JPH0543779B2 - - Google Patents

Info

Publication number
JPH0543779B2
JPH0543779B2 JP56139267A JP13926781A JPH0543779B2 JP H0543779 B2 JPH0543779 B2 JP H0543779B2 JP 56139267 A JP56139267 A JP 56139267A JP 13926781 A JP13926781 A JP 13926781A JP H0543779 B2 JPH0543779 B2 JP H0543779B2
Authority
JP
Japan
Prior art keywords
hot
bainite
galvanizing
less
martensite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56139267A
Other languages
Japanese (ja)
Other versions
JPS5839770A (en
Inventor
Masatoshi Sudo
Ichiro Tsukatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13926781A priority Critical patent/JPS5839770A/en
Publication of JPS5839770A publication Critical patent/JPS5839770A/en
Publication of JPH0543779B2 publication Critical patent/JPH0543779B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • C23C2/405Plates of specific length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、低降伏比で強度−伸びバランス及び
伸びフランジ性のすぐれた複合組織型の高強度亜
鉛メツキ鋼板の製造方法に関するものである。 一般に鋼板の強度を増加させるためには種々の
合金元素の添加が行なわれるが、溶融亜鉛メツキ
鋼板においては再結晶温度以上で焼なまされるた
め強度が得られにくく、また合金元素の添加に伴
ない亜鉛メツキ性が劣化するとの問題がある。 最近、加工性の良好な高強度鋼板としてフエラ
イト素地にマルテンサイトを分散させた複合組織
鋼板が注目されており、この鋼板は低降伏比で加
工性及びプレス加工後の時効硬化性がすぐれてい
る。しかしながら、この複合組織鋼板を溶融亜鉛
メツキ鋼板として使用する場合には、約500℃で
の溶融亜鉛メツキの際にフエライト素地に分散し
たマルテンサイトが焼戻され、強度が低下しまた
降伏比も上昇するという問題がある。 本発明は、上述の事情に鑑み、高強度溶融亜鉛
メツキ鋼板の製造に際して、連続溶融亜鉛メツキ
ライン通板時の熱履歴を利用して、複合組織鋼の
特徴である低降伏比、良好な強度−伸びバランス
を維持しつつ、更に伸びフランジ性もすぐれた高
強度冷延鋼板を製造する方法を提供することを目
的としてなされたものである。 すなわち本発明は、C0.005〜0.15%、Si1%以
下、Mn0.7〜2.5%、P0.1%以下及び必要に応じ
てCr0.5%未満を含む鋼を熱間圧延して得た冷間
圧延鋼板を連続溶融亜鉛メツキラインにて亜鉛メ
ツキするに際し、該メツキラインにおける均熱加
熱炉後の急冷帯で10〜45℃/secの速度で冷却し
450〜550℃の温度で5〜60秒間保持することによ
つてベイナイト変態を生ぜしめ、次いで溶融亜鉛
メツキした後、合金比処理後の急冷帯において7
℃/sec以上の速度で急冷することによりマルテ
ンサイト変態を生じせしめ、鋼板組織をベイナイ
ト面積率5〜50%、マルテンサイト面積率3〜15
%を含むフエライト+ベイナイト+マルテンサイ
ト3相複合組織とすることを特徴とする低降伏比
で強度−伸びバランス及び伸びフランジ性のすぐ
れた高強度溶融亜鉛メツキ鋼板の製造方法、であ
る。 本発明の対象となる溶融亜鉛メツキ鋼板の連続
溶融亜鉛メツキ工程における熱履歴は通常次の通
りである。 すなわち、熱間圧延、冷間圧延を経て製造され
た冷延鋼板は、炉温が900°〜1100℃の非酸化性雰
囲気の直火加熱炉と還元性雰囲気の輻射加熱炉に
より焼鈍された後、徐冷帯・急冷帯および冷却調
整炉をへて、約500℃の亜鉛メツキ浴を通過させ
た後、600℃前後に加熱して合金化処理してから
冷却される。 フエライトと面積率が5〜50%のベイナイトお
よび3〜15%のマルテンサイトからなる混合組織
を有する溶融亜鉛メツキ鋼板を製造する場合、非
酸化性雰囲気もしくは還元性雰囲気の加熱炉にお
いて鋼板を(α+γ)域温度に加熱し、更に均熱
によりγ相にCを十分濃縮せしめたのち、次いで
10〜45℃/秒の速度で急冷し450〜550℃で保持す
ることによつてベイナイト変態のみを進行させ、
γ相が残留している間に亜鉛メツキ工程(合金化
処理のための熱処理工程を含む)を終了し、その
残留γをMs点以下まで7℃/sec以上の速度で急
冷してマルテンサイト化する事が必要である。 このためには、溶融亜鉛メツキ性や混合組織化
などによつて規制される特定成分の鋼板を(α+
γ)域加熱後の冷却においてγ相の分解を極力お
さえ、次いでγ相と共存するα相中のC量をでき
るだけ減ずる様な条件(即ち10〜45℃/秒)で
450〜550℃に冷却すると共に、亜鉛メツキ前の温
度保定で伸びフランジ性を改善するに必要十分且
つ過度にならない様なベイナイト変態量を得るに
必要な時間(即ち5〜60秒)保持してから溶融亜
鉛メツキを行ない、次いで合金化熱処理の後Ms
点以下まで7℃/sec以上の速度で急冷してマル
テンサイトを生成させることが必要となる。尚こ
の合金化処理は、高強度溶融亜鉛メツキ鋼板を製
造する際に極く一般的に採用されている工程であ
り、またその後の急冷条件を選定するに当たつて
は、使用される鋼材の炭素当量(Ceq=C%+
1/6Mn%+1/3Cr%)を基準にして、[13−
20×Ceg(℃/sec)]以上となる様に急冷条件を
設定するのがよい。 以上述べたように、本願発明では連続溶融亜鉛
メツキラインにおける制約された条件の下で高強
度溶融亜鉛メツキ鋼板を製造するものであるが、
鋼板の組織をフエライト、ベイナイト及びマルテ
ンサイトを適当な割合に形成せしめた3相複合組
織とすることが重要である。 すなわち第1〜3図は、実施例に示した種々の
組織を有する溶融亜鉛メツキ鋼板について引張強
さと、全伸び、降伏応力及び伸びフランジ性との
関係を示した図であるが、まず、強度−伸びの関
係は第1図に示す通り、ホリゴナルフエライト+
ベイナイト+マルテンサイト組織とすることによ
りフエライト+マルテンサイト組織鋼にも増して
良好な強度−伸びバランスとなる。 次に降伏比については、第2図から知られるよ
うに降伏比はフエライト+マルテンサイト鋼が最
少であり、フエライト+ベイナイト鋼は降伏比が
70%前後でフエライト+パーライト鋼と同程度で
ある。そしてベイナイト量を減少させ、更にマル
テンサイトを導入してポリゴナルフエライト+ベ
イナイト+マルテンサイトの3相組織とすると降
伏比が下がつてフエライト+マルテンサイト組織
鋼の降伏比と近似した値となる。 また、強度と伸びフランジ性の関係を見ると、
第3図から知られるように、フエライト+マルテ
ンサイト鋼の伸びフランジ性は強度の上昇にとも
なつて急激に劣化するのに対して、フエライト+
ベイナイト鋼のそれは強度上昇にもかかわらず良
好な値が得られる。そして、フエライト+ベイナ
イト+マルテンサイトの3層組織とするとフエラ
イト+ベイナイト鋼よりもやや劣るもののきわめ
て良好な伸びフランジ性となる。 このような結果から知られるように、フエライ
ト+ベイナイト+マルテンサイトの3相組織鋼板
はフエライト+マルテンサイト鋼及びベイナイト
組の優れた点のみが取り入れられており、低降伏
比であつて、強度−伸びバランス、および、伸び
フランジ性が共に優れた鋼板であるといえる。 そしてこれらの実施例から知られるように本発
明の3層組織鋼においてベイナイトの面積率は5
