JPWO2020162325A1 - Disconnection detection device - Google Patents

Disconnection detection device Download PDF

Info

Publication number
JPWO2020162325A1
JPWO2020162325A1 JP2020505514A JP2020505514A JPWO2020162325A1 JP WO2020162325 A1 JPWO2020162325 A1 JP WO2020162325A1 JP 2020505514 A JP2020505514 A JP 2020505514A JP 2020505514 A JP2020505514 A JP 2020505514A JP WO2020162325 A1 JPWO2020162325 A1 JP WO2020162325A1
Authority
JP
Japan
Prior art keywords
transmission line
resistance
disconnection
detection device
disconnection detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020505514A
Other languages
Japanese (ja)
Inventor
清人 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMART SECURITY INNOVATION, INC.
Original Assignee
SMART SECURITY INNOVATION, INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMART SECURITY INNOVATION, INC. filed Critical SMART SECURITY INNOVATION, INC.
Publication of JPWO2020162325A1 publication Critical patent/JPWO2020162325A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Locating Faults (AREA)

Abstract

【課題】高電圧の送電線の断線箇所をも特定可能な断線検知装置を提供する。【解決手段】第1の送電線S1000及び第2の送電線S1000における断線箇所を検知する断線検知装置であって、第1の送電線S1000と第2の送電線S1000とに対してそれぞれ並列に接続される抵抗計S3200と、各抵抗計S3200にそれぞれ接続される第1及び第2の接続線S3105と、第1及び第2の接続線S3105にそれぞれ並列接続される複数の抵抗素子S3110と、を備え、抵抗計S3200で検出される抵抗値と各抵抗素子S3110の抵抗値と抵抗素子S3110の数とに基づいていずれの抵抗素子S3110間が電線箇所であるかを特定する。【選択図】図2PROBLEM TO BE SOLVED: To provide a disconnection detection device capable of identifying a disconnection location of a high voltage transmission line. SOLUTION: This is a disconnection detection device for detecting disconnection points in a first transmission line S1000 and a second transmission line S1000, in parallel with each of the first transmission line S1000 and the second transmission line S1000. A resistance meter S3200 to be connected, a first and second connection lines S3105 connected to each resistance meter S3200, and a plurality of resistance elements S3110 connected in parallel to the first and second connection lines S3105, respectively. Based on the resistance value detected by the resistance tester S3200, the resistance value of each resistance element S3110, and the number of resistance elements S3110, it is specified which of the resistance elements S3110 is the electric wire location. [Selection diagram] Fig. 2

Description

本発明は、断線検知装置に関し、特に、送電線の断線検知装置に関する。 The present invention relates to a disconnection detection device, and more particularly to a transmission line disconnection detection device.

特許文献1には、抵抗を内蔵することにより、断線センサとしての機能を与えた電線が開示されている。この電線は、電線に断線が生じた場合に、電線の電気抵抗を測定することによって、断線箇所を特定できるというものである。 Patent Document 1 discloses an electric wire having a function as a disconnection sensor by incorporating a resistor. In this electric wire, when a disconnection occurs in the electric wire, the disconnection point can be specified by measuring the electric resistance of the electric wire.

特開2009−48383号公報Japanese Unexamined Patent Publication No. 2009-48383

しかし、特許文献1に開示された電線は、その断線箇所を特定できるというものの、特許文献1に開示されている手法を、そのまま送電線に適用しようとすると、送電線には通常は数千V,最大で50万V近い高電圧の電送がされていることから、その実現が困難である。 However, although the electric wire disclosed in Patent Document 1 can identify the disconnection point, if the method disclosed in Patent Document 1 is to be applied to the transmission line as it is, the transmission line usually has several thousand volts. It is difficult to realize this because high voltage transmission of up to 500,000V is performed.

そこで、本発明は、高電圧の送電線の断線箇所をも特定可能な断線検知装置を提供することを課題とする。 Therefore, it is an object of the present invention to provide a disconnection detection device capable of identifying a disconnection location of a high voltage transmission line.

