It was reheated and kept warm in the same manner.

得られた実施例鋼板及び比較例鋼板について、降伏応力
(Y S : kgf/mmつ、引張強さくTS:kg
f〆d)、伸び(El:褒)、降伏比(YR:無次元)
、引張強さ×伸び(TsXEI:kgf%/mn?)及
び伸び7ランジ性(穴拡げ率二%)を調べたところ、第
2表に示す結果が得られた。
Regarding the obtained example steel sheets and comparative example steel sheets, yield stress (YS: kgf/mm, tensile strength TS: kg
f〆d), elongation (El: reward), yield ratio (YR: dimensionless)
, tensile strength x elongation (TsXEI: kgf%/mn?) and elongation 7 lunge property (hole expansion rate 2%), the results shown in Table 2 were obtained.

第   1   表 (チ:残部Fe及び不可避不純物) 第   2   表 (イ) 第   2   表  (ロ) 第   2   表 (ハ) 第1表に示す如く鍋種工〜■は全て本発明の成分条件を
満足するものであるが、本発明の冷却条件(焼鈍におけ
る冷却パターン)を満足しない比較例では概して降伏比
が高く、またTSXEIや伸び7ランジ性が低い値を示
している。これに対し本発明の実施例では、同一強度同
士の間で比較しても降伏比が低く、強度−延性バランス
も良好であることが分かる。
Table 1 (H: Remaining Fe and unavoidable impurities) Table 2 (A) Table 2 (B) Table 2 (C) As shown in Table 1, all of the pot seeds ~ ■ satisfy the component conditions of the present invention. However, comparative examples that do not satisfy the cooling conditions (cooling pattern in annealing) of the present invention generally have high yield ratios and low TSXEI and elongation 7 lung properties. On the other hand, it can be seen that in the examples of the present invention, the yield ratio is low and the strength-ductility balance is also good even when comparing the same strength.

〔発明の効果〕〔Effect of the invention〕

本発明は上記の様に構成されてお)特定の成分組成から
なる冷延鋼板を特定条件のヒートパターン(特に急冷過
程を含む)からなる焼鈍に付したので、従来の複合組織
型冷延鋼板に比べてもよシ優れた降伏挙動を示す冷延鋼
板が得られることとなった。
In the present invention, a cold rolled steel sheet having a specific composition is subjected to annealing using a heat pattern under specific conditions (particularly including a quenching process). As a result, a cold-rolled steel sheet was obtained that exhibits a yield behavior that is even better than that of conventional steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例にシけるヒートパターンを示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a heat pattern in an example.

Claims (1)

【特許請求の範囲】 C:0.04〜0.12重量%(以下単に%という)S
i:0.1〜1.0% Mn:1.0〜2.0% Al:0.02〜0.06% P:0.005〜0.07% S:0.015%以下 を含有し、残部がFe及び不可避不純物からなる冷延鋼
板を、750〜850℃まで加熱した後到達温度で5分
以下保持し、冷却に当たつては、500℃以上の温度ま
では5〜20℃/秒の平均冷却速度で冷却し、更に45
0〜200℃の温度範囲までは50〜500℃/秒の平
均冷却速度で冷却し、当該冷却による冷却終了温度で1
〜5分間保持せしめることを特徴とする複合組織型高強
度冷延鋼板の製造法。
[Claims] C: 0.04 to 0.12% by weight (hereinafter simply referred to as %) S
Contains i: 0.1-1.0% Mn: 1.0-2.0% Al: 0.02-0.06% P: 0.005-0.07% S: 0.015% or less A cold-rolled steel sheet, the balance of which is Fe and unavoidable impurities, is heated to 750-850°C and then held at the temperature reached for 5 minutes or less, and during cooling, the heating temperature is 5-20°C/20°C until the temperature reaches 500°C or higher. Cooled at an average cooling rate of 45 seconds.
Cooling is performed at an average cooling rate of 50 to 500°C/sec to a temperature range of 0 to 200°C, and the cooling end temperature is 1
A method for producing a composite structure type high-strength cold-rolled steel sheet, characterized by holding the steel sheet for ~5 minutes.
JP19917284A 1984-09-21 1984-09-21 Manufacture of composite structure type high strength cold rolled steel sheet Pending JPS6176620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19917284A JPS6176620A (en) 1984-09-21 1984-09-21 Manufacture of composite structure type high strength cold rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19917284A JPS6176620A (en) 1984-09-21 1984-09-21 Manufacture of composite structure type high strength cold rolled steel sheet

Publications (1)

Publication Number Publication Date
JPS6176620A true JPS6176620A (en) 1986-04-19

Family

ID=16403347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19917284A Pending JPS6176620A (en) 1984-09-21 1984-09-21 Manufacture of composite structure type high strength cold rolled steel sheet

Country Status (1)

Country Link
JP (1) JPS6176620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938101A (en) * 2014-04-10 2014-07-23 马钢(集团)控股有限公司 Steel plate and preparation method thereof
CN106011643A (en) * 2016-07-11 2016-10-12 攀钢集团攀枝花钢铁研究院有限公司 Tensile strength 590 MPa-grade cold-rolled dual-phase steel and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938101A (en) * 2014-04-10 2014-07-23 马钢(集团)控股有限公司 Steel plate and preparation method thereof
CN106011643A (en) * 2016-07-11 2016-10-12 攀钢集团攀枝花钢铁研究院有限公司 Tensile strength 590 MPa-grade cold-rolled dual-phase steel and preparation method thereof
CN106011643B (en) * 2016-07-11 2018-05-01 攀钢集团攀枝花钢铁研究院有限公司 A kind of tensile strength 590MPa grades of cold-rolled biphase steels and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6383808B2 (en) High-strength cold-rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet, and production methods thereof
CN110088332A (en) Steel plate and its manufacturing method with the tempered of excellent formability and coating
KR950007472B1 (en) High strength cold rolled steel sheet having excellent non-aging property at room temperature and suitable for drawing and method of producing the same
JPH0635619B2 (en) Manufacturing method of high strength steel sheet with good ductility
EP4365327A1 (en) Trip steel and preparation method therefor, cold-rolled steel sheet, and hot-dip galvanized steel sheet
KR101235535B1 (en) High strength steel sheet with low yield ratio and method of manufacturing the steel sheet
KR101003221B1 (en) High strength Cold-rolled sheet with good formability, and method for producing the same
JPS6176620A (en) Manufacture of composite structure type high strength cold rolled steel sheet
JP6052078B2 (en) Manufacturing method of cold rolled steel sheet with high strength and low yield ratio
JPH0559970B2 (en)
KR20100001330A (en) Ultra high-strength hot- dip galvanized steel sheet having excellent formability and galvanizing property, and method for producing the same
JPH0543779B2 (en)
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPH02145747A (en) Hot rolled steel sheet for deep drawing and its manufacture
JPS634626B2 (en)
KR20090068990A (en) High strength steel sheet with good formability and method for producing the same
JPS61246327A (en) Manufacture of cold rolled steel sheet for extremely deep drawing
JPH021212B2 (en)
JPS63140034A (en) Production of low yield ratio high tensile steel having excellent low-temperature toughness
JPS6153411B2 (en)
KR101435251B1 (en) Method of manufacturing cold-rolled steel sheet
JPS63241115A (en) Manufacture of high strength cold rolled steel sheet having superior stretch flanging property
JPS6333521A (en) Production for steel plate having high ductility and high strength by direct anealing-tempering process
JPH05311236A (en) Production of high strength cold rolled steel sheet excellent in elongation characteristic
JPH04259353A (en) High tensile strength thin steel sheet having good formability and its manufacture