〜50%とするべきであり、50%を越えると、マル
テンサイト導入による降伏比の低下効果が小さく
なり、また5%未満ではフエライト+マルテンサ
イト組織鋼と変らなくなつてしまう。なおこのベ
イナイトの面積率は望ましくは10〜35%とする。 次にマルテンサイトの面積率は3〜15%とすべ
きであり、15%を超えると穴拡り性が低下して降
伏比が上がつてくる現象が生じ、一方3%未満で
はマルテンサイトの導入効果が小さい。 尚、本発明においてフエライトは主にポリゴナ
ルフエライトを意味し、またマルテンサイトには
一部残留オーステナイトを含む。 次に本発明における対象鋼の化学成分について
述べる。 Cは必要な強度維持およびベイナイト、マルテ
ンサイトなどの低温変態生成物を形成させるうえ
で必須な元素である。とくに本発明の場合には
(α+γ)域に加熱したときのγ相の体積率は鋼
中C量とその加熱温度により決まり、ひいては変
態後のマルテンサイト、ベイナイト量にも影響す
るため重要である。そして強度などの機械的性質
はこれら低温変態生成物の分率とその硬度に大き
く左右される。Cは0.005%より少ないと精錬コ
ストがかかるばかりか強化および焼入性向上効果
が発揮しえず、一方、0.15%を越えると鋼板のス
ポツト溶接性が著しく劣化し、また鋼板中のマル
テンサイト分率が増加して加工性とくに伸びフラ
ンジ性が低下すると共に降伏比も0.7以上に増加
するので0.005〜0.15%範囲内にする必要がある。 Siはα相中の固溶C量を減少させることにより
伸びなどの延性を向上させる元素であるが、1%
を越えると亜鉛メツキ不良を起こすので1%以下
にする必要がある。 Mnは固溶強化元素であり、さらに混合組織に
おいてフエライト変態を抑制し、γ相を安定させ
るために重要である。とくに本発明のごとく連続
溶融亜鉛メツキラインにおいてかかる3相混合組
織鋼板を製造せんとした場合、亜鉛メツキを施こ
すための熱サイクル的な制約条件は除外できない
ため3相混合組織が得がたい、例えば再結晶焼鈍
した後、亜鉛メツキされる直前には鋼板温度を
450〜550℃に保持する必要があり、マルテンサイ
ト変態はその後の冷却によらねばならない。この
ため、亜鉛メツキ前の冷却条件と温度保定を前述
の様に設定することによりフエライト変態を抑制
し、ベイナイト変態のみが進行するように制御せ
ねばならないが、Mn量が0.7%以下では亜鉛メツ
キライン構造上の制約のなかでいかに組み合わせ
ても3相混合組織は得られない。すなわち0.7%
Mnではいかに急冷してγ相の安定化を計つても
必然的に亜鉛メツキ前温度保定時間が長くなるた
め残留しているオーステナイトが全てベイナイト
に変態してしまいマルテンサイトが得られなくな
る。一方、Mnが2.5%より多いと亜鉛メツキ性の
劣化が許容限界を越えるので、Mnは0.7〜2.5%
の範囲内にする必要がある。 Pは固溶強化元素であり、さらに冷却途中にお
いてγ相の分解を抑制するため重要な元素である
が、Pは0.1%より多いと延生が劣化するので、
Pは0.1%以下にする必要がある。 この他本発明においては必要に応じてCrを含
有せしめることができる。Crは焼入硬化性の強
い元素であり、その含有量に比例してγ相の安定
度を増してその分解を抑制するが、0.5%より多
いと亜鉛メツキ性や、片面メツキの場合のリン酸
皮膜性を劣化させるので最大0.5%とするのが望
ましい。 次に本発明の実施例を比較例と共に示す。 第1表に示す化学成分を有する鋼を転炉で溶製
した。そして、分塊法によつてスラブにした後通
常の条件で熱延し、2.8mm板厚のホツトコイルと
した。なお熱延仕上温度は850〜900℃、捲取温度
は約600℃であつた。このホツトコイルは酸洗後、
板厚0.8mmに冷間圧延し、メツキラインスピード
を略一定にした状態で第2表の条件で連続溶融亜
鉛メツキを行なつた。 コイルNo.1からNo.6は鋼Aについて亜鉛メツキ
後の冷却条件(合金化熱処理後の冷却速度)を略
一定(9〜11℃/sec)として、(α+γ)域温度
亜鉛メツキまでの冷却速度を順次変化させた場合
の例であり、メツキラインスピードを一定にして
いるため冷却速度の変化に応じてメツキ直前の温
度保定時間は変わつている。なおコイルNo.6はそ
の温度保定せず連続冷却したものである。 コイルNo.7〜No.8は(α+γ)域温度から亜鉛
メツキまでの冷却条件を一定にし、その後の合金
化熱処理後の冷却速度を順次変化させた場合で、
No.9はコイルNo.6と同様、メツキ前の温度保定を
行なわなかつた場合である。 またコイルNo.10〜12はMnもしくはCr含有量を
変化させたものである。 このようにして得られた溶融亜鉛メツキ鋼板は
調質圧延を行なう事なく引張試験および組織観察
を行なつた。これらの結果を第2、3表に示す。 第2、3表から明らかなように本発明に規定し
た面積率のポリゴナルフエライトとベイナイトお
よびマルテンサイト組織からなる溶融亜鉛メツキ
鋼板(No.2、3、4、8、11、12)は、全伸びフ
ランジ性が良く、低降伏比であり降伏伸びの発生
もなく、優れた加工性を有している。 これに対しNo.1、5、6、7、9、10は、下記
の様に本発明で定める何れかの要件を欠く比較鋼
であり、いずれかの物性に問題がある。 No.1:亜鉛メツキまでの冷却速度が遅く且つメツ
キ前の保持時間が短いため、マルテンサイト組
織が生じておらず、ベイナイト組織も不足す
る。 No.5:亜鉛メツキまでの冷却速度が速すぎると共
にメツキ前の保持時間が長過ぎるため、ベイナ
イト変態が進みすぎて適正な3相複合組織が得
られない。 No.6、9:メツキ前の保持時間が零であるため、
ベイナイトがほとんど生成しておらず且つマル
テンサイトも過剰で適正な3相複合組織が得ら
れていない。 No.7:亜鉛メツキ後の冷却速度が遅すぎるため、
マルテンサイトおよびベイナイト量が不足す
る。 No.10:鋼中のMn量が不足するため、冷却速度や
保持時間を適正に制御した場合でもマルテンサ
イト組織が生成せず、3相複合組織となつてい
ない。
The present invention relates to a method for producing a high-strength galvanized steel sheet with a composite structure having a low yield ratio and excellent strength-elongation balance and stretch flangeability. Generally, various alloying elements are added to increase the strength of steel sheets, but hot-dip galvanized steel sheets are annealed above the recrystallization temperature, making it difficult to obtain strength, and the addition of alloying elements There is a problem that the galvanizing properties deteriorate. Recently, a composite steel sheet with martensite dispersed in a ferrite matrix has been attracting attention as a high-strength steel sheet with good workability.This steel sheet has a low yield ratio and has excellent workability and age hardening after press working. . However, when this composite structure steel sheet is used as a hot-dip galvanized steel sheet, the martensite dispersed in the ferrite matrix is tempered during