JPH0228101B2 - DENRYUKEI - Google Patents

DENRYUKEI

Info

Publication number
JPH0228101B2
JPH0228101B2 JP59127898A JP12789884A JPH0228101B2 JP H0228101 B2 JPH0228101 B2 JP H0228101B2 JP 59127898 A JP59127898 A JP 59127898A JP 12789884 A JP12789884 A JP 12789884A JP H0228101 B2 JPH0228101 B2 JP H0228101B2
Authority
JP
Japan
Prior art keywords
optical fiber
cable
container
magnetic fluid
receiving optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127898A
Other languages
Japanese (ja)
Other versions
JPS617473A (en
Inventor
Kazuo Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP59127898A priority Critical patent/JPH0228101B2/en
Publication of JPS617473A publication Critical patent/JPS617473A/en
Publication of JPH0228101B2 publication Critical patent/JPH0228101B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

【発明の詳細な説明】 この発明は、たとえば直流ケーブルのように、
とくに大電流測定用の電流計に関するものであ
る。
[Detailed Description of the Invention] This invention provides, for example, a direct current cable,
In particular, it relates to ammeters for measuring large currents.

従来技術 直流大電流の測定には、シヤント抵抗により電
圧としてとらえるものがある。
Prior Art When measuring a large DC current, there is a method of measuring it as a voltage using a shunt resistor.

発明の目的 磁性流体と光フアイバとを利用して、非接触型
で、従来のものよりも構造が簡単で、電磁誘導を
まつたく受けず、値段の安いものを提供できるよ
うにする。
OBJECT OF THE INVENTION To provide a non-contact type, simpler in structure than conventional ones, not subject to electromagnetic induction, and inexpensive by using magnetic fluid and optical fiber.

原 理 第3図のように、容器10内に磁性流体22を
入れ、容器10の底を気密に貫通して立上るケー
ブル20に電流を流すと、第4図のように、磁性
流体22がケーブル20に添つてはい上る、とい
う現象が知られている。
Principle As shown in Fig. 3, when the magnetic fluid 22 is placed in the container 10 and a current is passed through the cable 20 that passes through the bottom of the container 10 in an airtight manner, the magnetic fluid 22 flows as shown in Fig. 4. The phenomenon of crawling along the cable 20 is known.

磁性流体については一般に次の拡張されたベル
ヌーイの式が成立する〔1〕。
Regarding magnetic fluids, the following extended Bernoulli equation generally holds true [1].

P+ρU2/2+ρgh−μ0H OMdH=C (1) (圧力) (運動エネルギー) (重力エネル
ギー) (磁気エネルギー)(定数) この場合の条件では、静止状態で、差圧P≒0
であるから、H=0のときの液面を基準にする
と、C=0となり、(1)式は次のようになる ρgh=μ0H OMdH… (2) M=aHより(aは磁化率)、 h=μ0a/ρg∫H OHdH=μ0a/2ρgH2… (3) 導体中心からr点の磁界Hは、H=I/2πγであ るから、 h=μ0a/2ρgI2/4π2γ2=kI2… (4) 但し、 k=μ0a/2ρg×4π2γ2 となる。
P+ρU 2 /2+ρgh−μ 0H O MdH=C (1) (Pressure) (Kinetic energy) (Gravity energy) (Magnetic energy) (Constant) In this case, in a stationary state, the differential pressure P≒0
Therefore, if we use the liquid level when H=0 as a reference, C=0, and equation (1) becomes as follows: ρgh=μ 0H O MdH… (2) From M=aH, (a is the magnetic susceptibility), h=μ 0 a/ρg∫ H O HdH=μ 0 a/2ρgH 2 … (3) The magnetic field H from the center of the conductor to point r is H=I/2πγ, so h=μ 0 a/2ρgI 2 /4π 2 γ 2 =kI 2 … (4) However, k=μ 0 a/2ρg×4π 2 γ 2 .

(4)式に次の具体的条件を入れると、 ρ=1500〔Kg/m3〕 g=9.8〔m/sec2〕 μ0=4π×10-7〔H/m〕 γ=0.01〔m〕 μs=5,10,100 電流の大きさIと、はい上る磁性流体22の高
さhとの関係は、第5図に例示するようになる。
ただしhはIがゼロのときの磁性流体22の面か
らの高さである。
Inserting the following specific conditions into equation (4), ρ=1500 [Kg/m 3 ] g=9.8 [m/sec 2 ] μ 0 =4π×10 -7 [H/m] γ=0.01 [m ] μs=5, 10, 100 The relationship between the magnitude I of the current and the height h of the climbing magnetic fluid 22 is illustrated in FIG.
However, h is the height from the surface of the magnetic fluid 22 when I is zero.

