JPS617473A - Ammeter - Google Patents

Ammeter

Info

Publication number
JPS617473A
JPS617473A JP59127898A JP12789884A JPS617473A JP S617473 A JPS617473 A JP S617473A JP 59127898 A JP59127898 A JP 59127898A JP 12789884 A JP12789884 A JP 12789884A JP S617473 A JPS617473 A JP S617473A
Authority
JP
Japan
Prior art keywords
container
optical fiber
magnetic fluid
cable
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59127898A
Other languages
Japanese (ja)
Other versions
JPH0228101B2 (en
Inventor
Kazuo Watanabe
和夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59127898A priority Critical patent/JPH0228101B2/en
Publication of JPS617473A publication Critical patent/JPS617473A/en
Publication of JPH0228101B2 publication Critical patent/JPH0228101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To simplify the structure of an ammeter for measuring a large current while enabling not only measurement in a state not contacted with a current supply circuit but also remote monitoring without receiving electromagnetic induction at all, by utilizing a magnetic fluid and an optical fiber. CONSTITUTION:A non-magnetic container 10 is provided so as to surround a cable 20 directed to a vertical direction and a magnetic fluid 22 is introduced into the container 10 while pairs of light transmitting fibers 30 and light receiving fibers 40 are attached to said container 10 so as to slightly differentiate the heights thereof. When a current is flowed to the cable 20 rising so as to pierce through the bottom of the container 10 in an air-tight state, the magnetic fluid 22 crawls up along the cable 20. Because the magnetic fluid 22 is impervious to light, the light 52 emitted from each of the light transmitting fibers 30 does not reach each of the light receiving fibers 40 present at the part equal to or lower than the height (h) where magnetic fluid 22 crawled up. Therefore, by investigating the light receiving fibers 40, the magnitude of a current I can be known.

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、たとえば直流ケーブルのように、とくに大
電流測定用の電流計に関するものである。
The present invention relates to an ammeter particularly for measuring large currents, such as DC cables.