hot-dip galvanizing at approximately 500℃, resulting in a decrease in strength and an increase in yield ratio. There is a problem with doing so. In view of the above-mentioned circumstances, the present invention utilizes the thermal history during continuous hot-dip galvanizing line passing during the production of high-strength hot-dip galvanized steel sheets to achieve low yield ratio and good strength, which are the characteristics of composite structure steel. The purpose of this invention is to provide a method for manufacturing a high-strength cold-rolled steel sheet that maintains elongation balance and has excellent stretch flangeability. That is, the present invention provides cold rolling steel obtained by hot rolling steel containing 0.005 to 0.15% C, 1% or less Si, 0.7 to 2.5% Mn, 0.1% or less P, and optionally less than 0.5% Cr. When galvanizing inter-rolled steel sheets on a continuous hot-dip galvanizing line, they are cooled at a rate of 10 to 45°C/sec in a quenching zone after the soaking furnace in the plating line.
Bainitic transformation is caused by holding at a temperature of 450 to 550°C for 5 to 60 seconds, then hot-dip galvanizing, followed by a quenching zone after alloy ratio treatment.
Rapid cooling at a rate of ℃/sec or higher causes martensitic transformation, changing the steel sheet structure to a bainite area ratio of 5 to 50% and a martensite area ratio of 3 to 15%.
% ferrite + bainite + martensite three-phase composite structure, which is characterized by a low yield ratio and excellent strength-elongation balance and stretch flangeability. The thermal history in the continuous hot-dip galvanizing process of the hot-dip galvanized steel sheet that is the object of the present invention is usually as follows. In other words, cold-rolled steel sheets manufactured through hot rolling and cold rolling are annealed in a direct-fire heating furnace in a non-oxidizing atmosphere and a radiant heating furnace in a reducing atmosphere at a furnace temperature of 900° to 1100°C. After passing through an annealing zone, a rapid cooling zone, and a cooling adjustment furnace, it passes through a galvanizing bath at about 500℃, then is heated to around 600℃, alloyed, and then cooled. When manufacturing a hot-dip galvanized steel sheet with a mixed structure consisting of ferrite, bainite with an area ratio of 5 to 50%, and martensite of 3 to 15%, the steel sheet is heated in a heating furnace in a non-oxidizing or reducing atmosphere (α + γ ), and after soaking to sufficiently concentrate C in the γ phase,
By rapidly cooling at a rate of 10 to 45°C/sec and holding at 450 to 550°C, only bainite transformation proceeds,
The galvanizing process (including the heat treatment process for alloying treatment) is completed while the γ phase remains, and the residual γ is rapidly cooled to below the Ms point at a rate of 7°C/sec or higher to form martensite. It is necessary to do so. For this purpose, steel sheets with specific compositions (α+
During cooling after heating in the γ) region, the decomposition of the γ phase is suppressed as much as possible, and then the amount of C in the α phase coexisting with the γ phase is reduced as much as possible under conditions (i.e., 10 to 45°C/sec).
While cooling to 450 to 550℃, hold the temperature for a period of time (i.e., 5 to 60 seconds) necessary to obtain sufficient but not excessive bainite transformation to improve stretch flangeability by holding the temperature before galvanizing. After hot-dip galvanizing and then alloying heat treatment, Ms.