発明の構成 この発明は、上記の現象と、光フアイバとを利
用するもので、第1図、第2図のように、 (1) 垂直方向を向いているケーブル20をとりま
いて、非磁性体の容器10を設け、その中に磁
性流体22を入れること、 (2) 送信光フアイバ30と、受信光フアイバ40
とのペアになつたものを、前記容器10に、高
さを少しずつ違えてとりつけ、前記各送信光フ
アイバを出た光52が、ケーブルのすぐ近くを
通つてそれぞれ相対する各受信光フアイバに到
達するようにすること、 を特徴とする。
Structure of the Invention The present invention utilizes the above-mentioned phenomenon and optical fibers, and as shown in FIGS. (2) providing a body container 10 and placing a magnetic fluid 22 therein; (2) a transmitting optical fiber 30 and a receiving optical fiber 40;
are attached to the container 10 at slightly different heights so that the light 52 exiting each of the transmitting optical fibers passes close to the cable and reaches each opposing receiving optical fiber. It is characterized by:

実施例 第1図、第2図で、10が容器である。これは
絶縁性のもので、同軸に並べた内筒12と外筒4
の上下を、底板16,18でふさいだものであ
る。
Example In FIGS. 1 and 2, 10 is a container. This is an insulating material, and the inner cylinder 12 and outer cylinder 4 are arranged coaxially.
The upper and lower sides are closed with bottom plates 16 and 18.

ケーブル20は、内筒12の内側を上下に貫通
するようにする。
The cable 20 is configured to vertically penetrate inside the inner cylinder 12.

容器10内に磁性流体22を入れる。第5図か
らも分るように、比透磁率の大きいものを用いる
と、同じ電流Iに対して、より高くはい上るの
で、感度のよいものができる。
A magnetic fluid 22 is placed in the container 10 . As can be seen from FIG. 5, if a material with a high relative permeability is used, the same current I will rise higher, so a material with good sensitivity can be obtained.

30は送信光フアイバで、便宜上、下から順に
31,32,33……3nと符号がつけてある。
また40は受信光フアイバ40で、これにも下か
ら順に41,42,43,……4nと符号がつけ
てある。これらのうち、31と41,32と4
2,33と43,……3nと4nとが、それぞれ
ペアになつている(たとえば送信光フアイバ31
を出た光だけが、受信光フアイバ41だけに入
る)。
Reference numeral 30 denotes a transmission optical fiber, which for convenience is numbered 31, 32, 33...3n in order from the bottom.
40 is a receiving optical fiber 40, which is also numbered 41, 42, 43, . . . 4n in order from the bottom. Of these, 31 and 41, 32 and 4
2, 33 and 43, . . . 3n and 4n are each paired (for example, the transmission optical fiber 31
Only the light that exits the receiving optical fiber 41 enters the receiving optical fiber 41).

なお50はレンズ(たとえば短いグレーデツト
型光フアイバ)で、各送信光フアイバ30と受信
光フアイバ40との間に平行な光52を作るため
に用いる。
A lens 50 (for example, a short graded optical fiber) is used to create parallel light 52 between each transmitting optical fiber 30 and receiving optical fiber 40.

送信光フアイバ30と受信光フアイバ40と
は、光52が内筒12のすぐ外側を通るような位
置に、相対して、容器10にとりつけてある。
The transmit optical fiber 30 and the receive optical fiber 40 are attached to the container 10 in opposing positions such that the light 52 passes just outside the inner tube 12.

作 用 ケーブル20に電流Iが流れると、磁性流体2
2が内筒12に添つてはい上る。磁性流体22は
光を通さないので、そのはい上つた高さh以下に
ある受信光フアイバ40には、送信光フアイバ3
0を出た光52がとどかない。
Effect When a current I flows through the cable 20, the magnetic fluid 2
2 crawls up along with the inner cylinder 12. Since the magnetic fluid 22 does not allow light to pass through, the receiving optical fiber 40 located below the elevated height h has no transmitting optical fiber 3.
The light 52 that exits 0 does not arrive.

したがつて受信光フアイバ40を調べることに
よつて電流Iの大きさを知ることができる。
Therefore, by examining the receiving optical fiber 40, the magnitude of the current I can be determined.

発明の効果 (1) 構造がシンプルでコンパクトにできる。した
がつて長期安定性に富む。
Effects of the invention (1) The structure is simple and compact. Therefore, it has high long-term stability.

(2) 値段が安くできる。(2) The price can be lowered.

(3) 通電回路に非接触で測定できる。(3) Can be measured without contacting the current-carrying circuit.

