JPH09101277A - Heat loss measuring instrument - Google Patents

Heat loss measuring instrument

Info

Publication number
JPH09101277A
JPH09101277A JP25974795A JP25974795A JPH09101277A JP H09101277 A JPH09101277 A JP H09101277A JP 25974795 A JP25974795 A JP 25974795A JP 25974795 A JP25974795 A JP 25974795A JP H09101277 A JPH09101277 A JP H09101277A
Authority
JP
Japan
Prior art keywords
gas
heat loss
cylinder
float
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25974795A
Other languages
Japanese (ja)
Inventor
Tsukasa Taniguchi
谷口  司
Yutaka Morita
森田  裕
Yoshihide Wadayama
芳英 和田山
Ryukichi Takahashi
龍吉 高橋
Kiyoshi Yamaguchi
潔 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25974795A priority Critical patent/JPH09101277A/en
Publication of JPH09101277A publication Critical patent/JPH09101277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the vibration of a float so as to improve the measurement accuracy of a heat loss measuring instrument by forming a cylinder in an U-shaped pipe having a projecting section on the top side and using one side of the pipe for collecting a gas and the other side for measuring the quantity of the gas. SOLUTION: A heat loss measuring instrument is dipped in liquid helium 2 stored in a cryostat 1 and the helium gas naturally evaporated from the whole body of the instrument is discharged through a gas duct 16. A superconducting material 3 is surrounded with a sample chamber 4 and all of the helium gas 5 generated by an AC loss is collected to a U-shaped cylinder 6 having a projecting section on the top side. When the gas 5 is generated, the surface level of liquid helium in the cylinder 6 becomes lower at a fixed rate. When the gas 5 generated by a heat loss is collected, the gas 5 is collected to one side of the cylinder 6 and a float 10 is floated on the surface of the liquid helium on the other side. The float 10, namely, the surface level of the liquid helium is detected with photosensors containing light emitting and light receiving sections arranged in the vertical direction around the cylindrical pipe of the cylinder 10 on the float side 10. Therefore, the vibration of the float 10 can be reduce and the measurement accuracy of the heat loss measuring instrument can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱損失測定装置に係
わり、特に超電導体、またはそれから構成される超電導
機器等の変化電流や変化磁界等に伴う熱損失(交流損
失)を測定するのに適当な熱損失測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat loss measuring device, and is particularly suitable for measuring a heat loss (AC loss) associated with a changing current, a changing magnetic field, etc. of a superconductor or a superconducting device constituted by the superconductor. Heat loss measuring device.

【0002】[0002]

【従来の技術】超電導導体に交流やパルス状の変化電流
を流したときや、変化磁界が加わったときに発生する熱
損失(交流損失とも呼ぶ)は超電導導体の温度上昇をも
たらし、強いては超電導状態の破壊(クエンチ)に至ら
しめる結果になる。そのため、交流損失を低減した超電
導体の開発は、安定に動作する超電導機器の開発上で重
要かつ必須課題となる。なお、ここで言う超電導機器と
は核融合用マグネット,電力貯蔵用コイル,超電導発電
機,超電導変圧器,限流器等主に交流やパルス的な運転
を行うものである。そこで、先程述べた交流損失を低減
した超電導導体の開発のため、交流損失を精度良くかつ
迅速に評価する装置が必要不可欠となる。その観点から
特開昭61−207957号記載の熱損失測定装置が開発され、
測定上の高効率化と精度の向上が示された。その概要を
以下に示す。装置は被測定体を囲うように試料室があ
り、交流損失により発生した冷媒ガスを試料室上部に配
置した目盛付きのシリンダーに収集し、単位時間当たり
のヘリウムガス発生量を測定することにより、交流損失
は(数1)にて簡単に算出することができる。
2. Description of the Related Art Heat loss (also referred to as AC loss) generated when an alternating current or a pulsed changing current is applied to a superconducting conductor or when a changing magnetic field is applied causes a temperature rise of the superconducting conductor and, by necessity, a superconducting conductor. This will result in the destruction (quenching) of the state. Therefore, the development of superconductors with reduced AC loss is an important and essential issue in the development of stable superconducting equipment. The superconducting device mentioned here is a magnet for fusion, a coil for power storage, a superconducting generator, a superconducting transformer, a current limiting device, etc., which mainly performs AC or pulse-like operation. Therefore, in order to develop the superconducting conductor in which the AC loss is reduced as described above, a device for accurately and quickly evaluating the AC loss is indispensable. From that point of view, the heat loss measuring device described in JP-A-61-207957 was developed,
It has been shown that measurement efficiency is improved and accuracy is improved. The outline is shown below. The device has a sample chamber so as to surround the object to be measured, and collects the refrigerant gas generated by AC loss in a cylinder with a scale arranged in the upper part of the sample chamber, and measures the helium gas generation amount per unit time, The AC loss can be easily calculated using (Equation 1).