It is necessary to generate martensite by rapid cooling at a rate of 7° C./sec or higher to below the point. This alloying treatment is a process that is very commonly adopted when manufacturing high-strength hot-dip galvanized steel sheets, and when selecting the subsequent quenching conditions, it is important to take into account the type of steel used. Carbon equivalent (Ceq=C%+
[13-
It is best to set the quenching conditions so that the temperature is 20×Ceg (°C/sec) or higher. As described above, in the present invention, high-strength hot-dip galvanized steel sheets are manufactured under restricted conditions on a continuous hot-dip galvanizing line.
It is important that the structure of the steel sheet be a three-phase composite structure in which ferrite, bainite, and martensite are formed in appropriate proportions. That is, Figures 1 to 3 are diagrams showing the relationship between tensile strength, total elongation, yield stress, and stretch flangeability for hot-dip galvanized steel sheets having various structures shown in Examples. -The relationship between elongation is shown in Figure 1.
The bainite + martensitic structure provides a better strength-elongation balance than ferrite + martensitic steel. Next, regarding the yield ratio, as is known from Figure 2, ferrite + martensitic steel has the lowest yield ratio, while ferrite + bainite steel has the lowest yield ratio.
It is around 70%, which is about the same as ferrite + pearlite steel. When the amount of bainite is reduced and martensite is further introduced to create a three-phase structure of polygonal ferrite + bainite + martensite, the yield ratio decreases to a value similar to that of ferrite + martensitic steel. Also, looking at the relationship between strength and stretch flangeability,
As is known from Fig. 3, the stretch flangeability of ferrite + martensitic steel deteriorates rapidly as the strength increases, whereas the stretch flangeability of ferrite +
Good values can be obtained for bainitic steel despite the increased strength. If the steel has a three-layer structure of ferrite + bainite + martensite, it will have extremely good stretch flangeability, although it is slightly inferior to ferrite + bainite steel. As is known from these results, the three-phase structure steel sheet of ferrite + bainite + martensite incorporates only the advantages of ferrite + martensite steel and bainite combination, has a low yield ratio, and has - It can be said that this steel plate has excellent elongation balance and stretch flangeability. As is known from these examples, the area ratio of bainite in the three-layer steel of the present invention is 5.
It should be ~50%; if it exceeds 50%, the effect of lowering the yield ratio due to the introduction of martensite becomes small, and if it is less than 5%, it becomes no different from steel with a ferrite + martensitic structure. Note that the area ratio of this bainite is desirably 10 to 35%. Next, the area ratio of martensite should be 3 to 15%; if it exceeds 15%, the hole expandability will decrease and the yield ratio will increase, while if it is less than 3%, the area ratio of martensite will increase. The effect of introduction is small. In the present invention, ferrite mainly means polygonal ferrite, and martensite includes a portion of retained austenite. Next, the chemical composition of the target steel in the present invention will be described. C is an essential element for maintaining the necessary strength and forming low-temperature transformation products such as bainite and martensite. In particular, in the case of the present invention, the volume fraction