(4) リード線に光フアイバを使うので、電磁誘導
をまつたく受けず、遠方監視ができる。
(4) Since optical fiber is used for the lead wire, it is not exposed to electromagnetic induction and can be monitored from a distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の説明図で、その−
の断面を第2図に示す。第3図と第4図は原理
の説明図、第5図は磁性流体のはい上り高さhと
電流の大きさIとの関係を示す線図。 10:容器、20:ケーブル、22:磁性流
体、30:送信光フアイバ、40:受信光フアイ
バ、52:光、 参考文献 〔1〕R.E.ローゼンスワイク:別冊サイエンス
「新材料」、p.132〜142、(1983,12,20発行)
FIG. 1 is an explanatory diagram of an embodiment of the present invention.
A cross section of is shown in Fig. 2. 3 and 4 are explanatory diagrams of the principle, and FIG. 5 is a diagram showing the relationship between the crawling height h of the magnetic fluid and the magnitude I of the current. 10: Container, 20: Cable, 22: Magnetic fluid, 30: Transmitting optical fiber, 40: Receiving optical fiber, 52: Light, References [1] RE Rosenswijk: Special issue of Science "New Materials", p.132~ 142, (published 1983, 12, 20)

Claims (1)

【特許請求の範囲】 1 垂直方向を向いているケーブルをとりまい
て、非磁性体の容器を設け、その中に磁性流体を
入れ、 送信光フアイバと、受信光フアイバとのペアに
なつたものを、前記容器に、高さを少しずつ違え
てとりつけ、前記各送信光フアイバを出た光が、
ケーブルのすぐ近くを通つてそれぞれ相対する各
受信光フアイバに到達するようにしたことを特徴
とする電流計。
[Claims] 1. A non-magnetic container surrounding a vertically oriented cable and containing a magnetic fluid, forming a pair of a transmitting optical fiber and a receiving optical fiber. are attached to the container at slightly different heights, and the light emitted from each of the transmitting optical fibers is
An ammeter characterized in that the ammeter passes through close proximity to a cable and reaches each receiving optical fiber facing each other.
JP59127898A 1984-06-21 1984-06-21 DENRYUKEI Expired - Lifetime JPH0228101B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127898A JPH0228101B2 (en) 1984-06-21 1984-06-21 DENRYUKEI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127898A JPH0228101B2 (en) 1984-06-21 1984-06-21 DENRYUKEI

Publications (2)

Publication Number Publication Date
JPS617473A JPS617473A (en) 1986-01-14
JPH0228101B2 true JPH0228101B2 (en) 1990-06-21

Family

ID=14971390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127898A Expired - Lifetime JPH0228101B2 (en) 1984-06-21 1984-06-21 DENRYUKEI

Country Status (1)

Country Link
JP (1) JPH0228101B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335780B2 (en) * 1994-08-31 2002-10-21 富士重工業株式会社 Body structure below the center pillar of the vehicle

Also Published As

Publication number Publication date
JPS617473A (en) 1986-01-14

Similar Documents

Publication Publication Date Title
US4134061A (en) Pipe current detector with plural magnetic flux detectors
SE9200919D0 (en) IMPROVEMENTS REGARDING ELECTROMAGNETIC FLOW METERS
KR850004801A (en) Relative Distribution Device of Pulverized Coal
JPH0228101B2 (en) DENRYUKEI
CA1269712A (en) Apparatus for the detection and measurement of suspended particulates in a molten metal
JPS6363856B2 (en)
JPS56140263A (en) Electric current measuring apparatus
CN107328988A (en) A kind of new overhead transmission line residual current detection device and its application method
US3040571A (en) Electromagnetic flowmeter for conductive fluids
JP2689163B2 (en) Double pipe sorting type electromagnetic flow meter
JPS58124960A (en) Current measuring device
SU813260A1 (en) Current meter
SU1236403A1 (en) Device for measuring strength of natural electric field in sea
RU8483U1 (en) ELECTRIC CONDUCTING LIQUID FLOW SPEED SENSOR
JPS58109858A (en) Voltage measuring device
BE905041A (en) METHOD AND DEVICE FOR THE CONTINUOUS MEASUREMENT OF THE FILLING LEVEL OF A MASS OF RADIO-ACTIVE MOLTEN GLASS.
SU864187A1 (en) Sensor of alternate electric fields of conductiance currents
JPH09101277A (en) Heat loss measuring instrument
GB2212621A (en) Underwater electric field sensor
SU1265626A1 (en) Device for measuring current
JPS58124962A (en) Current measuring device
RU2133038C1 (en) Electromagnetic meter of velocity of water flow
US2326640A (en) Apparatus for determining the dip in the earth's substrata
JPS6235245A (en) Measuring instrument for deterioration of operating fluid
JPS6118880A (en) Electrostatic probe