【0003】[0003]

【数1】 (Equation 1)

【0004】ここで Q:交流損失(W) ΔV:シリンダー体積(cm3 ) Δt:ヘリウムガスがΔVだけ満たされるのに要する時
間(秒) 0.354:冷媒(ヘリウム)の物性より求まる定数 しかし、発生したガス量を測定するため目盛付きのシリ
ンダーの冷媒液面変化を目視により行うため、以下の理
由により精度を向上することができなかった。 (1)目視によりシリンダー内の液面変化を観察するた
め、視差による誤差が大きい。加えて、ガラス製低温容
器が不可欠であり、低温容器の破裂等危険を伴い安全性
の問題がある。
Here, Q: AC loss (W) ΔV: Cylinder volume (cm 3 ) Δt: Time required for helium gas to be filled by ΔV (seconds) 0.354: Constant obtained from physical properties of refrigerant (helium) In order to measure the amount of generated gas, the change in the liquid level of the refrigerant in the cylinder with a scale is visually observed, so that the accuracy cannot be improved for the following reasons. (1) Since the liquid level change in the cylinder is visually observed, the error due to parallax is large. In addition, a cryogenic container made of glass is indispensable, and there is a safety problem with danger such as rupture of the cryogenic container.

【0005】(2)測定者の違いにより、測定値にばら
つきを生じる。
(2) There are variations in measured values depending on the person who measures.

【0006】上記の点を改善するため、文献“Calorime
tric measurement of a.c. losses”Cryogenics '91
Vol.31 May p.363〜365 に示す熱損失測
定装置が開発され使用されている。その装置の概略図を
図8に示す。試料室,ガスを収集するシリンダー等の構
成は前記の発明と同様にガス発生に伴い移動するシリン
ダー内の冷媒液面にフロートを浮かべておき、センサー
を2組用いてフロートが2組間のセンサーを何秒で通過
したかを測定する方法である。フロートがなぜ必要かと
いうと、冷媒の液体ヘリウムの屈折率の小さいことに原
因がある。液体ヘリウムの光の屈折率は非常に小さいた
め、液面を光センサーを用い直接検知することは不可能
である。よって、光センサーが検知可能となるように冷
媒(液体ヘリウム)の液面にフロートを浮かべた。光セ
ンサーはフロートが通過しているときに遮光、そうでな
いときに発光というように感知する。
In order to improve the above points, the document "Calorime"
tric measurement of ac losses ”Cryogenics '91
The heat loss measuring device shown in Vol.31 May p.363-365 has been developed and used. A schematic diagram of the device is shown in FIG. Like the invention described above, the structure of the sample chamber, the cylinder for collecting gas, etc. is such that the float is floated on the liquid surface of the refrigerant in the cylinder that moves with the gas generation, and two sets of sensors are used to make a sensor between the two sets. It is a method of measuring how many seconds it has passed. The reason why the float is necessary is due to the small refractive index of liquid helium as a refrigerant. Since the refractive index of light of liquid helium is very small, it is impossible to directly detect the liquid surface using an optical sensor. Therefore, the float was floated on the liquid surface of the refrigerant (liquid helium) so that it could be detected by the optical sensor. The light sensor senses light when the float is passing, and light when it is not.