of the γ phase when heated to the (α + γ) region is determined by the amount of C in the steel and the heating temperature, and is important because it also affects the amount of martensite and bainite after transformation. . Mechanical properties such as strength are greatly influenced by the fraction of these low-temperature transformation products and their hardness. If C is less than 0.005%, not only will refining costs increase, but the effect of improving strengthening and hardenability will not be exhibited. On the other hand, if it exceeds 0.15%, the spot weldability of the steel sheet will be significantly deteriorated, and the martensite content in the steel sheet will be reduced. As the yield ratio increases, workability, particularly stretch flangeability, decreases, and the yield ratio also increases to 0.7 or more, so it is necessary to keep it within the range of 0.005 to 0.15%. Si is an element that improves ductility such as elongation by reducing the amount of solid solution C in the α phase, but 1%
If it exceeds 1%, galvanizing defects will occur, so it must be kept at 1% or less. Mn is a solid solution strengthening element and is also important for suppressing ferrite transformation and stabilizing the γ phase in the mixed structure. In particular, when attempting to manufacture such a three-phase mixed structure steel sheet on a continuous hot-dip galvanizing line as in the present invention, it is difficult to obtain a three-phase mixed structure because the thermal cycle constraints for galvanizing cannot be excluded, such as recrystallization. After annealing and immediately before galvanizing, the temperature of the steel sheet should be lowered.
It is necessary to maintain the temperature between 450 and 550°C, and the martensitic transformation must be carried out by subsequent cooling. Therefore, by setting the cooling conditions and temperature maintenance before galvanizing as described above, it is necessary to suppress ferrite transformation and control so that only bainite transformation proceeds, but if the Mn content is less than 0.7%, the galvanizing line No matter how they are combined within structural constraints, a three-phase mixed structure cannot be obtained. i.e. 0.7%
In the case of Mn, no matter how rapidly the γ phase is stabilized, the temperature holding time before galvanizing inevitably becomes long, and all remaining austenite transforms into bainite, making it impossible to obtain martensite. On the other hand, if Mn is more than 2.5%, the deterioration of galvanizing properties will exceed the allowable limit, so Mn should be 0.7 to 2.5%.
Must be within the range. P is a solid solution strengthening element and is also an important element for suppressing the decomposition of the γ phase during cooling, but if it exceeds 0.1%, the elongation will deteriorate.
P needs to be 0.1% or less. In addition to this, in the present invention, Cr can be contained as necessary. Cr is an element with strong quench hardening properties, and increases the stability of the γ phase in proportion to its content and suppresses its decomposition, but if the content exceeds 0.5%, it may deteriorate the galvanizing properties or phosphorus in the case of single-sided plating. Since it deteriorates the acid film properties, it is desirable that the maximum content be 0.5%. Next, examples of the present invention will be shown together with comparative examples. Steel having the chemical composition shown in Table 1 was melted in a converter. Then, it was formed into a slab by the blooming method and then hot rolled under normal conditions to form a hot coil with a thickness of 2.8 mm. Note that the hot rolling finishing temperature was 850 to 900°C, and the winding temperature was about 600°C. After pickling this hot coil,