上記課題を解決するために、本発明の断線検知装置は、
第1の送電線(例えば図2の送電線S1000)及び第2の送電線(例えば図2の送電線S1000)における断線箇所を検知する断線検知装置であって、
前記第1の送電線と第2の送電線とに接続される抵抗計(例えば図2の抵抗計S3200)と、
前記第1の送電線及び第2の送電線にそれぞれ並列接続される第1及び第2の接続線(例えば図2の接続線S3105)と、
前記第1及び第2の接続線にそれぞれ並列接続される複数の抵抗素子(例えば図2の抵抗素子S3110)と、
を備え、
前記抵抗計で検出される抵抗値と前記各抵抗素子の抵抗値と前記抵抗素子の数とに基づいていずれの抵抗素子間が電線箇所であるかを特定する。
In order to solve the above problems, the disconnection detection device of the present invention is used.
A disconnection detection device for detecting disconnection points in a first transmission line (for example, transmission line S1000 in FIG. 2) and a second transmission line (for example, transmission line S1000 in FIG. 2).
A resistance meter connected to the first transmission line and the second transmission line (for example, the resistance meter S3200 in FIG. 2) and
A first and second connection line (for example, connection line S3105 in FIG. 2) connected in parallel to the first transmission line and the second transmission line, respectively.
A plurality of resistance elements (for example, the resistance element S3110 in FIG. 2) connected in parallel to the first and second connection lines, respectively.
Equipped with
Based on the resistance value detected by the resistance meter, the resistance value of each resistance element, and the number of the resistance elements, it is specified which resistance element is between the wire locations.

前記各抵抗素子を各々収容する複数の収容装置(例えば図2の収容装置S3100)を備えることもできる。 It is also possible to provide a plurality of accommodating devices (for example, accommodating device S3100 in FIG. 2) for accommodating each of the resistance elements.

前記各抵抗素子は、例えば図2に示すように、前記第1の接続線と前記第1の送電線との間、又は、前記第2の接続線と前記第2の送電線との間、のいずれかに跨って並列に接続されていてもよい。 Each of the resistance elements is, for example, as shown in FIG. 2, between the first connection line and the first transmission line, or between the second connection line and the second transmission line. It may be connected in parallel across any of the above.

前記各抵抗素子は、例えば図4に示すように、前記第1又は第2の接続線に並列に接続されていてもよい。 Each of the resistance elements may be connected in parallel to the first or second connection line, for example, as shown in FIG.

前記各収容装置は、前記第1又は第2の接続線と当該収容装置に収容される抵抗素子とを接続する接続部材を備えてもよい。 Each accommodating device may include a connecting member that connects the first or second connecting line and the resistance element accommodated in the accommodating device.

前記各収容装置は、前記第1又は第2の接続線に並列に接続され、かつ、前記抵抗素子に接続される接続部材(例えば図4(a)の連結部材S3320)を備えることもできる。 Each accommodating device may also include a connecting member (eg, connecting member S3320 in FIG. 4A) that is connected in parallel to the first or second connecting line and is connected to the resistance element.

発明の実施の形態Embodiment of the invention

以下、本発明の実施形態について、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1の断線検知装置S3000に関する概要説明図である。図1には、電力会社が所有乃至管理する発電所などの送電元S2000と、送電元S2000に対して並列に一端が接続されている送電線S1000と、各送電線S1000を懸架する複数の送電鉄塔S1100と、送電線S1000の他端が接続される変電所などの送電先S2100と、各送電線S1000に電気的に接続される断線検知装置S3000とを示している。
(Embodiment 1)
FIG. 1 is a schematic explanatory view of the disconnection detection device S3000 according to the first embodiment of the present invention. FIG. 1 shows a power transmission source S2000 such as a power plant owned or managed by an electric power company, a power transmission line S1000 having one end connected in parallel to the power transmission line S2000, and a plurality of power transmissions suspending each power transmission line S1000. It shows a steel tower S1100, a power transmission destination S2100 such as a substation to which the other end of the power transmission line S1000 is connected, and a disconnection detection device S3000 electrically connected to each power transmission line S1000.

なお、ここでは単相交流を意図して2本の送電線S1000を示しているが、交流三相3線式、交流三相4線式、直流式などであっても、断線検知装置S3000を適用することができる。また、図1には、断線検知装置S3000を概念的に図示しただけであって、実際には、以下説明するような構成とされている。 Although two transmission lines S1000 are shown here for the purpose of single-phase AC, the disconnection detection device S3000 may be used even for AC three-phase three-wire type, AC three-phase four-wire type, DC type, and the like. Can be applied. Further, FIG. 1 merely conceptually illustrates the disconnection detection device S3000, and is actually configured as described below.

