JPS5811864A - Eddy current type measurement system - Google Patents
Eddy current type measurement systemInfo
- Publication number
- JPS5811864A JPS5811864A JP11033981A JP11033981A JPS5811864A JP S5811864 A JPS5811864 A JP S5811864A JP 11033981 A JP11033981 A JP 11033981A JP 11033981 A JP11033981 A JP 11033981A JP S5811864 A JPS5811864 A JP S5811864A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- fluid
- detection part
- guide tube
- detection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P5/00—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
- G01P5/08—Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、導電性を有する被測定流体(たとえばナトリ
ウム)の温度、流速、空隙率等を被測定流体中に発生す
る渦電流に基づいて測定する渦電流式測定システムに関
するものであり、詳しくは、このようなシステムを構成
する検出部を案内管内に挿入するのにあたって、案内管
内における検出部の位置が精度よく検出できるようにし
だものである。DETAILED DESCRIPTION OF THE INVENTION The present invention is an eddy current measurement system that measures the temperature, flow velocity, porosity, etc. of a conductive fluid to be measured (for example, sodium) based on eddy currents generated in the fluid to be measured. Specifically, when inserting the detecting section constituting such a system into the guide tube, the position of the detecting section within the guide tube can be detected with high accuracy.
ある種の原子炉では、冷却材として液体金属ナトリウム
(以下ナトリウムという)を用い、ナトリウムを炉容器
の下部から流入させて炉心を通過させ、炉容器の上部か
ら流出させるように構成されている。このような原子炉
では、炉心の上部にナトリウムの流れ方向に沿って複数
の案内管を配置し、各案内管内に1次コイルを挾むよう
にして2次コイルが配置された検出部を挿入して、炉心
上部におけるナトリウムの流速、温度、空隙率等を測定
することが行われている。そして、これらの測定結果か
ら、炉の運転状態の監視や炉心の異常検出が行われる。Some nuclear reactors use liquid metal sodium (hereinafter referred to as sodium) as a coolant and are configured so that the sodium enters the reactor vessel from the bottom, passes through the reactor core, and exits the reactor vessel from the top. In such a nuclear reactor, a plurality of guide tubes are arranged in the upper part of the reactor core along the flow direction of sodium, and a detection section in which a secondary coil is arranged is inserted so as to sandwich a primary coil in each guide tube. The flow velocity, temperature, porosity, etc. of sodium in the upper part of the reactor core are being measured. Based on these measurement results, the operating state of the reactor is monitored and abnormalities in the reactor core are detected.
ところで、これらの測定は、検出部を案内管内の先端部
の所定位置に配置した状態で行わなければなら々い。こ
のためには、検出部が案内管内の所定の位置に配置され
ていることを検出する必要がある。Incidentally, these measurements must be carried out with the detection section placed at a predetermined position at the distal end within the guide tube. For this purpose, it is necessary to detect that the detection section is placed at a predetermined position within the guide tube.
このような検出部の位置を検出する方法として、たとえ
ば特開昭52−439462号のよう々方法が提案され
ている。この方法は、案内管内の所定位置に導電率の異
々った部分を加工しておき、検出部の2次コイルの出力
変化または1次コイルの自己インピーダンスの変化を検
出して、検出部が案内管内の所定の位置に配置されてい
ることを検出するようにしたものである。As a method for detecting the position of such a detection section, a method such as that disclosed in Japanese Patent Application Laid-Open No. 52-439462 has been proposed. In this method, sections with different conductivities are machined at predetermined positions in the guide tube, and changes in the output of the secondary coil of the detection section or changes in the self-impedance of the primary coil are detected. It is designed to detect that the guide tube is placed at a predetermined position within the guide tube.
しかし、このような方法では、原子炉が運転状態に入る
ことKより、検出部と案内管内の導電率の異々っ九部分
との相対位置が構成材料の線膨張率の違いや案内管の振
動等で変化することがある。However, in such a method, since the reactor enters the operating state, the relative position between the detection part and the parts of the guide tube with different conductivities is affected by the difference in linear expansion coefficient of the constituent materials and the difference in the coefficient of linear expansion of the guide tube. It may change due to vibration, etc.