The sheets were cold rolled to a thickness of 0.8 mm, and continuous hot-dip galvanizing was performed under the conditions shown in Table 2 with the plating line speed kept approximately constant. Coils No. 1 to No. 6 were cooled to (α + γ) range temperature galvanizing for steel A, with the cooling conditions after galvanizing (cooling rate after alloying heat treatment) being approximately constant (9 to 11 °C/sec). This is an example where the speed is changed sequentially, and since the plating line speed is kept constant, the temperature holding time immediately before plating changes according to changes in the cooling rate. Coil No. 6 was continuously cooled without maintaining its temperature. Coils No. 7 to No. 8 are cases in which the cooling conditions from the (α + γ) range temperature to galvanization are constant, and the cooling rate after the subsequent alloying heat treatment is sequentially changed.
Similar to coil No. 6, No. 9 is a case in which the temperature was not maintained before plating. Coils Nos. 10 to 12 have different Mn or Cr contents. The hot-dip galvanized steel sheets thus obtained were subjected to tensile tests and microstructural observations without being subjected to temper rolling. These results are shown in Tables 2 and 3. As is clear from Tables 2 and 3, the hot-dip galvanized steel sheets (No. 2, 3, 4, 8, 11, 12) consisting of polygonal ferrite, bainite, and martensite structures having the area ratio specified in the present invention are as follows: It has good total stretch flangeability, low yield ratio, no yield elongation, and excellent workability. On the other hand, Nos. 1, 5, 6, 7, 9, and 10 are comparative steels that lack any of the requirements specified by the present invention as described below, and have problems in some of the physical properties. No. 1: Because the cooling rate until galvanizing is slow and the holding time before plating is short, martensitic structure is not formed and bainite structure is insufficient. No. 5: The cooling rate before galvanizing is too fast and the holding time before galvanizing is too long, so bainite transformation progresses too much and an appropriate three-phase composite structure cannot be obtained. No. 6, 9: Since the holding time before plating is zero,
Almost no bainite was produced, and martensite was also excessive, making it impossible to obtain an appropriate three-phase composite structure. No.7: The cooling rate after galvanizing is too slow.
The amount of martensite and bainite is insufficient. No. 10: Due to the insufficient amount of Mn in the steel, a martensitic structure is not generated even if the cooling rate and holding time are properly controlled, and a three-phase composite structure is not formed.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は種々の組織を有する鋼についての引張
強さと全伸びとの関係を示す図、第2図は同じく
引張強さと降伏応力との関係を示す図、第3図は
同じく引張強さと伸びフランジ性(穴拡げ率)と
の関係を示す図である。図中F;フエライト、
B;ベイナイト、M;マルテンサイト、P;パー
ライトである。
Figure 1 is a graph showing the relationship between tensile strength and total elongation for steels with various structures, Figure 2 is a graph showing the relationship between tensile strength and yield stress, and Figure 3 is a graph showing the relationship between tensile strength and total elongation. It is a figure showing the relationship with flangeability (hole expansion rate). F in the figure: ferrite,
B: bainite, M: martensite, P: pearlite.

