JPH0322563B2 - - Google Patents

Info

Publication number
JPH0322563B2
JPH0322563B2 JP56147885A JP14788581A JPH0322563B2 JP H0322563 B2 JPH0322563 B2 JP H0322563B2 JP 56147885 A JP56147885 A JP 56147885A JP 14788581 A JP14788581 A JP 14788581A JP H0322563 B2 JPH0322563 B2 JP H0322563B2
Authority
JP
Japan
Prior art keywords
flow rate
orifice
movable orifice
fluid
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56147885A
Other languages
Japanese (ja)
Other versions
JPS5850419A (en
Inventor
Yoshito Tanaka
Takeshi Ichanagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14788581A priority Critical patent/JPS5850419A/en
Publication of JPS5850419A publication Critical patent/JPS5850419A/en
Publication of JPH0322563B2 publication Critical patent/JPH0322563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/22Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters
    • G01F1/24Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters with magnetic or electric coupling to the indicating device

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は面積流量計に係り、特に管内を流れる
流体の流量と流量変化率を同時に検出するのに好
適な流量および流量変化率検出装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an area flow meter, and more particularly to a flow rate and flow rate change rate detection device suitable for simultaneously detecting the flow rate and rate of change in flow rate of a fluid flowing in a pipe. It is something.

〔従来の技術〕[Conventional technology]

従来の面積流量計としては、流体が通過する管
の内部に移動体を設け、この移動体の変位を電気
的な手段によつて検出するものが一般的に用いら
れている。
2. Description of the Related Art Conventional area flowmeters generally include those in which a moving body is provided inside a pipe through which fluid passes, and the displacement of this moving body is detected by electrical means.

すなわち、特公昭49−41329号公報に記載の面
積流量計は、励磁コイルと励磁コイルに電磁的に
結合した差動トランスの内側に磁性材料のプラン
ジヤを設けたものであつた。又、特開昭52−
92554号公報に記載の面積流量計は、差動トラン
スの内側にソフトフエライトなどの高導磁率の磁
性体のコアを設けたものであつた。
That is, the area flow meter described in Japanese Patent Publication No. 49-41329 has a plunger made of a magnetic material provided inside an excitation coil and a differential transformer electromagnetically coupled to the excitation coil. Also, JP-A-52-
The area flow meter described in Publication No. 92554 had a core made of a magnetic material with high magnetic permeability such as soft ferrite inside a differential transformer.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の流量計は、可動オリフイス
部分に磁性体を設けたものであつて、その変位の
大きさに応じた交流電圧の位相及び振幅の電圧を
計測して流量を検出するものであるため、単に管
内を流動する流体のみを検知するためのものであ
る。このような構造の流量計を油圧サーボ系に適
用してフイードバツク制御用の検出手段として用
いる場合には、流量フイードバツクのみしか行え
ず、また流量の変化率を計測する方法がないた
め、それをフイードバツクして制御性能を向上さ
せることができなかつた。もしくは、流量の変化
速度に相当する他の物理量を計測し、フイードバ
ツクする方法があるが、検出装置が2個になり、
装置が複雑になると共に、応答性、安全性、精度
等の面で種々の問題が生じ、計測の信頼性が損な
われる欠点があつた。
The conventional flowmeter described above has a magnetic material installed in the movable orifice, and detects the flow rate by measuring the phase and amplitude of the AC voltage depending on the magnitude of the displacement. Therefore, it is simply used to detect only the fluid flowing inside the pipe. When a flowmeter with such a structure is applied to a hydraulic servo system and used as a detection means for feedback control, it can only perform flow rate feedback, and there is no way to measure the rate of change in flow rate. However, the control performance could not be improved. Alternatively, there is a method of measuring other physical quantities equivalent to the rate of change of flow rate and providing feedback, but this requires two detection devices and
As the device becomes more complex, various problems arise in terms of responsiveness, safety, accuracy, etc., and the reliability of measurement is impaired.