図2は、図1に示す断線検知装置S3000の説明図である。図2には、各送電線S1000に対してそれぞれ並列に設けられている抵抗計S3200と、各抵抗計S3200に対してそれぞれ接続される接続線S3105と、各送電線S1000間に接続されていて送電対象の電圧を変換する変圧器S2200と、各送電線S1000に適当な間隔で配される複数の収容装置S3100と、各収容装置S3100と各送電線S1000とを接続する複数の端子S3125と、各収容装置S3100に収容されていて各端子S3125に直接接続される複数の抵抗素子S3110とを備えている。 FIG. 2 is an explanatory diagram of the disconnection detection device S3000 shown in FIG. In FIG. 2, a resistance meter S3200 provided in parallel to each transmission line S1000, a connection line S3105 connected to each resistance meter S3200, and each transmission line S1000 are connected to each other. A transformer S2200 that converts the voltage to be transmitted, a plurality of accommodating devices S3100 arranged at appropriate intervals on each transmission line S1000, and a plurality of terminals S3125 connecting each accommodating device S3100 and each transmission line S1000. Each accommodating device S3100 includes a plurality of resistance elements S3110 that are accommodated and directly connected to each terminal S3125.

なお、変圧器S2200自体は、断線検知装置S3000の必須の構成要素ではないことに留意されたい。これらの変圧器S2200は、単相交流用のものを示しているが、送電線S1000が三相3線式、三相4線式の場合は、これらに応じた線数のものにすればよい。また、直流方式の場合には、変圧器S2200を設ける必要はない。 It should be noted that the transformer S2200 itself is not an essential component of the disconnection detection device S3000. These transformers S2200 are for single-phase alternating current, but if the transmission line S1000 is a three-phase three-wire system or a three-phase four-wire system, the number of lines may be adjusted accordingly. .. Further, in the case of the DC system, it is not necessary to provide the transformer S2200.

また、図2では、説明の都合上、変圧器S2200と、図面上側の抵抗計S3200、接続線S3105、収容装置S3100、端子S3125、及び、抵抗素子S3110とを囲うように断線検知装置S3000の枠を示しているが、実際には、これらに対応する図面下側の部材も断線検知装置S3000に含まれる。 Further, in FIG. 2, for convenience of explanation, a frame of the disconnection detection device S3000 so as to surround the transformer S2200, the resistance meter S3200 on the upper side of the drawing, the connection line S3105, the accommodating device S3100, the terminal S3125, and the resistance element S3110. However, in reality, the members on the lower side of the drawing corresponding to these are also included in the disconnection detection device S3000.

さらに、例えば、図2における断線検知装置S3000の枠内の接続線S3105は特許請求の範囲における第1の接続線に相当するものであり、枠外の接続線S3105は特許請求の範囲における第2の接続線に相当するものである。同様に、他の部材である、収容装置S3100、端子S3125、及び、抵抗素子S3110についても、断線検知装置S3000の枠内のものは「第1」、枠外のものは「第2」に相当する。 Further, for example, the connection line S3105 in the frame of the disconnection detection device S3000 in FIG. 2 corresponds to the first connection line in the claims, and the connection line S3105 outside the frame is the second connection line in the claims. It corresponds to a connecting line. Similarly, with respect to the other members, the accommodating device S3100, the terminal S3125, and the resistance element S3110, the one inside the frame of the disconnection detection device S3000 corresponds to the "first", and the one outside the frame corresponds to the "second". ..

また、通常時であれば、各接続線S3105は各送電線S1000にそれぞれ懸架し固定することによって、大きな引っ張り力やせん断力などが加わらず、これによって堅牢性
が維持されるように工夫している。
Further, in the normal state, each connection line S3105 is suspended and fixed to each transmission line S1000 so that a large pulling force or shearing force is not applied and the robustness is maintained by this. There is.

さらに、各送電線S1000は、物理的には、例えば一本の長いものを用意して、これに各収容装置S3100を取り付けてもよいし、各収容装置S3100間を相対的に短いもので順次連結するようにしてもよい。 Further, physically, for example, one long transmission line S1000 may be prepared and each accommodation device S3100 may be attached to the transmission line S1000, or the accommodation devices S3100 may be sequentially arranged with a relatively short one. It may be connected.