この結果、検出部の1次コイル・K対する2次コイルお
よび周辺の電磁気的な対称性が損われ、測定誤差を生じ
ることに々す、好ましくない。As a result, the electromagnetic symmetry of the secondary coil and its surroundings with respect to the primary coil/K of the detection section is impaired, which is undesirable as it tends to cause measurement errors.
本発明は、このような欠点を解決するために、被測定流
体の流れ方向に沿って被測定流体中に配置された案内管
内に軸方向に沿って複数のコイルが配置された検出部を
挿入配置するのにあたって、検出部の出力信号に基づb
て検出部が管内の被測定基準位置に達したことを検出す
るとともに管内での基準位置からの検出部の移動量を検
出し、管(3)
内における検出部の位置を検出するようにしたものであ
る。In order to solve these drawbacks, the present invention inserts a detection section in which a plurality of coils are arranged along the axial direction into a guide tube arranged in the fluid to be measured along the flow direction of the fluid to be measured. When placing the b
The position of the detection part in the pipe (3) is detected by detecting that the detection part has reached the reference position to be measured in the pipe, and also detecting the amount of movement of the detection part from the reference position in the pipe. It is something.
これKより、原子炉が運転状態に入っても、検出部の1
次コイルに対する2次コイルおよび周辺の電磁気的々対
称性が損われることはなく、測定誤差を生じることはな
い。From this K, even if the reactor enters the operating state, the detection unit 1
The electromagnetic symmetry of the secondary coil and its surroundings with respect to the secondary coil is not impaired, and no measurement errors occur.
以下、図面を用いて詳細に説明する。Hereinafter, it will be explained in detail using the drawings.
第1図は本発明に係るシステムの要部の一例を示す構成
説明図、第2図は第1図の等価回路図である。FIG. 1 is a configuration explanatory diagram showing an example of essential parts of a system according to the present invention, and FIG. 2 is an equivalent circuit diagram of FIG. 1.
図面において、1は検出部、2はリード線、3は案内管
、4は励磁信号源、L□〜L3は被測定流体の液面位置
である。検出部1は、1次コイル11と1次コイル11
を挾むようにして軸方向に沿って配置された2次コイル
12.13とで構成されている。In the drawings, 1 is a detection unit, 2 is a lead wire, 3 is a guide tube, 4 is an excitation signal source, and L□ to L3 are liquid level positions of the fluid to be measured. The detection unit 1 includes a primary coil 11 and a primary coil 11.
The secondary coils 12 and 13 are arranged along the axial direction so as to sandwich the secondary coils 12 and 13.
1次コイル11は、励磁信号源4によシ交流励磁される
。案内管5は、たとえばステンレスで構成されていて、
被測定流体の流れ方向Fに沿って被測定流体中に配置さ
れている。こめ案内管3内には、検出部1が挿入配置さ
れる。The primary coil 11 is AC excited by the excitation signal source 4 . The guide tube 5 is made of stainless steel, for example.
It is arranged in the fluid to be measured along the flow direction F of the fluid to be measured. The detection section 1 is inserted into the rice guide tube 3 .
(4)
このように構成されたシステムの動作について説明する
。なお、以下の説明において、案内管1の肉厚は全長に
わたって均一とする。(4) The operation of the system configured as described above will be explained. In the following description, it is assumed that the wall thickness of the guide tube 1 is uniform over its entire length.