【0007】この方法では前記した視差や測定者による
測定誤差を解消できる。更に、低温容器内部を外部から
確認しなくとも冷媒の液面を監視できるのでガラス製低
温容器のみならず金属や非金属製低温容器の使用が可能
となった。しかし、この方法においてはガス収集時、熱
損失により発生した気化したヘリウムガスの泡はフロー
トを横切ってシリンダーに貯まる。このためヘリウムガ
スの泡がフロートの下端の面に衝突し弾けるためフロー
トが振動する。このフロートの振動が直接測定の精度に
関わり、振動が大きいときは著しく精度を悪化させると
いう欠点があった。
According to this method, the parallax and the measurement error by the measurer can be eliminated. Furthermore, since the liquid level of the refrigerant can be monitored without checking the inside of the cryocontainer from the outside, it is possible to use not only the glass cryocontainer but also a metal or non-metal cryocontainer. However, in this method, when collecting gas, vaporized helium gas bubbles generated by heat loss are accumulated in the cylinder across the float. As a result, the bubbles of helium gas collide against the bottom surface of the float and repel it, causing the float to vibrate. The vibration of the float directly affects the accuracy of the measurement, and when the vibration is large, the accuracy is significantly deteriorated.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を排除し、光センサーを用い、ヘリウム
ガス発生率を液面にフロートを浮かべ検知する方法を用
いた熱損失測定装置において、ヘリウムガスの収集時の
フロートの振動を低減させ測定の精度を向上させた熱損
失測定装置を提供することにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to use a photosensor to measure the helium gas generation rate by using a method of detecting a float on the liquid surface to detect a heat loss. In order to provide a heat loss measuring device, the vibration of the float at the time of collecting the helium gas is reduced to improve the measurement accuracy.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するため、上記シリンダーにおいてヘリウムガス収集と
計量の役割を分担させたものである。具体的にはシリン
ダーの形状を上に凸なU字状管にして、一方をガス収集
用に、もう一方をガス量測定用に用いることにより測定
の精度を向上させるものである。
In order to solve the above problems, the present invention divides the roles of collecting and measuring helium gas in the cylinder. Specifically, the shape of the cylinder is a U-shaped tube having an upward convex shape, and one is used for collecting gas and the other is used for measuring the amount of gas to improve the accuracy of measurement.

【0010】上記のような上に凸なU字状管を用いる
と、液面に浮かべたフロートにヘリウムガスの泡が衝突
しないので、測定時のフロートの振動が低減できる。こ
のため、測定精度の向上が可能である。
When the upwardly convex U-shaped tube as described above is used, bubbles of helium gas do not collide with the float floating on the liquid surface, so that vibration of the float during measurement can be reduced. Therefore, the measurement accuracy can be improved.

【0011】[0011]

【発明の実施の形態】本実施例では液体ヘリウム中で超
電導導体や超電導機器に交流やパルス的な電流が流れた
とき、あるいは交流やパルス的な磁場が印加されたとき
に発生する交流損失の測定を例に本発明に関わる装置を
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present embodiment, the AC loss generated when an alternating current or a pulsed current flows in a superconducting conductor or a superconducting device in liquid helium, or when an alternating current or a pulsed magnetic field is applied. The apparatus according to the present invention will be described by taking measurement as an example.

【0012】図1は本発明に関わる概略図である。本発
明の測定装置はクライオスタット1に蓄えられた液体ヘ
リウム2に浸っている。装置全体からの自然蒸発したヘ
リウムガスはガス導管16を通じてクライオスタット1
外へ排出される。
FIG. 1 is a schematic diagram relating to the present invention. The measuring device of the present invention is immersed in liquid helium 2 stored in a cryostat 1. The helium gas that spontaneously evaporated from the entire equipment was fed to the cryostat 1 through the gas conduit 16.
It is discharged outside.

【0013】超電導体3は試料室4に囲われ交流損失に
より発生したヘリウムガス5は全て上に凸なU字状シリ
ンダー6に収集される。ヘリウムガス5発生に伴い上に
凸なU字状シリンダー6内のヘリウム液面は一定速度で
低下する。上に凸なU字状シリンダー6の一方では熱損
失により発生するヘリウムガス5を収集し、もう一方で
は液面にフロート10を浮かべる。上部液面検知用投光
部11a,上部液面検知用受光部11b,下部液面検知
用投光部12a,下部液面検知用受光部12bはフロー
ト10の存在する方の凸なU字状シリンダー6の円筒管
の周り,上下の長手方向に沿って配置させる。上記投光
部及び受光部を含む光センサー(図2詳細説明)を用い
てフロート10つまり液面の位置を検知可能とした。こ
こで上に凸なU字状シリンダー6はガラス製とし、熱収
縮による内容積の変化,光の屈折率に影響の極力少ない
ものとした。
The superconductor 3 is surrounded by the sample chamber 4, and the helium gas 5 generated by the AC loss is collected in the upwardly convex U-shaped cylinder 6. As the helium gas 5 is generated, the helium liquid level in the upwardly convex U-shaped cylinder 6 drops at a constant speed. The helium gas 5 generated by heat loss is collected in one of the upwardly convex U-shaped cylinders 6, and the float 10 is floated on the liquid surface in the other. The upper liquid level detecting light emitting unit 11a, the upper liquid level detecting light receiving unit 11b, the lower liquid level detecting light emitting unit 12a, and the lower liquid level detecting light receiving unit 12b are convex U-shaped on the side where the float 10 is present. It is arranged around the cylindrical tube of the cylinder 6 along the upper and lower longitudinal directions. The position of the float 10, that is, the liquid surface can be detected by using an optical sensor (detailed description of FIG. 2) including the light projecting unit and the light receiving unit. Here, the upwardly convex U-shaped cylinder 6 is made of glass, and the change in the internal volume due to thermal contraction and the influence on the refractive index of light are made as small as possible.