【釆肢l 直流大電流の測定には、シャント抵抗により電圧として
とらえるものがある。 奈訓廊とlの 磁性流体と光ファイバとを利用して、非接触型で、従来
のものよりも構造が簡単で、電磁誘導をまったく受けず
、値段の安いものを提供できるようにする。 【−一旦 第3図のように、容器10内に磁性流体22を入れ、容
器lOの底を気密に貫通して立上るケーブル20に電流
を流すと、第4図のように、磁性流体22がケーブル2
0に添ってはい上る、という現象が知られている。 磁性流体については一般に次の拡張されたベルヌーイの
式が成立する【1】。 (圧力) (遇−動エイ1υNす(盲カニ7r1υ()
(屈叛工)・し運)(定数)この場合の条件では、静止
状態で、差圧P与Oであるから、H=Oのときの液面を
基準にすると、C=Oとなり、(1)式は次のようにな
る。 M=aHより(aは磁化率)、 であるから、 となる。 (4)式に次の具体的条件を入れると、f = 150
0. ck5**3」 g =  ′1. ’is [%/sec’lμ。= 
4rcx 10−’  [14/7rIlγ=  o、
ot  c惧1 μs=  ’S 、 10.100 電流の大きさ工と、はい上る磁性流体22の高さhとの
関係は、第5図に例示するようになる。ただしhはIが
ゼロのときの磁性流体22の面からの高さである。 鏝見立璽戎 この発明は、上記の現象と、光ファイバとを利用するも
ので、第1図、第2図のように、(1)垂直方向を向い
ているケーブル20をとりまいて、非磁性体の容器10
を設け、その中に磁性流体22を入れること、 (2)送信光ファイバ30と、受信光ファイバ40との
ペアになったものを、前記容器10に、高さを少しずつ
違えてとりつけ、前記各送信光ファイバを出た光52が
、ケーブルのすぐ近くを通ってそれぞれ相対する各受信
光ファイバに到達するようにすること、 を特徴とする。 尖五忽 第1図、第2図で、10が容器である。これは絶縁性の
もので、同軸に並べた内筒12と外筒4の上下を、底板
16,18でふさいだものである。 ケーブル20は、内筒12の内側を上下に貫通するよう
にする。 容器10内に磁性流体22を入れる。第5図からも分る
ように、比透磁率の大きいものを用いると、同じ電流工
に対して、より高くはい上るので、感度のよいものがで
きる。 30は送信光ファイバで、便宜上、下から順に31 、
32 、33−−−−3nと符合がつけである。  ま
た40は受信光ファイバ40で、これにも下から順に4
’l 、42.43、−−−−4nとけ合がつけである
。これらのうち、31と41゜32と42.33と43
.−−−−3nと4nとが、それぞれベアになっている
(たとえば送信光ファイバ31を出た光だけが、受信光
ファイバ41だけに入る)。 なお50はレンズ(たとえば短いグレーデツト型光ファ
イバ)で、各送信光ファイバ30と受信光ファイバ40
との間に平行な光52を作るために用いる。 送信光ファイバ30と受信光ファイバ40とは、光52
が内筒12のすぐ外側を通るような位置に、相対して、
容器lOにとりつけである。 艶−月 ケーブル20に電流工が流れると、磁性流体22が内筒
12に添ってはい上る。磁性流体22は光を通さないの
で、そのはい上った高さh以下にある受信光ファイバ4
0には、送信光ファイバ30を出た光52がとどかない
。 したがって受信光ファイバ40を調べることによって電
流工の大きさを知ることができる。 i乳り車重 (1)構造がシンプルでコンパクトにできる。したがっ
て長期安定性に富む。 (2)値段が安くできる。 (3)通電回路に非接触で測定できる。 (4)リード線に光ファイバを使うので、電磁誘導をま
ったく受けず、遠方監視ができる。
[End Page 1] When measuring large DC currents, there is a method of measuring voltage using a shunt resistor. To provide a non-contact type with a simpler structure than conventional ones, no electromagnetic induction at all, and a low price by using magnetic fluid and optical fiber. [-Once the magnetic fluid 22 is placed in the container 10 as shown in FIG. is cable 2
The phenomenon of crawling up along with 0 is known. Regarding magnetic fluids, the following extended Bernoulli equation generally holds true [1]. (pressure) (blind crab 7r1υ()
(Constant) In this case, in a static state, the differential pressure is P and O, so if the liquid level when H=O is used as a reference, C=O, and ( 1) The formula is as follows. From M=aH (a is the magnetic susceptibility), it follows. Inserting the following specific conditions into equation (4), f = 150
0. ck5**3'' g = '1. 'is [%/sec'lμ. =
4rcx 10-' [14/7rIlγ= o,
The relationship between the magnitude of the current and the height h of the climbing magnetic fluid 22 is illustrated in FIG. 5. However, h is the height from the surface of the magnetic fluid 22 when I is zero. This invention utilizes the above-mentioned phenomenon and optical fibers, and as shown in FIGS. Non-magnetic container 10
(2) Attach a pair of a transmitting optical fiber 30 and a receiving optical fiber 40 to the container 10 at slightly different heights; It is characterized in that the light 52 exiting each transmitting optical fiber passes close to the cable and reaches each opposing receiving optical fiber. In Figures 1 and 2, number 10 is the container. This is insulating and consists of an inner cylinder 12 and an outer cylinder 4 that are arranged coaxially and whose upper and lower sides are closed with bottom plates 16 and 18. The cable 20 is configured to vertically penetrate inside the inner cylinder 12. A magnetic fluid 22 is placed in the container 10 . As can be seen from FIG. 5, if a material with a high relative magnetic permeability is used, it will be able to climb higher for the same electric current, making it more sensitive. 30 is a transmission optical fiber, and for convenience, from the bottom, 31,
32, 33---3n. 40 is a receiving optical fiber 40, which also includes 4 in order from the bottom.
'l, 42.43, ---4n. Of these, 31 and 41° 32 and 42. 33 and 43
.. --- 3n and 4n are each bare (for example, only the light exiting the transmitting optical fiber 31 enters only the receiving optical fiber 41). Note that 50 is a lens (for example, a short graded optical fiber), which connects each transmitting optical fiber 30 and receiving optical fiber 40.
It is used to create parallel light 52 between the two. The transmitting optical fiber 30 and the receiving optical fiber 40 are
in a position such that it passes just outside the inner cylinder 12,
It is attached to the container lO. When electric current flows through the gloss-moon cable 20, the magnetic fluid 22 crawls up along the inner cylinder 12. Since the magnetic fluid 22 does not transmit light, the receiving optical fiber 4 below the climbing height h
0, the light 52 leaving the transmission optical fiber 30 does not reach there. Therefore, by examining the receiving optical fiber 40, the size of the current flow can be determined. i Milk truck weight (1) The structure is simple and compact. Therefore, it has high long-term stability. (2) Prices can be lower. (3) Can be measured without contacting the current-carrying circuit. (4) Since optical fiber is used for the lead wire, there is no electromagnetic induction at all, allowing for distant monitoring.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図で、そのII −IIの
断面を第2図に示す。 第3図と第4図ノ士原理の説明図。 第5図は磁性流体のはい上り高さhと電流の大きさ工と
の関係を示す線図。 10:容器     20:ケーブル 22:磁性流体   30:送信光ファイバ40:受信
光ファイバ 52:光 参考文献
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 shows a cross section taken along line II-II. Figures 3 and 4 are explanatory diagrams of the Noshi principle. FIG. 5 is a diagram showing the relationship between the crawling height h of the magnetic fluid and the magnitude of the current. 10: Container 20: Cable 22: Ferrofluid 30: Transmitting optical fiber 40: Receiving optical fiber 52: Optical reference