本発明は、サーボ系のフイードバツク制御等に
適用した場合に、一個の検出装置で流体の流量及
び流量変化率を精度よく同時に検出できる信頼性
の高い流体の流量および流量変化率検出装置を提
供することを目的とするものである。
The present invention provides a highly reliable fluid flow rate and flow rate change rate detection device that can simultaneously detect the fluid flow rate and flow rate change rate with a single detection device when applied to feedback control of a servo system. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の目的を達成するために、流体
が流動する管内に設けられた固定オリフイスと、
この固定オリフイスとともに絞りを形成し、流体
の流量に応じて絞りの前後に生じる差圧によつて
管の内部を移動する可動オリフイスと前記管の外
壁に前記可動オリフイスの移動域に沿つて巻かれ
た交流励磁用の1次コイルと、前記管の外壁に沿
つて前記1次コイルの両側に巻かれた前記可動オ
リフイスの移動を検知する2個の検知用の2次コ
イルとを備えており、前記可動オリフイスの本体
を強磁性体の磁石によつて形成し、前記可動オリ
フイスの絞りを形成する突起を非磁性体によつて
形成し、前記2次コイルに生ずる夫々の誘導起電
圧を入力し、それらの電圧の差電圧を演算して流
体の流量変化率を得る第1の減算器と、前記2次
コイルに生ずる前記夫々の誘導起電圧を入力して
同期整流を行う2つの同期整流器と、この2つの
同期整流器によつて整流された信号の差を演算し
て流体の流量を求める第2の減算器とを設ける。
In order to achieve the above object, the present invention includes a fixed orifice provided in a pipe through which a fluid flows;
Together with this fixed orifice, a movable orifice is formed that moves inside the tube by the differential pressure generated before and after the constriction depending on the flow rate of the fluid. a primary coil for AC excitation, and two secondary coils for detection that detect movement of the movable orifice wound on both sides of the primary coil along the outer wall of the tube, The main body of the movable orifice is formed of a ferromagnetic magnet, the protrusion forming the aperture of the movable orifice is formed of a non-magnetic material, and each induced electromotive force generated in the secondary coil is inputted. , a first subtractor that calculates a difference voltage between these voltages to obtain a fluid flow rate change rate, and two synchronous rectifiers that perform synchronous rectification by inputting the respective induced electromotive voltages generated in the secondary coil. , and a second subtractor that calculates the fluid flow rate by calculating the difference between the signals rectified by the two synchronous rectifiers.

〔作用〕[Effect]

可動オリフイス本体を強磁性体の磁石、例えば
永久磁石により形成し、固定オリフイスおよび可
動オリフイス突起を非磁性体で形成している。こ
れにより、可動オリフイスの変位に応じて2次コ
イルに誘起される誘導起電圧のS/N比が向上す
るとともに、管内を流れる流体に含まれる鉄粉等
の絞り部への付着を防止できるので、絞り作用を
用いた計測を高精度に行なうことができる。前記
2次コイルに誘起される誘導起電圧はS/N比の
向上により直接差を求めることができ、その値よ
り可動オリフイスの速度が求まると同時に、前記
2次コイルの誘導起電圧の同期整流後の差より可
動オリフイスの変位の大きさと方向が求まる。可
動オリフイスの変位は流体の流量に対応し、可動
オリフイスの速度は流体の流量変化率に対応する
ので、微分という操作をすることなく、流量及び
流量変化率を精度よく同時に検出でき、信頼性の
向上が図られる。
The movable orifice body is formed of a ferromagnetic magnet, such as a permanent magnet, and the fixed orifice and the movable orifice protrusion are formed of a non-magnetic material. This improves the S/N ratio of the induced electromotive force induced in the secondary coil according to the displacement of the movable orifice, and prevents iron powder, etc. contained in the fluid flowing inside the pipe from adhering to the constricted part. , measurement using the aperture effect can be performed with high precision. The difference in the induced electromotive force induced in the secondary coil can be directly determined by improving the S/N ratio, and from that value the speed of the movable orifice can be determined, and at the same time, the induced electromotive voltage in the secondary coil can be synchronously rectified. From the latter difference, the magnitude and direction of the displacement of the movable orifice can be determined. The displacement of the movable orifice corresponds to the flow rate of the fluid, and the speed of the movable orifice corresponds to the rate of change in the flow rate of the fluid. Therefore, the flow rate and rate of change in flow rate can be detected simultaneously with high accuracy without the need for differentiation, which increases reliability. Improvements will be made.