【0014】また、測定が終了し再度測定を始めるとき
には上に凸なU字状シリンダー6をシリンダー反転軸受
14を中心として、シリンダー吊り糸15を上下させ、
上に凸なU字状シリンダー6を反転させて測定時に収集
したヘリウムガスを上に凸なU字状シリンダー6の外に
排出させて再度所定の位置にセットし、測定を再開でき
るようになっている。
When the measurement is finished and the measurement is started again, the upwardly convex U-shaped cylinder 6 is moved up and down around the cylinder reversing bearing 14 to lift the cylinder hanging thread 15.
It is possible to reverse the upward convex U-shaped cylinder 6 and discharge the helium gas collected at the time of measurement to the outside of the upward convex U-shaped cylinder 6 and set it again at a predetermined position to restart the measurement. ing.

【0015】図2に光センサーを含む測定系の接続状況
を示した。上部液面検知用投光部11a,上部液面検知
用受光部11b,下部液面検知用投光部12a,下部液
面検知用受光部12bは光ファイバ部8を用いて上部液
面検知用発光部13a,下部液面検知用発光部13b,
上部液面検知用光/電気変換部18a,下部液面検知用
光/電気変換部18bにそれぞれ接続される。上部液面
検知用発光部13a,下部液面検知用発光部13bで投
光すると、図中対応する光ファイバ部8に光が通じ、上
部液面検知用投光部11a,下部液面検知用投光部12
aより光が上に凸なU字状シリンダー6のガス量測定側
に向かって投光される。また、上部液面検知用光/電気
変換部18a,下部液面検知用光/電気変換部18bは
センサー信号線17にも接続され、以下に示すフロート
10の有り無し、つまり冷媒液面の有り無しの光の遮光
と発光の状態を電気信号に変換しセンサー信号記録部9
に入力することができる。フロートがかかる上部液面検
知用投光部11a,上部液面検知用受光部11b,下部
液面検知用投光部12a,下部液面検知用受光部12b
の位置に無いとき上部液面検知用受光部11b,下部液
面検知用受光部12bは光を受けている状態となり、上
部液面検知用光/電気変換部18a,下部液面検知用光
/電気変換部18bはセンサー信号記録部9にセンサー
の電圧信号が発生しないような設定になっている。ま
た、フロートがかかる上部液面検知用投光部11a,上
部液面検知用受光部11b,下部液面検知用投光部12
a,下部液面検知用受光部12bの位置にある時、上部
液面検知用受光部11b,下部液面検知用受光部12b
は光を遮っている状態となり、上部液面検知用光/電気
変換部18a,下部液面検知用光/電気変換部18bは
センサー信号記録部9にセンサーの電圧信号が発生する
ような設定になっている。今、上部液面検知用投光部1
1a,上部液面検知用受光部11b,下部液面検知用投
光部12a,下部液面検知用受光部12bを上に凸なU
字状シリンダーの一部(ガス量測定側)6′の周り,上
下の長手方向にシリンダー内の体積がΔVとなるように
セットする。そこでシリンダー内の液面が上部液面検知
用投光部11a,上部液面検知用受光部11bの設置位
置から下部液面検知用投光部12a,下部液面検知用受
光部12bの設置位置まで低下してΔVだけ変化する時
間(Δt)を測定し交流損失を求める。
FIG. 2 shows the connection status of the measurement system including the optical sensor. The upper liquid level detecting light emitting part 11a, the upper liquid level detecting light receiving part 11b, the lower liquid level detecting light emitting part 12a, and the lower liquid level detecting light receiving part 12b use the optical fiber part 8 for the upper liquid level detection. Light emitting unit 13a, lower liquid level detecting light emitting unit 13b,
The upper liquid level detecting light / electric conversion unit 18a and the lower liquid level detecting light / electric conversion unit 18b are respectively connected. When light is emitted by the upper liquid level detecting light emitting section 13a and the lower liquid level detecting light emitting section 13b, light is transmitted to the corresponding optical fiber section 8 in the figure, and the upper liquid level detecting light emitting section 11a and the lower liquid level detecting Projector 12
Light is projected toward the gas amount measuring side of the U-shaped cylinder 6 which is convex upward from a. Further, the upper liquid level detection light / electric conversion unit 18a and the lower liquid level detection light / electric conversion unit 18b are also connected to the sensor signal line 17, and the presence or absence of the float 10 described below, that is, the presence of the refrigerant liquid level. The sensor signal recording unit 9 converts the light blocking state and the light emitting state without light into an electric signal.
Can be entered. Floating upper liquid level detecting light emitting part 11a, upper liquid level detecting light receiving part 11b, lower liquid level detecting light emitting part 12a, lower liquid level detecting light receiving part 12b.
When it is not at the position, the upper liquid level detecting light receiving section 11b and the lower liquid level detecting light receiving section 12b are in a state of receiving light, and the upper liquid level detecting light / electric conversion section 18a, the lower liquid level detecting light / The electrical conversion unit 18b is set so that the sensor signal recording unit 9 does not generate a sensor voltage signal. Further, an upper liquid level detecting light emitting unit 11a, an upper liquid level detecting light receiving unit 11b, and a lower liquid level detecting light emitting unit 12 which are floated.
a, when it is at the position of the lower liquid level detecting light receiving part 12b, the upper liquid level detecting light receiving part 11b, the lower liquid level detecting light receiving part 12b
Is in a state of blocking light, and the upper liquid level detection light / electric conversion unit 18a and the lower liquid level detection light / electric conversion unit 18b are set so that a sensor voltage signal is generated in the sensor signal recording unit 9. Has become. Now, the upper liquid level detection floodlight 1
1a, an upper liquid level detecting light receiving section 11b, a lower liquid level detecting light projecting section 12a, and a lower liquid level detecting light receiving section 12b are convex U
Around the part (gas amount measurement side) 6'of the character-shaped cylinder, the volume in the cylinder is set to be ΔV in the up and down longitudinal direction. Therefore, the liquid level in the cylinder is from the installation position of the upper liquid level detection light emitting unit 11a and the upper liquid level detection light receiving unit 11b to the lower liquid level detection light emitting unit 12a and the lower liquid level detection light receiving unit 12b. The AC loss is obtained by measuring the time (Δt) at which the temperature decreases to ΔV and changes by ΔV.