検出部1を案内管3内に挿入するのKあたって、検出部
1の1次コイル11ヲ励磁信号源4により励磁しておく
。上流側に位置する2次コイル12の出力電圧iE□、
下流側に位置する2次コイル13の出力電圧k E2と
すると、検出部1が被測定流体の液面から十分前れてい
る間の出力電圧は、E1’F E2となる。検出部1が
液面LIK近づくと、被測定流体中に渦電流が流れて1
次コイル11による磁束を打ち消すようKなシ、2次コ
イル12と鎖交する磁束が減少してE□〈E2となる。Before inserting the detection section 1 into the guide tube 3, the primary coil 11 of the detection section 1 is excited by the excitation signal source 4. The output voltage iE□ of the secondary coil 12 located on the upstream side,
Assuming that the output voltage of the secondary coil 13 located on the downstream side is k E2, the output voltage while the detection section 1 is sufficiently in front of the liquid level of the fluid to be measured is E1'F E2. When the detection unit 1 approaches the liquid level LIK, an eddy current flows in the fluid to be measured and
As K cancels out the magnetic flux caused by the secondary coil 11, the magnetic flux interlinking with the secondary coil 12 decreases, resulting in E□<E2.
検出部1を被測定流体の液面L2下の案内管3内に挿入
するOKしたがってElはますます減少し、1次コイル
11の中心が液面L2よシも十分下の位置でElはほは
一定値となる。OK to insert the detection part 1 into the guide tube 3 below the liquid level L2 of the fluid to be measured. Therefore, El decreases more and more, and when the center of the primary coil 11 is well below the liquid level L2, El becomes almost is a constant value.
一方、2次コイル13の出力電圧E2も液面に近づくに
したがって減少し、被測定流体の液面L3に対して十分
な深さの案内管3内に挿入されるとほぼ一定値とな如、
再びE1今E2となる。第3図は、検出部1の挿入量り
と検出部1の出力電圧との関係を示す特性側図であって
、横軸には挿入量りをとり、縦軸には出力電圧をとって
いる。(、)は各出力電圧E1+ E2の変化を示し、
(b)は差電圧E2− Elの変化を示し、(C)は和
電圧E2+H□の変化を示している。これら第3図から
明らかなように、出力電圧E2.差電圧E2−E1ある
いは和電圧E2+E□のうちの少なくとも1つを観測す
ることにより、検出部1が被測定流体の液面下の管内の
所定の基準位置に達したことが検出できる。ここで、被
測定流体の液面位置は、別途設置されている液面計等で
精度よく測定することができる。また、第2図における
液面L3と1次コイル11の中心位置との距Htは、予
め実験等によシ求めておくことができる。さらに1液面
下の管内における基準位置からの検出部1の移動量は、
被測定流体の流速信号が被測定流体と検出部1との相対
速度に比例することから、被測定流体が静止しているも
のとすると、整流平滑された流速信号を積分することK
よシ求めることができる。第4図に、このような移動量
を求める回路の一例を示す。第4図において、5は整流
平滑回路、6は積分器、7は出力端子である。On the other hand, the output voltage E2 of the secondary coil 13 also decreases as it approaches the liquid level, and becomes an almost constant value when inserted into the guide tube 3 at a depth sufficient for the liquid level L3 of the fluid to be measured. ,
E1 is now E2 again. FIG. 3 is a characteristic diagram showing the relationship between the insertion scale of the detection unit 1 and the output voltage of the detection unit 1, with the horizontal axis representing the insertion scale and the vertical axis representing the output voltage. (,) indicates the change in each output voltage E1+E2,
(b) shows the change in the differential voltage E2-El, and (C) shows the change in the sum voltage E2+H□. As is clear from these FIG. 3, the output voltage E2. By observing at least one of the differential voltage E2-E1 or the sum voltage E2+E□, it is possible to detect that the detection unit 1 has reached a predetermined reference position in the pipe below the surface of the fluid to be measured. Here, the liquid level position of the fluid to be measured can be accurately measured using a separately installed liquid level gauge or the like. Further, the distance Ht between the liquid level L3 and the center position of the primary coil 11 in FIG. 2 can be determined in advance through experiments or the like. Furthermore, the amount of movement of the detection unit 1 from the reference position in the pipe below the liquid level is:
Since the flow velocity signal of the fluid to be measured is proportional to the relative velocity between the fluid to be measured and the detection unit 1, assuming that the fluid to be measured is stationary, the rectified and smoothed flow velocity signal can be integrated.