〔実施例〕〔Example〕

以下本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の装置の一実施例の構成を示す
断面図である。この図において、流量および流量
変化率を計測する流体が通過する比磁性体のステ
ンレス製の管1の内部には、管軸に対称な形状の
固定オリフイス2が左右一対のロツド3Aおよび
3Bによつて支持体4Aおよび4Bに取付けられ
ている。各支持板4A,4Bは各々流孔5Aおよ
び5Bを有し、前記管1の内壁に固定されてい
る。一方、強磁性体材料の磁石(すなわち永久磁
石)からなり、かつ前記固定オリフイス2との間
に絞りを形成するような形状になされた可動オリ
フイス本体6と、可動オリフイス突起6Bとから
なる可動オリフイス6が管1の内壁をガイドとし
てばね7の作用時に管1の中心軸に沿つて図中左
右方向に各々移動可能なように設けられている。
また、可動オリフイス本体6Aの先端には、可動
オリフイス本体6Aと一体に動作する比磁性体材
料のオリフイス突起6Bが設けられており、作動
油中に混入する鉄粉等の付着により可動オリフイ
ス6の動作が妨げられるのを防止するようにして
いる。
FIG. 1 is a sectional view showing the structure of an embodiment of the device of the present invention. In this figure, a fixed orifice 2 with a shape symmetrical to the tube axis is connected to a pair of left and right rods 3A and 3B inside a stainless steel tube 1 made of a non-magnetic material through which the fluid through which the flow rate and rate of change in flow rate are to be measured passes. and is attached to supports 4A and 4B. Each support plate 4A, 4B has flow holes 5A and 5B, respectively, and is fixed to the inner wall of the tube 1. On the other hand, a movable orifice body 6 is made of a magnet made of a ferromagnetic material (that is, a permanent magnet) and is shaped to form an aperture between it and the fixed orifice 2, and a movable orifice protrusion 6B. 6 are provided so as to be movable in the left and right directions in the figure along the central axis of the tube 1 when a spring 7 acts, using the inner wall of the tube 1 as a guide.
In addition, an orifice protrusion 6B made of a specific magnetic material is provided at the tip of the movable orifice body 6A, and the orifice protrusion 6B is made of a specific magnetic material and operates integrally with the movable orifice body 6A. This is to prevent movement from being hindered.

管1の外壁面上には可動オリフイス6の移動変
位を検出するのに必要な交流励磁用の1次コイル
8が設けられている。この1次コイル8には交流
電圧源9が接続されている。一方交流励磁用の1
次コイル8の左右両側には、可動オリフイス6の
図中右側方向および左側方向への移動を各々検知
してこの移動量に応じた信号ならびに可動オリフ
イス6の変化率すなわち速度量に応じた信号を出
力するための検出用の2次コイル10および11
が各々設けらている。12は検出用の2次コイル
10および11からの出力を取出し、可動オリフ
イス6の変位とその変化率すなわち速度成分とを
分別する演算装置である。13は取付用のフラン
ジである。前述した演算装置12については後で
詳細に述べる。
A primary coil 8 for alternating current excitation necessary for detecting the displacement of the movable orifice 6 is provided on the outer wall surface of the tube 1 . An AC voltage source 9 is connected to the primary coil 8 . On the other hand, 1 for AC excitation
The left and right sides of the next coil 8 detect the movement of the movable orifice 6 to the right and to the left in the figure, respectively, and output signals corresponding to the amount of movement and signals corresponding to the rate of change, that is, the speed of the movable orifice 6. Secondary coils 10 and 11 for detection to output
are provided for each. Reference numeral 12 denotes an arithmetic device which extracts outputs from the secondary coils 10 and 11 for detection and separates the displacement of the movable orifice 6 and its rate of change, ie, velocity component. 13 is a flange for mounting. The arithmetic unit 12 mentioned above will be described in detail later.

上述した本発明の装置の実施例においては、た
とえば作動油が管1の支持板4A,4Bの流孔5
Aまたは5Bから流入すると、その流入による絞
りの前後の差圧に応じて可動オリフイス6が図中
右方もしくは左方に移動する。強磁性体の磁石か
らなる可動オリフイス本体6の移動による可動オ
リフイス6の変位と速度とは検出用の2次コイル
10および11によつて検出され、また演算装置
12によつて可動オリフイス6の変位と速度成分
とが分別される。この2つの出力信号はサーボ系
の流量フイードバツク信号および流量変化速度の
フイードバツク信号として用いられる他に、単独
に流量および流量変化速度の計測にも用いられ
る。
In the embodiment of the device of the present invention described above, for example, hydraulic oil flows through the flow holes 5 of the support plates 4A, 4B of the pipe 1.
When the fluid flows in from A or 5B, the movable orifice 6 moves to the right or left in the figure depending on the differential pressure across the throttle caused by the flow. The displacement and speed of the movable orifice 6 due to the movement of the movable orifice body 6 made of a ferromagnetic magnet are detected by the secondary coils 10 and 11 for detection, and the displacement of the movable orifice 6 is detected by the arithmetic unit 12. and velocity components are separated. These two output signals are used as a flow rate feedback signal and a flow rate change rate feedback signal for the servo system, and are also used independently to measure the flow rate and flow rate change rate.