【0016】図3は本発明の熱損失測定装置の主要部の
斜視図である。上記、ΔVだけ変化する時間(Δt)を
測定し交流損失を求める際、従来ではそのまま式に測定
したΔtを代入していたが、シリンダーをU字状とした
ためガス収集用の内容積も考慮する必要がある。図3に
示したU字状シリンダーはガス収集用とガス量測定用の
円筒管の断面積が同一で上下方向に渡って一定である。
また、液面はガス収集用とガス量測定用の円筒管の両者
で同じ速度で低下する。このため、前途した交流損失の
換算式(数1)は(数2)のようになる。
FIG. 3 is a perspective view of the main part of the heat loss measuring apparatus of the present invention. When the AC loss is calculated by measuring the time (Δt) changing by ΔV, the measured Δt was used as it is in the conventional formula, but the internal volume for gas collection is also taken into consideration because the cylinder is U-shaped. There is a need. In the U-shaped cylinder shown in FIG. 3, the cylindrical tubes for collecting gas and measuring the gas amount have the same cross-sectional area and are constant in the vertical direction.
Further, the liquid level drops at the same speed in both the gas collecting cylindrical tube and the gas amount measuring cylindrical tube. For this reason, the conversion formula (Formula 1) for the AC loss that has been put forward is as shown in (Formula 2).

【0017】[0017]

【数2】 (Equation 2)

【0018】また、シリンダーのガス測定用円筒管の内
側にはフロート止め部7を上部液面検知用投光部11
a,上部液面検知用受光部11bに対し上側に設けた。
これは、測定を再開するため、シリンダーを反転させる
ときにフロートが測定範囲から外に飛び出さないように
するためである。そして測定中、冷媒は随時気化してい
くので気化して置換した冷媒の分を試料室4内に供給す
るため、試料室4の下部側面には冷媒供給部19の開口
部分を設けた。
A float stopper 7 is provided inside the gas measuring cylindrical tube of the cylinder, and an upper liquid level detecting projector 11 is provided.
a, provided on the upper side with respect to the upper liquid level detection light receiving portion 11b.
This is to prevent the float from jumping out of the measurement range when reversing the cylinder in order to restart the measurement. During the measurement, the refrigerant evaporates from time to time, so that the refrigerant portion vaporized and replaced is supplied into the sample chamber 4. Therefore, the opening of the refrigerant supply unit 19 is provided on the lower side surface of the sample chamber 4.