You can ask for help. FIG. 4 shows an example of a circuit for determining such a movement amount. In FIG. 4, 5 is a rectifying and smoothing circuit, 6 is an integrator, and 7 is an output terminal.
このように、検出部1の出力信号に基づいて検出部1が
被測定流体の液面下の管内の所定の基準位置に達したこ
とを検出するとともに液面下の管内での基準位置からの
検出部1の移動量を検出することにより、管内における
検出部1の位置を精度よく検出することができ、検出部
1を管内の所望の位置に挿入配置することができる。In this way, based on the output signal of the detection unit 1, the detection unit 1 detects that the fluid to be measured has reached a predetermined reference position in the pipe below the liquid level, and also detects that the measured fluid has reached a predetermined reference position in the pipe below the liquid level. By detecting the amount of movement of the detection section 1, the position of the detection section 1 within the tube can be detected with high accuracy, and the detection section 1 can be inserted and arranged at a desired position within the tube.
なお、上記実施例では、被測定流体が静止しているもの
とし、1次コイル11の励磁周波数を常に一定に保って
一連の位置検出を行う例について説明したが、被測定流
体が移動している場合には測定誤差を生じることになる
。このような場合には、検出部1が被測定流体の液面下
の管内の所定の位置に達したことを検出した時点で、渦
電流の浸透深さδ(δ=1/、F万)が案内管3の肉厚
に相当する励磁周波数に切り換えればよい。ここで、ド
は透磁率、ωは角励磁周波数、σは案内管3の導電率で
ある。このようKすることによシ、渦電流は案内(7)
管3のみに流れることになって被測定流体の移動の有無
とは無関係と彦υ、たとえば原子炉の運転中であっても
高精度の位置検出が行える。In the above embodiment, it is assumed that the fluid to be measured is stationary, and a series of position detections are performed while keeping the excitation frequency of the primary coil 11 constant. However, if the fluid to be measured is moving, If there is a difference, measurement errors will occur. In such a case, when the detection unit 1 detects that it has reached a predetermined position in the pipe below the surface of the fluid to be measured, the penetration depth of the eddy current δ (δ = 1/, F 1,000) is determined. It is sufficient if the excitation frequency is changed to correspond to the wall thickness of the guide tube 3. Here, d is the magnetic permeability, ω is the angular excitation frequency, and σ is the conductivity of the guide tube 3. By doing so, the eddy currents flow only through the guide pipe (7) 3 and are independent of whether or not the fluid to be measured moves. Accurate position detection is possible.
また、上記実施例では、案内管5内の基準位置を、被測
定流体の液面位置および予め実験等によシ求めた液面と
検出部1の1次コイル11の中心位置との距離tによシ
設定する例について説明したが、被測定流体の液面が変
動していたシ、液面下における案内管5の肉厚が不均一
であったりすると、測定誤差を生じることになる。この
ような欠点を解決するためには、案内管3の管壁の一部
に他の部分と電磁気特性の異なる変化部を設け、この変
化部を基準位置とすればよい。変化部は、凹部を設けた
シ、溶接部材を設けたシ、管壁と導電率や透磁率の異な
る物質を設けることによシ形成することができる。なお
、この変化部は、被測定流体の測定にあたって支障を生
じることがなく、かつ検出部1を配置すべき位置に近い
所に設けることが望ましい。このようにして形成される
変化部は、検出部1の2次コイル12.13 K誘起さ
れる(8)
電圧の変化または1次コイル11の自己インピーダンス
の変化に基づいて検出することができるが、別途検出部
1の軸方向に沿って検出部1と同軸上に一定の間隔を保
ってサーチコイルを固定配置し、このサーチコイルの自
己インピーダンスの変化に基づいて検出するようKして
もよい。このようなサーチコイルを用いることにより、
変化部を検出部1の1次コイル11の磁束が鎖交しない
よう々位置に設けることができるという利点も得られる