つぎに、図2に示す断線検知装置S3000の動作原理について説明する。まず、各送電線S1000と各接続線S3105とが導通している場合には、実際上は、各送電線S1000及び各接続線S3105の電気抵抗が僅かにあるため、抵抗計S3200で検出される抵抗値は、この僅かな電気抵抗値を示すことになる。 Next, the operating principle of the disconnection detection device S3000 shown in FIG. 2 will be described. First, when each transmission line S1000 and each connection line S3105 are conducting, the electric resistance of each transmission line S1000 and each connection line S3105 is actually slight, so that they are detected by the resistance meter S3200. The resistance value will show this slight electric resistance value.

しかし、理論上は、各接続線S3105は、各送電線S1000に接地されることから、抵抗計S3200で検出される抵抗値はほぼゼロであり、説明の理解容易のために、以下、当該抵抗値がゼロであるとして扱う。 However, in theory, since each connection line S3105 is grounded to each transmission line S1000, the resistance value detected by the resistance meter S3200 is almost zero. Treat as if the value is zero.

この状態で、仮に、図2に示すA点で送電線S1000に断線が生じたとする。この場合には、オームの法則に従い、抵抗計S3200で検出される抵抗値は、数式1で表すことができる。
抵抗計S3200の抵抗値=[抵抗素子S3110の抵抗値]/[変圧器S2200を基準として、3番目の収容装置S3100と4番目の収容装置S3100との間に対応する位置で断線]
In this state, it is assumed that the transmission line S1000 is disconnected at the point A shown in FIG. In this case, according to Ohm's law, the resistance value detected by the resistance meter S3200 can be expressed by Equation 1.
Resistance value of resistance meter S3200 = [resistance value of resistance element S3110] / [disconnection at the corresponding position between the third accommodating device S3100 and the fourth accommodating device S3100 with reference to the transformer S2200]

したがって、仮に、全ての抵抗素子S3110が100kΩのものであるとして、これを数式1に代入すると、数式2に示す結果が得られることになる。
抵抗計S3200の抵抗値=[100kΩ]/[3]≒33.3kΩ
Therefore, assuming that all the resistance elements S3110 have 100 kΩ, if this is substituted into the formula 1, the result shown in the formula 2 can be obtained.
Resistance value of resistance meter S3200 = [100kΩ] / [3] ≈ 33.3kΩ

この原理によれば、まず、抵抗計S3200で検出される抵抗値が大きく変化したことによって、送電線S1000に断線が生じたことを検知できる。また、抵抗計S3200で検出される抵抗値自体と、収容装置S3100の数と、抵抗素子S3110の抵抗値とによって、送電線S1000に生じた断線箇所がいずれの収容装置S3100間に存在するかについて特定することができる。 According to this principle, first, it is possible to detect that a disconnection has occurred in the transmission line S1000 due to a large change in the resistance value detected by the resistance meter S3200. Further, depending on the resistance value itself detected by the resistance meter S3200, the number of accommodating devices S3100, and the resistance value of the resistance element S3110, it is possible to determine which accommodating device S3100 has a disconnection point generated in the transmission line S1000. Can be identified.

ここで、数式1は、数式3のように一般化できる。
[断線箇所(変圧器S2200を基準として、n番目の収容装置S3100とn+1番目の収容装置S3100との間に対応する位置)]=[抵抗素子S3110の抵抗値]/[抵抗計S3200の抵抗値]
Here, the formula 1 can be generalized like the formula 3.
[Disconnection point (position corresponding between the nth accommodating device S3100 and the n + 1st accommodating device S3100 with respect to the transformer S2200)] = [resistance value of the resistance element S3110] / [resistance value of the resistance meter S3200] ]

例えば、収容装置S3100の数が図2に示すように4つであり、各抵抗素子S3110の抵抗値が全て100kΩである、という上記と同じ条件のもとで、抵抗計S3200で検出される抵抗値自体が約0Ωから約100kΩに変化したとする。これらの条件を数式3に代入すると、数式4のようになる。
断線箇所=[100kΩ]/[100kΩ]=1
For example, the resistance detected by the resistance meter S3200 under the same conditions as above that the number of the accommodating devices S3100 is four as shown in FIG. 2 and the resistance values of the respective resistance elements S3110 are all 100 kΩ. It is assumed that the value itself changes from about 0Ω to about 100kΩ. Substituting these conditions into Equation 3 yields Equation 4.
Disconnection point = [100kΩ] / [100kΩ] = 1

つまり、抵抗計S3200で検出される抵抗値が上記のように変化した場合には、変圧器S2200を基準として1番目の収容装置S3100と2番目の収容装置S3100との間に対応する位置(例えばB点)で断線が発生したということを特定することができる。 That is, when the resistance value detected by the resistance meter S3200 changes as described above, the position corresponding to the position (for example, for example) between the first accommodating device S3100 and the second accommodating device S3100 with respect to the transformer S2200. It can be specified that the disconnection has occurred at point B).