Claims (1)

【特許請求の範囲】 垂直方向を向いているケーブルをとりまいて、非磁性体
の容器を設け、その中に磁性流体を入れ、 送信光ファイバと、受信光ファイバとのペアになつたも
のを、前記容器に、高さを少しずつ違えてとりつけ、前
記各送信光ファイバを出た光が、ケーブルのすぐ近くを
通つてそれぞれ相対する各受信光ファイバに到達するよ
うにしたことを特徴とする電流計。
[Claims] A non-magnetic container is provided surrounding a vertically oriented cable, and a magnetic fluid is placed in the container to form a pair of a transmitting optical fiber and a receiving optical fiber. , characterized in that the transmitting optical fibers are attached to the container at slightly different heights so that the light emitted from each transmitting optical fiber passes close to the cable and reaches each opposing receiving optical fiber. Ammeter.
JP59127898A 1984-06-21 1984-06-21 DENRYUKEI Expired - Lifetime JPH0228101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127898A JPH0228101B2 (en) 1984-06-21 1984-06-21 DENRYUKEI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127898A JPH0228101B2 (en) 1984-06-21 1984-06-21 DENRYUKEI

Publications (2)

Publication Number Publication Date
JPS617473A true JPS617473A (en) 1986-01-14
JPH0228101B2 JPH0228101B2 (en) 1990-06-21

Family

ID=14971390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127898A Expired - Lifetime JPH0228101B2 (en) 1984-06-21 1984-06-21 DENRYUKEI

Country Status (1)

Country Link
JP (1) JPH0228101B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086141A (en) * 1994-08-31 2000-07-11 Fuji Jukosyo Kabushiki Kaisha Body structure for motor vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6086141A (en) * 1994-08-31 2000-07-11 Fuji Jukosyo Kabushiki Kaisha Body structure for motor vehicle

Also Published As

Publication number Publication date
JPH0228101B2 (en) 1990-06-21

Similar Documents

Publication Publication Date Title
SE9200919L (en) IMPROVEMENTS REGARDING ELECTROMAGNETIC FLOW METERS
US2676489A (en) Apparatus for measuring temperature in boreholes
CN103308743A (en) Direct current metering device
US4112354A (en) Mobile bridge test apparatus and method utilizing a sub-power frequency test signal for cable system evaluation
JPS617473A (en) Ammeter
JPS6363856B2 (en)
US2807159A (en) Gas analysis cell
US4106337A (en) Magnetic flow meter nulling system
US3491597A (en) Temperature monitored cable system and method
FR2446475A1 (en) VISCOSIMETER AND VISCOSISTAT
CN110402074A (en) A kind of screening arrangement suitable for clamp current transducer
CN102183736B (en) Device and method for measuring low-intensity magnetic field
SU1048416A1 (en) Ac transformer bridge
SU1352416A1 (en) Device for checking electrode machine windings for short-circuits
SU1265626A1 (en) Device for measuring current
SU813260A1 (en) Current meter
CN205506944U (en) Drilling fluid conductivity rate detection device
JPS6273166A (en) Light applied current detector
SU1335899A1 (en) Method of determining insulation resistance of underground pipeline
JPS5885174A (en) Simultaneous impedance measuring method and apparatus for steel tower and legs
JPS59192972A (en) Measuring device for static electricity
SU1308946A2 (en) Device for measuring voltages of pulsed electric field along three orthogonal directions
SU1439405A1 (en) Inclination meter
JPS59164965A (en) Static electricity measuring apparatus
JPWO2020162325A1 (en) Disconnection detection device