。In the above embodiment, the reference position in the guide tube 5 is defined as the liquid level position of the fluid to be measured, the distance t between the liquid level determined in advance through experiments, etc., and the center position of the primary coil 11 of the detection unit 1. Although an example has been described in which the liquid level is changed, if the liquid level of the fluid to be measured fluctuates or if the thickness of the guide tube 5 below the liquid level is uneven, measurement errors will occur. In order to solve such a drawback, it is possible to provide a portion of the tube wall of the guide tube 3 with a changing portion having different electromagnetic characteristics from other portions, and to use this changing portion as a reference position. The changing portion can be formed by providing a recess, a welding member, or a material having a different electrical conductivity or magnetic permeability from the tube wall. In addition, it is desirable that this changing part is provided in a place that does not cause any trouble in measuring the fluid to be measured and is close to the position where the detection part 1 is to be placed. The changing portion formed in this way can be detected based on a change in the voltage induced in the secondary coil 12.13 of the detection portion 1 (8) or a change in the self-impedance of the primary coil 11. Alternatively, a search coil may be fixedly disposed coaxially with the detection section 1 at a fixed interval along the axial direction of the detection section 1, and detection may be performed based on a change in the self-impedance of this search coil. . By using such a search coil,
Another advantage is that the changing section can be provided at a position such that the magnetic fluxes of the primary coil 11 of the detecting section 1 are not interlinked.
また、上記実施例では、検出部1として、軸方向に沿っ
て1次コイル11を挾むようにして2次コイル12.1
3が配置されたものを用いる例について説明したが、少
なくとも2個のコイルを軸方向に沿って配置されたもの
を用い、これらコイル金相補的に1次コイルおよび2次
コイルとして切シ換えるようKしてもよい。Further, in the above embodiment, the primary coil 11 is sandwiched between the secondary coils 12.1 as the detection unit 1 along the axial direction.
Although we have described an example in which at least two coils are arranged along the axial direction, these coils can be switched complementary to each other as a primary coil and a secondary coil. You may also K.
さらに1上記実施例では、原子炉の案内管内に検出部を
挿入する例について説明したが、他の管路につ−ても同
様の効果が得られることはいうまでもない。Furthermore, in the above embodiment, an example in which the detection section is inserted into the guide pipe of a nuclear reactor has been described, but it goes without saying that similar effects can be obtained with other pipes.
以上説明したように、本発明によれば、比較的簡単な構
成で、案内管内における検出部の位置が精度よく検出で
きる渦電流式測定システムが実現でき、実用上の効果は
大きい。As described above, according to the present invention, it is possible to realize an eddy current measurement system that can accurately detect the position of the detection section within the guide tube with a relatively simple configuration, and has great practical effects.
第1図は本発明に係るシステムの要部の一例を示す構成
説明図、第2図は第1図の等価回路図、第3図は第1図
のシステムにおける検出部の挿入量りと検出部の出力電
圧との関係を示す特性側図、第4図は管内における検出
部の移動量を求める回路の一例を示す回路図である。
1・・・検出部、2・・・リード線、3・・・案内管、
4・・・励磁信号源、5・・・整流平滑回路、6・・・
積分器、7・・・出力端子。FIG. 1 is a configuration explanatory diagram showing an example of the essential parts of the system according to the present invention, FIG. 2 is an equivalent circuit diagram of FIG. 1, and FIG. FIG. 4 is a circuit diagram showing an example of a circuit for determining the amount of movement of the detection section within the tube. 1... Detection unit, 2... Lead wire, 3... Guide tube,
4... Excitation signal source, 5... Rectifier and smoothing circuit, 6...
Integrator, 7...output terminal.