Claims (1)

【特許請求の範囲】 1 C:0.005〜0.15%、Si:1%以下、Mn:0.7
〜2.5%、P:0.1%以下を含み、且つAl:0.1%以
下である鋼を熱間圧延及び冷間圧延して得た冷間
圧延鋼板を連続溶融亜鉛メツキラインにて亜鉛メ
ツキするに際し、該メツキラインにおける均熱加
熱炉後の急冷帯で10〜45℃/secの速度で冷却し
450〜550℃の温度で5〜60秒間保持することによ
つてベイナイト変態を生ぜしめ、次いで溶融亜鉛
メツキした後、合金化処理後の急冷帯において7
℃/sec以上の速度で急冷することによりマルテ
ンサイト変態を生じせしめ、鋼板組織をベイナイ
ト面積率:5〜50%、マルテンサイト面積率:3
〜15%を含むフエライト+ベイナイト+マルテン
サイト3相複合組織とすることを特徴とする低降
伏比で強度−延びバランス及び伸びフランジ性の
すぐれた高強度溶融亜鉛メツキ鋼板の製造方法。 2 C:0.005〜0.15%、Si:1%以下、Mn:0.7
〜2.5%、P:0.1%以下、及びCr:0.5%未満を含
み、且つAl:0.1%以下である鋼を熱間圧延及び
冷間圧延して得た冷間圧延鋼板を連続溶融メツキ
ラインにて亜鉛メツキするに際し、メツキライン
における均熱加熱炉後の急冷帯で10〜45℃/sec
の速度で冷却し450〜550℃の温度で5〜60秒間保
持することによつてベイナイト変態を生ぜしめ、
次いで溶融亜鉛メツキした後、合金化処理後の急
冷帯において7℃/sec以上の速度で急冷するこ
とによりマルテンサイト変態を生ぜしめ、鋼板組
織をベイナイト面積率:5〜50%、マルテンサイ
ト面積率:3〜15%を含むフエライト+ベイナイ
ト+マルテンサイト3相複合組織とすることを特
徴とする低降伏比で強度−伸びバランス及び伸び
フランジ性のすぐれた高強度溶融亜鉛メツキ鋼板
の製造方法。
[Claims] 1 C: 0.005 to 0.15%, Si: 1% or less, Mn: 0.7
~2.5%, P: 0.1% or less, and Al: 0.1% or less when galvanizing a cold-rolled steel sheet obtained by hot rolling and cold rolling on a continuous hot-dip galvanizing line. It is cooled at a rate of 10 to 45℃/sec in the quenching zone after the soaking furnace in the Metsuki line.
Bainitic transformation is caused by holding at a temperature of 450 to 550°C for 5 to 60 seconds, followed by hot-dip galvanizing, followed by 750°C in a quenching zone after alloying.
By rapidly cooling at a rate of ℃/sec or more, martensitic transformation is caused, and the steel plate structure is changed to a bainite area ratio of 5 to 50% and a martensite area ratio of 3.
A method for producing a high-strength hot-dip galvanized steel sheet with a low yield ratio, excellent strength-elongation balance and stretch flangeability, characterized by having a three-phase composite structure of ferrite + bainite + martensite containing ~15%. 2 C: 0.005-0.15%, Si: 1% or less, Mn: 0.7
~2.5%, P: 0.1% or less, Cr: less than 0.5%, and Al: 0.1% or less. A cold rolled steel plate obtained by hot rolling and cold rolling is processed on a continuous melt plating line. When galvanizing, the temperature is 10 to 45℃/sec in the quenching zone after the soaking furnace in the galvanizing line.
bainite transformation is caused by cooling at a rate of
Next, after hot-dip galvanizing, martensitic transformation is caused by rapid cooling at a rate of 7°C/sec or more in a quenching zone after alloying treatment, and the steel plate structure is changed to a bainite area ratio of 5 to 50% and a martensite area ratio. : A method for producing a high-strength hot-dip galvanized steel sheet with a low yield ratio, excellent strength-elongation balance and stretch flangeability, characterized by having a three-phase composite structure of ferrite + bainite + martensite containing 3 to 15%.
JP13926781A 1981-09-03 1981-09-03 Production of high-strength zinc hot dipped steel plate Granted JPS5839770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13926781A JPS5839770A (en) 1981-09-03 1981-09-03 Production of high-strength zinc hot dipped steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13926781A JPS5839770A (en) 1981-09-03 1981-09-03 Production of high-strength zinc hot dipped steel plate