次に演算装置12の具体的な動作原理を第2
図、第3図により説明する。第2図は交流励磁用
の1次コイル8、信号検出用の2次コイル10お
よび11、可動オリフイス本体6A、可動オリフ
イス突起6Bからなる等価的な電気回路を示す。
交流電圧源9により、1次コイル8に交流電圧を
印加したとき、可動オリフイス6が中立位置から
x量だけ変化した場合、検出用の2次コイル10
および11に生じる誘導起電圧E1,E2は次のよ
うになる。
Next, the specific operating principle of the arithmetic unit 12 will be explained in the second section.
This will be explained with reference to FIG. FIG. 2 shows an equivalent electric circuit consisting of a primary coil 8 for AC excitation, secondary coils 10 and 11 for signal detection, a movable orifice body 6A, and a movable orifice protrusion 6B.
When the AC voltage source 9 applies an AC voltage to the primary coil 8, if the movable orifice 6 changes by x amount from the neutral position, the secondary coil 10 for detection
The induced electromotive voltages E 1 and E 2 generated at 11 and 11 are as follows.

E1=πdnBodx/dt+K{1/2{(l−a)−x}dI
/dt …(1) E2=−πdnBodx/dt−K{1/2{(l−a)+x}
dI/dt …(2) ここに、 dはコイル径、 Boは磁石からなる可動オリフイスが発生する
磁束密度、 lは可動オリフイス6の全長、 aは検知用の2次コイル10,11のコイル間
の間隔、 Iは1次コイル8に流れる電流、 nは2次コイル10,11の各々のコイル巻線 としている。
E 1 = πdnB o dx/dt+K{1/2{(l-a)-x}dI
/dt...(1) E 2 =-πdnB o dx/dt-K{1/2{(l-a)+x}
dI/dt...(2) Here, d is the coil diameter, B o is the magnetic flux density generated by the movable orifice made of a magnet, l is the total length of the movable orifice 6, and a is the coil of the secondary coils 10 and 11 for detection. I is the current flowing through the primary coil 8, and n is the coil winding of each of the secondary coils 10 and 11.

(1)、(2)式における第1項は可動オリフイス6の
速度量に対応し、第2項は可動オリフイス6の変
位成分に対応することがわかる。
It can be seen that the first term in equations (1) and (2) corresponds to the velocity of the movable orifice 6, and the second term corresponds to the displacement component of the movable orifice 6.

第3図に、検出用の2次コイル10,11に誘
起した可動オリフイス6の変位と速度成分とが重
畳した電圧を各々分別するためのブロツク図を示
す。この第3図において、検出用の2次コイル1
0および11の出力電力はE1,E2をホロワ14,
15を介して同期整流器16,17で個々に同期
整流し、その同期後の両信号を減算器18で減算
し、低減濾波器19に通し、増幅器20で増幅す
ることによつて可動オリフイス6の変位の直流電
圧信号を取出すことができる。
FIG. 3 shows a block diagram for separating the voltages in which the displacement and velocity components of the movable orifice 6 induced in the secondary coils 10 and 11 for detection are superimposed. In this Fig. 3, the secondary coil 1 for detection
The output power of 0 and 11 is E 1 , E 2 as follower 14,
The movable orifice 6 is individually synchronously rectified by synchronous rectifiers 16 and 17 via 15, and both signals after the synchronization are subtracted by a subtracter 18, passed through a reduction filter 19, and amplified by an amplifier 20. A DC voltage signal of displacement can be extracted.

次に、検出用の2次コイル10,11の出力信
号E1とE2とを減算器21で減算したのち、低減
濾波器22に通し、増幅器23で増幅することに
よつて可動オリフイス6の速度を直流電圧信号と
して取出すことができる。
Next, the output signals E 1 and E 2 of the secondary coils 10 and 11 for detection are subtracted by a subtracter 21, passed through a reduction filter 22, and amplified by an amplifier 23. The speed can be extracted as a DC voltage signal.