なお、図2に示す断線検知装置S3000の構成によれば、収容装置S3100の数量は、送電線S1000の長さに応じて適宜決定することができるし、送電線S1000に断線が生じやすい環境であれば増やすこともできるという利点がある。また、接続線S3105は、更に接続線S3105となる電線を図2に示す構成と同様の態様で接続することによって継ぎ足せば、延長することもできる。 According to the configuration of the disconnection detection device S3000 shown in FIG. 2, the quantity of the accommodation device S3100 can be appropriately determined according to the length of the transmission line S1000, and in an environment where disconnection is likely to occur in the transmission line S1000. There is an advantage that it can be increased if there is. Further, the connection line S3105 can be extended by further connecting the electric wires to be the connection line S3105 in the same manner as in the configuration shown in FIG.

図3は、図1に示す収容装置S3100の模式的な構成図である。なお、ここでは各収容装置S3100間を相対的に短い送電線S1000で順次連結する場合の構成を例示している。図3Aは収容装置S3100本体の模式的な構成図であり、図3Bは図3Aに示す収容装置S3100本体の筐体の斜視図である。 FIG. 3 is a schematic configuration diagram of the accommodating device S3100 shown in FIG. In addition, here, the configuration in the case where each accommodating device S3100 is sequentially connected by a relatively short transmission line S1000 is illustrated. FIG. 3A is a schematic configuration diagram of the main body of the accommodation device S3100, and FIG. 3B is a perspective view of the housing of the main body of the accommodation device S3100 shown in FIG. 3A.

図3Aには、例えば樹脂製で長方形状の基台S3300と、基台S3300に取り付けられた例えば樹脂製で円柱状の支柱3310と、支柱3310の上部に取り付けられていて接続線S3105を相互にクランプなどで電気的に接続するとともに端子S3125とも電気的に接続される銅などの金属製で略アーチ形状の連結部材S3320と、を示している。 In FIG. 3A, for example, a resin-made rectangular base S3300, a resin-made columnar column 3310 attached to the base S3300, and a connecting line S3105 attached to the upper part of the support 3310 are mutually connected. It shows a connecting member S3320 made of a metal such as copper and having a substantially arch shape, which is electrically connected by a clamp or the like and is also electrically connected to the terminal S3125.

図3Bには、例えばプラスチック製の第1の筐体部S3330と、例えばプラスチック製の第2の筐体部S3340とを示しており、これらはその内部に図3Aに示す収容装置S3100本体が収容された状態で図示しない結合具などを用いて結合される。 FIG. 3B shows, for example, a first plastic housing portion S3330 and, for example, a second plastic housing portion S3340, in which the main body of the accommodating device S3100 shown in FIG. 3A is accommodated. In this state, they are bonded using a binder (not shown) or the like.

第1の筐体部S3330及び第2の筐体部S3340には、それぞれ、送電線S1000に懸架するための図示しない部材を取り付けるための取手部S3135が設けられ、さらに、接続線S3105等を通す貫通孔が形成されている。なお、各貫通孔には、第1の筐体部S3330及び第2の筐体部S3340の内部に風雨などが入ることを防止するために、適宜パッキン部材などを取り付けるとよい。 The first housing portion S3330 and the second housing portion S3340 are each provided with a handle portion S3135 for attaching a member (not shown) for suspending the transmission line S1000, and further, a connecting line S3105 or the like is passed therethrough. A through hole is formed. A packing member or the like may be appropriately attached to each through hole in order to prevent wind and rain from entering the inside of the first housing portion S3330 and the second housing portion S3340.