【0019】また、シリンダーは図4のような形状とす
ることが可能である。ガス収集用及びガス量測定用の円
筒管の大きさはそのままに、上部の形状を変えた。上部
の内径をフロートの大きさより十分小さくなるようにす
ると上記フロート止め部7が無しでも再測定が可能であ
る。
Further, the cylinder may have a shape as shown in FIG. The shape of the upper part was changed while maintaining the size of the cylindrical tube for collecting gas and measuring the amount of gas. If the inner diameter of the upper portion is made sufficiently smaller than the size of the float, re-measurement can be performed without the float stopper 7.

【0020】そして、シリンダーの形状は図5のように
することも可能である。シリンダーの一方の円筒管の断
面積をもう一方と違えて、両者はそれぞれ上下方向で断
面積が一定であるようにする。このとき交流損失は次に
示す(数3)で求めることができる。
The shape of the cylinder may be as shown in FIG. The cross-sectional area of one cylindrical tube of the cylinder is different from the cross-sectional area of the other so that both have a constant cross-sectional area in the vertical direction. At this time, the AC loss can be calculated by the following (Equation 3).

【0021】[0021]

【数3】 (Equation 3)

【0022】ここで、A1 はガス量測定用円筒管の断面
積 A2 はガス収集用円筒管の断面積である。
Here, A 1 is the cross-sectional area of the gas amount measuring cylindrical tube, and A 2 is the cross-sectional area of the gas collecting cylindrical tube.

【0023】以上、本発明に関わるところの熱損失測定
装置のU字状管を用いた交流損失の測定評価法を示し
た。本発明により図6に示す従来法で現れた光センサー
のセンサー出力のノイズ(ヘリウムガスの泡)やフロー
ト振動に伴う光センサーの信号の乱れが低減し、図7の
ようにセンサー出力にノイズや乱れは現れず、従来に比
べ測定上の精度が向上するとともに再現性をも向上する
ことが可能である。なお、この実施例において低温容器
は金属,非金属製及び従来の如きガラス製であっても良
いことは言うまでもない。
The method of measuring and evaluating the AC loss using the U-shaped tube of the heat loss measuring device according to the present invention has been described above. According to the present invention, noise (sensor bubbles of helium gas) in the sensor output of the optical sensor, which appears in the conventional method shown in FIG. 6, and disturbance of the signal of the optical sensor due to the float vibration are reduced, and noise or noise is generated in the sensor output as shown in FIG. Disturbance does not appear, and it is possible to improve the measurement accuracy and reproducibility as compared with the conventional method. Needless to say, in this embodiment, the cryogenic container may be made of metal, non-metal, or conventional glass.

【0024】[0024]

【発明の効果】本発明により超電導導体や超電導機器の
開発上不可欠な熱損失(交流損失)の測定と評価を精度
良く、かつ効率よく行うことができるようになった。こ
のため、パルス,交流用超電導機器の開発に与える効果
は大である。
According to the present invention, it has become possible to measure and evaluate the heat loss (AC loss), which is essential for the development of superconducting conductors and superconducting equipment, with high precision and efficiency. Therefore, it has a great effect on the development of superconducting equipment for pulse and AC.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係わる熱損失測定装置の構成
を示す概略図である。
FIG. 1 is a schematic diagram showing a configuration of a heat loss measuring device according to an embodiment of the present invention.

【図2】本発明の実施例に係わる熱損失測定装置の光セ
ンサーの構成部品の接続を示す概略図である。
FIG. 2 is a schematic view showing connection of components of an optical sensor of a heat loss measuring device according to an embodiment of the present invention.

【図3】本発明の熱損失測定装置の主要部の斜視図であ
る。
FIG. 3 is a perspective view of a main part of the heat loss measuring device of the present invention.

【図4】本発明の実施例に係わり、熱損失測定装置の構
成のうち、シリンダーの一例を示す斜視図である。
FIG. 4 is a perspective view showing an example of a cylinder in the configuration of the heat loss measuring apparatus according to the embodiment of the present invention.

【図5】本発明の実施例に係わり、熱損失測定装置の構
成のうち、シリンダーの一例を示す斜視図である。
FIG. 5 is a perspective view showing an example of a cylinder in the configuration of the heat loss measuring apparatus according to the embodiment of the present invention.

【図6】従来の光センサー感知時の出力特性図である。FIG. 6 is an output characteristic diagram when a conventional optical sensor is detected.

【図7】本実施例における光センサー感知時の出力特性
図である。
FIG. 7 is an output characteristic diagram when an optical sensor is detected in the present embodiment.

【図8】従来の熱損失測定装置の構成を示す概略図であ
る。
FIG. 8 is a schematic diagram showing a configuration of a conventional heat loss measuring device.