Claims (1)
た案内管内に軸方向に沿って複数のコイルが配置された
検出部を挿入配置するのにあたって、検出部の出力信号
に基づいて検出部が管内の基準位置に達したことを検出
するとともに管内での基準位置からの検出部の移動量を
検出し、管内における検出部の位置を検出することを特
徴とする渦電流式測定システム。When inserting and arranging a detection section in which a plurality of coils are arranged along the axial direction into a guide tube placed in the fluid to be measured along the flow direction of the fluid to be measured, detection is performed based on the output signal of the detection section. What is claimed is: 1. An eddy current measurement system that detects the position of the detection part within the pipe by detecting that the detection part has reached a reference position within the pipe and also detecting the amount of movement of the detection part from the reference position within the pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11033981A JPS5811864A (en) | 1981-07-15 | 1981-07-15 | Eddy current type measurement system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11033981A JPS5811864A (en) | 1981-07-15 | 1981-07-15 | Eddy current type measurement system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5811864A true JPS5811864A (en) | 1983-01-22 |
JPH0153426B2 JPH0153426B2 (en) | 1989-11-14 |
Family
ID=14533242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11033981A Granted JPS5811864A (en) | 1981-07-15 | 1981-07-15 | Eddy current type measurement system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5811864A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4986124A (en) * | 1987-06-15 | 1991-01-22 | Kollmorgen Corporation | Screened inductance sensors, especially sensors for level measurement |
US5576516A (en) * | 1993-09-13 | 1996-11-19 | Yazaki Corporation | Cover of battery connecting terminal |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5431785A (en) * | 1977-08-15 | 1979-03-08 | Yokogawa Hokushin Electric Corp | Eddy current type current meter |
-
1981
- 1981-07-15 JP JP11033981A patent/JPS5811864A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5431785A (en) * | 1977-08-15 | 1979-03-08 | Yokogawa Hokushin Electric Corp | Eddy current type current meter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4986124A (en) * | 1987-06-15 | 1991-01-22 | Kollmorgen Corporation | Screened inductance sensors, especially sensors for level measurement |
US5576516A (en) * | 1993-09-13 | 1996-11-19 | Yazaki Corporation | Cover of battery connecting terminal |
Also Published As
Publication number | Publication date |
---|---|
JPH0153426B2 (en) | 1989-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2698749B2 (en) | Combined coating thickness gauge for non-ferrous coatings on iron substrates and non-conductive coatings on conductive substrates | |
KR930007114B1 (en) | Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies | |
US5059902A (en) | Electromagnetic method and system using voltage induced by a decaying magnetic field to determine characteristics, including distance, dimensions, conductivity and temperature, of an electrically conductive material | |
US3693075A (en) | Eddy current system for testing tubes for defects,eccentricity,and wall thickness | |
US3366873A (en) | Linear responsive molten metal level detector | |
US3948100A (en) | Probe for measuring the level of a liquid | |
US4122714A (en) | Magnetic current meter for open channel flow measurement | |
JPS5811864A (en) | Eddy current type measurement system | |
US4700134A (en) | Method and apparatus for determining the amount of magnetic debris adhering to the exterior of a tube | |
JPH0124267B2 (en) | ||
JP3575264B2 (en) | Flow velocity measuring method and device | |
JPH08211085A (en) | Flow velocity measuring device | |
JPH0727868A (en) | Device for detecting position of buried metallic object | |
JPS5844967B2 (en) | How to detect the position of an eddy current flowmeter inside a pipe | |
SU979982A1 (en) | Strapped converter for eddy-current flaw detector | |
JPS6014177Y2 (en) | electromagnetic flow meter | |
KR860000020B1 (en) | Measuring device of velocity and thickness | |
JPH06122056A (en) | Method for detecting level of molten metal in high frequency electromagnetic field casting die | |
JPH0322563B2 (en) | ||
JPH04145359A (en) | Rotating flux type magnetic sensor and defect survey device | |
JP2005207755A (en) | Electromagnetic flowmeter | |
JPH04268449A (en) | Electromagnetic flaw detection | |
JPH11194003A (en) | Method for detecting welding seam part of steel pipe | |
JPS6221002A (en) | Thickness measurement of linking pipe | |
JPS579584A (en) | Eddy system weld zone detecting method |