(実施形態2)
図4は、本発明の実施形態2の断線検知装置S3000の説明図であり、図2に対応するものである。図4のものは、簡素化するため接続線S3105を複線式としているが、図2のものと電気的に等価である。図4に示す構成を採用すると、断線検知装置S3000は、送電線S1000と接続線S3105とを複数個所で接続することに代えて、送電線S1000に対して、単に収容装置S3100及び接続線S3105をタイベルトなどによって固定すればよくなり、作業性が向上するという利点がある。
(Embodiment 2)
FIG. 4 is an explanatory diagram of the disconnection detection device S3000 according to the second embodiment of the present invention, and corresponds to FIG. 2. In FIG. 4, the connection line S3105 is a double-track type for simplification, but it is electrically equivalent to that in FIG. When the configuration shown in FIG. 4 is adopted, the disconnection detection device S3000 simply connects the accommodating device S3100 and the connection line S3105 to the transmission line S1000 instead of connecting the transmission line S1000 and the connection line S3105 at a plurality of places. It can be fixed with a tie belt or the like, which has the advantage of improving workability.

図5は、図4に示す断線検知装置S3000に係る収容装置S3100の模式的な構成図であり、図3Aに対応するものである。図5では、接続線S3105を複線式としているため、これに対応して連結部材S3320相互に跨る態様で抵抗素子S3110が並列接続されている。収容装置S3100の筐体については、図3Bに示すものと同様の構成にすればよい。 FIG. 5 is a schematic configuration diagram of the accommodating device S3100 according to the disconnection detection device S3000 shown in FIG. 4, and corresponds to FIG. 3A. In FIG. 5, since the connecting line S3105 is a double-track type, the resistance elements S3110 are connected in parallel in a manner straddling the connecting members S3320 to each other. The housing of the accommodating device S3100 may have the same configuration as that shown in FIG. 3B.

本発明の実施形態1の断線検知装置S3000に関する概要説明図である。It is a schematic explanatory drawing about the disconnection detection apparatus S3000 of Embodiment 1 of this invention. 図1に示す断線検知装置S3000の説明図である。It is explanatory drawing of the disconnection detection apparatus S3000 shown in FIG. 図1に示す収容装置S3100本体の模式的な構成図である。It is a schematic block diagram of the accommodating device S3100 main body shown in FIG. 図3Aに示す収容装置S3100本体の筐体の斜視図である。It is a perspective view of the housing of the accommodation device S3100 main body shown in FIG. 3A. 本発明の実施形態2の断線検知装置S3000の説明図である。It is explanatory drawing of the disconnection detection apparatus S3000 of Embodiment 2 of this invention. 図4に示す断線検知装置S3000に係る収容装置S3100の模式的な構成図である。It is a schematic block diagram of the accommodating device S3100 which concerns on the disconnection detection device S3000 shown in FIG.

S2000 送電元
S1000 送電線
S1100 送電鉄塔
S2100 送電先
S2200 変圧器
S3000 断線検知装置
S3105 接続線
S3200 抵抗計
S3100 収容装置
S3125 端子
S3110 抵抗素子
S3300 基台
S3310 支柱
S3320 連結部材
S2000 Transmission source S1000 Transmission line S1100 Transmission tower S2100 Transmission destination S2200 Transformer S3000 Disconnection detection device S3105 Connection line S3200 Resistance meter S3100 Containment device S3125 Terminal S3110 Resistance element S3300 Base S3310 Support

Claims (6)