【符号の説明】[Explanation of symbols]

1…クライオスタット、2…冷媒、3…超電導体、4…
試料室、5…冷媒ガス、6…上に凸なU字状シリンダ
ー、6′…上に凸なU字状シリンダーの一部、7…フロ
ート止め部、8…光ファイバ部、9…センサー信号記録
部、10…フロート、11a…上部冷媒液面検知用投光
部、11b…上部冷媒液面検知用受光部、12a…下部
冷媒液面検知用投光部、12b…下部冷媒液面検知用受
光部、13a…上部冷媒液面検知用発光部、13b…下部
冷媒液面検知用発光部、14…シリンダー反転軸受、1
5…シリンダー吊り糸、16…ガス導管、17…センサ
ー信号線、18a…上部冷媒液面検知用光/電気変換
部、18b…下部冷媒液面検知用光/電気変換部、19
…冷媒供給部。
1 ... Cryostat, 2 ... Refrigerant, 3 ... Superconductor, 4 ...
Sample chamber, 5 ... Refrigerant gas, 6 ... U-shaped cylinder convex upward, 6 '... Part of U-shaped cylinder convex upward, 7 ... Float stop portion, 8 ... Optical fiber portion, 9 ... Sensor signal Recording unit, 10 ... Float, 11a ... Upper refrigerant liquid level detecting light projecting unit, 11b ... Upper refrigerant liquid level detecting light receiving unit, 12a ... Lower refrigerant liquid level detecting light projecting unit, 12b ... Lower refrigerant liquid level detecting Light receiving part, 13a ... Light emitting part for detecting upper refrigerant liquid level, 13b ... Light emitting part for lower refrigerant liquid level, 14 ... Cylinder inversion bearing, 1
5 ... Cylinder suspension thread, 16 ... Gas conduit, 17 ... Sensor signal line, 18a ... Upper refrigerant liquid level detection optical / electrical conversion section, 18b ... Lower refrigerant liquid level detection optical / electrical conversion section, 19
... Refrigerant supply unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 龍吉 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 山口 潔 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuyoshi Takahashi 7-1, 1-1 Omika-cho, Hitachi City, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Kiyoshi Yamaguchi 7-chome, Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Hitachi Ltd. Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】冷媒中におかれた被測定体の熱損失を測定
する熱損失測定装置において、被測定体の発熱により発
生した前記冷媒の気化した気体を冷媒中に配置した上に
凸なU字状管の一方で収集し、もう一方で気化した気体
を測定可能としたことを特徴とした熱損失測定装置。
1. A heat loss measuring device for measuring a heat loss of an object to be measured placed in a refrigerant, wherein vaporized gas of the refrigerant generated by heat generation of the object to be measured is placed in the refrigerant and convex. A heat loss measuring device characterized by being able to collect vaporized gas collected on one side of the U-shaped tube and vaporized on the other side.
【請求項2】請求項1に記載の該U字状管はガス収集の
ための円筒管とガス体積測定のための円筒管を合わせ持
ち、該円筒管は上部で接続,連通していることを特徴と
した熱損失測定装置。
2. The U-shaped tube according to claim 1, wherein a cylindrical tube for collecting gas and a cylindrical tube for measuring gas volume are combined, and the cylindrical tube is connected and communicated at an upper portion. Heat loss measuring device characterized by.
【請求項3】請求項1あるいは2に記載の該U字状管の
ガス収集,ガス体積測定のための円筒管は断面積の大き
さが上下,長手方向で一定であることを特徴とした熱損
失測定装置。
3. The cylindrical tube for collecting gas and measuring the gas volume of the U-shaped tube according to claim 1 or 2, wherein the cross-sectional area is constant in the vertical and longitudinal directions. Heat loss measuring device.
【請求項4】請求項1,2あるいは3のいずれかに記載
の該U字状管の気化した気体の体積測定の円筒管内に冷
媒に浮上する物体を浮かべ、熱損失発生に伴い移動する
物体を光センサーで検知することを特徴とした熱損失測
定装置。
4. An object which floats on a refrigerant in a cylindrical tube for measuring the volume of vaporized gas in the U-shaped tube according to claim 1, and moves when heat loss occurs. A heat loss measuring device characterized by detecting light with an optical sensor.
【請求項5】請求項1,2,3あるいは4のいずれかに
記載のU字状管の気化した気体の体積測定のための円筒
管の周り,上下,長手方向に沿って光センサーを配置し
たことを特徴とした熱損失測定装置。
5. A U-shaped tube according to any one of claims 1, 2, 3 and 4, wherein optical sensors are arranged around a cylindrical tube for measuring the volume of vaporized gas, vertically and longitudinally. A heat loss measuring device characterized in that
【請求項6】請求項4あるいは5に記載の光センサーを
2組用い、上に凸なU字状管の気化した気体の体積測定
の円筒管の周り,上下,長手方向にそって、1組毎に距
離を離して配置し冷媒に浮かべた物体を光センサーが検
知してからもう一方の光センサーが検知する時間を測定
し、気化した気体の単位時間あたりの発生量を測定でき
るようにしたことを特徴とした熱損失測定装置。
6. Two sets of the optical sensor according to claim 4 or 5 are used, and 1 is provided around a cylindrical tube for measuring the volume of vaporized gas in an upwardly convex U-shaped tube, along the vertical and longitudinal directions. It is possible to measure the amount of vaporized gas generated per unit time by measuring the time when the optical sensor detects the object floated on the refrigerant by arranging it at a distance from each other and detecting it with the other optical sensor. A heat loss measuring device characterized in that
JP25974795A 1995-10-06 1995-10-06 Heat loss measuring instrument Pending JPH09101277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25974795A JPH09101277A (en) 1995-10-06 1995-10-06 Heat loss measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25974795A JPH09101277A (en) 1995-10-06 1995-10-06 Heat loss measuring instrument