Publications (2)

Publication Number Publication Date
JPS5839770A JPS5839770A (en) 1983-03-08
JPH0543779B2 true JPH0543779B2 (en) 1993-07-02

Family

ID=15241299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13926781A Granted JPS5839770A (en) 1981-09-03 1981-09-03 Production of high-strength zinc hot dipped steel plate

Country Status (1)

Country Link
JP (1) JPS5839770A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139848A (en) * 1985-12-11 1987-06-23 Kobe Steel Ltd High strength and high ductility cold rolled steel sheet for automobile strengthening member
JP3750789B2 (en) 1999-11-19 2006-03-01 株式会社神戸製鋼所 Hot-dip galvanized steel sheet having excellent ductility and method for producing the same
FR2830260B1 (en) 2001-10-03 2007-02-23 Kobe Steel Ltd DOUBLE-PHASE STEEL SHEET WITH EXCELLENT EDGE FORMABILITY BY STRETCHING AND METHOD OF MANUFACTURING THE SAME
JP5591443B2 (en) * 2007-05-10 2014-09-17 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability
CN114756065B (en) * 2021-01-11 2023-08-15 宝钢日铁汽车板有限公司 Plate temperature control method for hot dip galvanized strip steel before entering zinc pot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163719A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability
JPS55110735A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Method and equipment for producing galvanized steel plate for deep drawing use
JPS55122821A (en) * 1979-03-15 1980-09-20 Kawasaki Steel Corp Manufacture of alloyed zinc-plated high tensile steel sheet with high workability
JPS5637302A (en) * 1979-08-16 1981-04-11 Thorneburg Hosiery Co Inc Athletic socks having integrally knitted arch cushion
JPS5647555A (en) * 1979-09-22 1981-04-30 Nisshin Steel Co Ltd Manufacture of high-tensile galvanized steel plate with low yield ratio
JPS5651532A (en) * 1979-10-03 1981-05-09 Nippon Kokan Kk <Nkk> Production of high-strength zinc hot dipped steel plate of superior workability

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163719A (en) * 1978-06-16 1979-12-26 Nippon Steel Corp Production of high tensile strength * low yield ratio and high extensibility composite textured steel panel with excellent workability
JPS55110735A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Method and equipment for producing galvanized steel plate for deep drawing use
JPS55122821A (en) * 1979-03-15 1980-09-20 Kawasaki Steel Corp Manufacture of alloyed zinc-plated high tensile steel sheet with high workability
JPS5637302A (en) * 1979-08-16 1981-04-11 Thorneburg Hosiery Co Inc Athletic socks having integrally knitted arch cushion
JPS5647555A (en) * 1979-09-22 1981-04-30 Nisshin Steel Co Ltd Manufacture of high-tensile galvanized steel plate with low yield ratio
JPS5651532A (en) * 1979-10-03 1981-05-09 Nippon Kokan Kk <Nkk> Production of high-strength zinc hot dipped steel plate of superior workability

Also Published As

Publication number Publication date
JPS5839770A (en) 1983-03-08

Similar Documents

Publication Publication Date Title
US11047020B2 (en) Method for making a high strength multiphase steel
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
KR101786318B1 (en) Cold-rolled steel sheet and plated steel sheet having excellent yield strength and ductility and method for manufacturing thereof
JP4325998B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability
JPS6240405B2 (en)
JPH0693340A (en) Method and equipment for manufacturing high strength galvannealed steel sheet having stretch flanging formability
KR20120121811A (en) High strength steel sheet and method of manufacturing the steel sheet
KR20120113588A (en) High strength trip steel with excellent galvanizing property and method of manufacturing the same
US5332453A (en) High tensile steel sheet having excellent stretch flanging formability
JPS63293121A (en) Production of high-strength cold rolled steel sheet having excellent local ductility
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JPH0673497A (en) Baking hardening type high strength galvannealed steel sheet excellent in workability and its production
EP4317513A1 (en) High-formability hot galvanized aluminum-zinc or hot galvanized aluminum-magnesium dual-phase steel and rapid heat treatment hot dipping fabrication method therefor
JPH0543779B2 (en)
JPS613843A (en) Manufacture of high ductility and high strength cold rolled steel sheet
CN115181885A (en) 590 MPa-grade high-formability hot-dip aluminum-zinc or hot-dip zinc-aluminum-magnesium dual-phase steel and rapid heat treatment manufacturing method
KR101452052B1 (en) High strength alloyed galvanized steel sheet with excellent coating adhesion and method for manufacturing the same
JP2005105399A (en) Method for manufacturing low-yield-ratio high-strength galvannealed steel
JPH0135052B2 (en)
JP6541504B2 (en) High strength high ductility steel sheet excellent in production stability, method for producing the same, and cold rolled base sheet used for production of high strength high ductility steel sheet
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
US20160201159A1 (en) Dual Phase Steel with Improved Properties
JP6828855B1 (en) Steel plate and its manufacturing method
KR101153659B1 (en) A cold rolled steel sheet having excellent formability and coatability, and A method for manufacturing the same