第1の送電線及び第2の送電線における断線箇所を検知する断線検知装置であって、
前記第1の送電線と第2の送電線とに対してそれぞれ並列に接続される抵抗計と、
前記各抵抗計に対してそれぞれ接続される第1及び第2の接続線と、
前記第1及び第2の接続線にそれぞれ並列接続される複数の抵抗素子と、
を備え、
前記抵抗計で検出される抵抗値と前記各抵抗素子の抵抗値と前記抵抗素子の数とに基づいていずれの抵抗素子間が電線箇所であるかを特定する断線検知装置。
It is a disconnection detection device that detects disconnection points in the first transmission line and the second transmission line.
An ohmmeter connected in parallel to the first transmission line and the second transmission line, respectively.
The first and second connection lines connected to each of the ohmmeters, respectively.
A plurality of resistance elements connected in parallel to the first and second connection lines, respectively, and
Equipped with
A disconnection detection device that identifies which resistance element is a wire location based on the resistance value detected by the resistance meter, the resistance value of each resistance element, and the number of the resistance elements.
前記各抵抗素子を各々収容する複数の収容装置を備える、請求項1記載の断線検知装置。 The disconnection detecting device according to claim 1, further comprising a plurality of accommodating devices accommodating each of the resistance elements. 前記各抵抗素子は、前記第1の接続線と前記第1の送電線との間、又は、前記第2の接続線と前記第2の送電線との間、のいずれかに跨って並列に接続されている、請求項1記載の断線検知装置。 The resistance elements are connected in parallel across either the first connection line and the first transmission line or between the second connection line and the second transmission line. The disconnection detection device according to claim 1, which is connected. 前記各抵抗素子は、前記第1又は第2の接続線に並列に接続されている、請求項1記載の断線検知装置。 The disconnection detection device according to claim 1, wherein each resistance element is connected in parallel to the first or second connection line. 前記各収容装置は、前記第1又は第2の接続線と当該収容装置に収容される抵抗素子とを接続する接続部材を備える、請求項2記載の断線検知装置。 The disconnection detecting device according to claim 2, wherein each accommodating device includes a connecting member for connecting the first or second connecting line and a resistance element accommodated in the accommodating device. 前記各収容装置は、前記第1又は第2の接続線に並列に接続され、かつ、前記抵抗素子に接続される接続部材を備える、請求項2記載の断線検知装置。 The disconnection detecting device according to claim 2, wherein each accommodating device includes a connecting member connected in parallel to the first or second connecting line and connected to the resistance element.
JP2020505514A 2019-02-04 2020-01-30 Disconnection detection device Pending JPWO2020162325A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019017954 2019-02-04
JP2019017954 2019-02-04
PCT/JP2020/003484 WO2020162325A1 (en) 2019-02-04 2020-01-30 Disconnection detection device

Publications (1)

Publication Number Publication Date
JPWO2020162325A1 true JPWO2020162325A1 (en) 2021-12-02

Family

ID=71947589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020505514A Pending JPWO2020162325A1 (en) 2019-02-04 2020-01-30 Disconnection detection device

Country Status (2)

Country Link
JP (1) JPWO2020162325A1 (en)
WO (1) WO2020162325A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249405Y2 (en) * 1972-05-29 1977-11-10
JPS5679966A (en) * 1979-12-06 1981-06-30 Nippon Telegr & Teleph Corp <Ntt> Simple method of measuring disconnection of inter-station cable
JP2009043203A (en) * 2007-08-11 2009-02-26 Kiyoto Yui Alarm device for identifying active place of n connected disconnection sensors

Also Published As

Publication number Publication date
WO2020162325A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US8912803B2 (en) Electrostatic shielding technique on high voltage diodes
US9541582B2 (en) DC power distribution system
CN107728012A (en) Arc fault detection equipment for direct current electrical bus
CN202547821U (en) Platinum thermal resistance temperature sensor
JP3217195U (en) 4-wire measurement cable and impedance measurement system
JP2016148597A (en) Current sensor
RU2717397C1 (en) Device and method for measuring current strength of one separate wire of multi-wire system
JPWO2020162325A1 (en) Disconnection detection device
JP4974640B2 (en) Test plug
JPH07508351A (en) Terminal for joining conductors that carry current
CN205027889U (en) A collection system for proofreading and correct fault indicator current induction signal
JP5676830B1 (en) Watt-hour meter terminal device and watt-hour meter
EP2584364A1 (en) Self centering, split multicore current sensor
JP2008232737A (en) Electric leakage detection method and digital tester used in the same method
CN103647445B (en) DC-DC power source equipment and electric current detecting method thereof
CN205450171U (en) Plug temperature -rise tests machine
CN109997048A (en) Monitoring device, method and the charging control unit of the impedance of detection protection conductor
US20200182913A1 (en) Current sensor for measuring alternating electromagnetic wave and a current breaker using the same
CN203774709U (en) Power supply distribution unit and connecting module
JP3229437U (en) Clamp ammeter
JP5517186B2 (en) Outlet with grounding electrode
CN104471412B (en) The method and apparatus of identification or location current sensor
JP6631903B2 (en) Current sensor and distribution board equipped with it
KR101986518B1 (en) Terminal Board for Measurement Continuity Electric Resistanc of Structure
US20180113154A1 (en) Electrical Measurement Assembly Suitable for Portable Work Platforms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240412