Publications (1)

Publication Number Publication Date
JPH09101277A true JPH09101277A (en) 1997-04-15

Family

ID=17338394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25974795A Pending JPH09101277A (en) 1995-10-06 1995-10-06 Heat loss measuring instrument

Country Status (1)

Country Link
JP (1) JPH09101277A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017656A (en) * 2004-07-05 2006-01-19 Furukawa Electric Co Ltd:The Ac loss measuring instrument and ac loss measurement method
CN104391004A (en) * 2014-11-27 2015-03-04 陕西科技大学 Device and method for testing heat radiation performance of lossless lamp
JP2016217818A (en) * 2015-05-19 2016-12-22 株式会社日立製作所 Ac loss measurement device
CN112665762A (en) * 2020-12-16 2021-04-16 广东电网有限责任公司电力科学研究院 Calorimetric test device and method for alternating current magnetization loss of non-insulated coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017656A (en) * 2004-07-05 2006-01-19 Furukawa Electric Co Ltd:The Ac loss measuring instrument and ac loss measurement method
JP4514532B2 (en) * 2004-07-05 2010-07-28 古河電気工業株式会社 AC loss measuring apparatus and measuring method
CN104391004A (en) * 2014-11-27 2015-03-04 陕西科技大学 Device and method for testing heat radiation performance of lossless lamp
JP2016217818A (en) * 2015-05-19 2016-12-22 株式会社日立製作所 Ac loss measurement device
CN112665762A (en) * 2020-12-16 2021-04-16 广东电网有限责任公司电力科学研究院 Calorimetric test device and method for alternating current magnetization loss of non-insulated coil

Similar Documents

Publication Publication Date Title
US5343146A (en) Combination coating thickness gauge using a magnetic flux density sensor and an eddy current search coil
Lamb Measurements of the dielectric properties of ice
US3366873A (en) Linear responsive molten metal level detector
CN108252706A (en) A kind of oil well low yield liquid highly aqueous water two-phase flow measurement method
CN109061324A (en) A kind of electrostatic field electric field intensity measuring device and method
JPH09101277A (en) Heat loss measuring instrument
US20010052256A1 (en) Gas sensor arrangement
JP2010223740A (en) Refrigerant state monitoring device of slush fluid cooling superconductive transmission cable
JPH10153681A (en) Water level measuring device for pressure suppression pool
Zieve et al. Investigation of quantized circulation in superfluid 3 He-B
US20190227131A1 (en) Non-Contact Conductivity and Magnetic Susceptibility Measurement with Parallel Dipole Line Trap System
EP3781934A1 (en) System and method for measuring conductivity
KR100511624B1 (en) Sheet resistance measuring instrument of non contact
JPS60179607A (en) Connecting tube type settlement meter
CN2588335Y (en) Level detector for water channel of irrigation area
CN208223604U (en) A kind of easy Dewar bottle liquid nitrogen level measuring device
Manchester et al. Adiabatic Oscillations in Liquid Helium II
JPS5833126A (en) Liquid level detector
JPH0546883B2 (en)
US3063005A (en) Transformer apparatus
RU2035034C1 (en) Device for determining surface tension of liquid
JPS5811864A (en) Eddy current type measurement system
Trakas et al. Low-velocity calibration of hot-film sensors in mercury
JP2658140B2 (en) Liquid level measurement method and apparatus
Haruyama Optical method for measurement of quality and flow patterns in helium two-phase flow