このように管1内の可動オリフイス6の変位お
よび速度を検出することによつて、それぞれ管1
内を通過する流体の流量および流量速度に比例し
た出力を得るためには固定オリフイス2および可
動オリフイス6で形成される絞りの開口面積Sが
可動オリフイス6の移動量xに対して適正な関数
形となることが必要である。ここで流量Q、可動
オリフイス6の受圧面積A、移動距離x、固定オ
リフイス2と可動オリフイス6との絞り部の差圧
ΔP、流量係数C、流体の密度ρとの間には次式
で示される関係が成り立つ。
By detecting the displacement and velocity of the movable orifice 6 in the tube 1 in this way, the
In order to obtain an output proportional to the flow rate and flow velocity of the fluid passing through it, the aperture area S of the diaphragm formed by the fixed orifice 2 and the movable orifice 6 must have an appropriate functional form with respect to the movement amount x of the movable orifice 6. It is necessary that Here, the relationship between the flow rate Q, the pressure receiving area A of the movable orifice 6, the moving distance x, the differential pressure ΔP at the throttle part between the fixed orifice 2 and the movable orifice 6, the flow coefficient C, and the fluid density ρ is expressed by the following equation. A relationship is established in which

AΔP=Kx …(4) (K:バネ定数) 前記の(3)式および(4)式より ここで、(5)式中において、 S(x)=β√ …(6) とすると、 となり、可動オリフイス6の変位xは流量Qに比
例するものとなる。また、可動オリフイス6の速
度dv/dtは流体の流量速度dQ/dtに比例するも
のとなる。ここで、可動オリフイス6の速度の大
きさは(1)式あるいは(2)式に示したように磁石の磁
束密度によつて定まるので、可動オリフイス本体
6Aを強磁性体の磁石にすれば、微小の速度も検
出できる。したがつて、流体の微小の流量速度も
検出でき、感度のよい流量および流量変化率を検
出する装置を提供することができる。
AΔP=Kx …(4) (K: Spring constant) From the above equations (3) and (4) Here, in equation (5), if S(x)=β√...(6), Therefore, the displacement x of the movable orifice 6 is proportional to the flow rate Q. Further, the velocity dv/dt of the movable orifice 6 is proportional to the fluid flow velocity dQ/dt. Here, the magnitude of the speed of the movable orifice 6 is determined by the magnetic flux density of the magnet as shown in equation (1) or (2), so if the movable orifice body 6A is made of a ferromagnetic magnet, It can also detect minute speeds. Therefore, it is possible to provide a device that can detect even minute flow rates of fluid and detects flow rates and flow rate changes with high sensitivity.

上述した本発明の実施例においては、非磁性体
の固定オリフイス2および強磁性体の磁石である
可動オリフイス本体6Aからなる絞りを用い、計
測される流体の流量による絞りの前後の差圧に応
じて変位する可動オリフイス6の移動量から流量
値および可動オリフイス6の速度量から流量変化
率を検出する流量および流量変化率検出装置を構
成し、これに検出コイルに誘起する電圧より得ら
れる可動オリフイス6の変位と速度とを分別する
演算装置12を設けて、1個の検出器でそれらの
出力をサーボ系のフイードバツク制御用等の流量
値および流量変化速度の値として取出すようにし
たので、従来のフオロアとポテンシヨメータとの
組合せにおけるような検出機構の不円滑な動作に
よる計測精度の低下を防止することができる。ま
た、従来の流量計においては、流量を微分するこ
となく流体変化率を計測する手段がなかつたが、
本発明によれば、低流量から大流量にいたる広範
囲の流量および流量変化率を検知できるものであ
る。また1個の検出装置で流量と流量変化率を検
知できるので検出装置がコンパクトになる。また
可動オリフイス6の突起部には非磁性体の絞りが
可動オリフイス本体6Aと一体に取り付けている
ので、作動油中に混入する鉄粉等の付着により可
動オリフイス6の動作が妨げられることもない。
さらに、絞り開口面積と可動オリフイス移動量と
の間が適正な関数形となるように固定オリフイス
2の形状が処理されているので、流量に比例した
検出値および流量変化速度に比例した検出値を得
ることができる。したがつて、本発明による流量
および流量変化率検出装置を用いてこれらの信号
をサーボ系のフイードバツク制御に用いる場合は
もとより、一般の流体の流量および流量変化速度
の計測に広く適用することができる。
In the above-described embodiment of the present invention, a restriction made of a fixed orifice 2 made of a non-magnetic material and a movable orifice main body 6A made of a ferromagnetic material is used, and the pressure difference between before and after the restriction is determined depending on the flow rate of the fluid to be measured. This constitutes a flow rate and flow rate change rate detection device that detects the flow rate value from the amount of movement of the movable orifice 6 that is displaced by the movement of the movable orifice 6, and the flow rate change rate from the velocity amount of the movable orifice 6. The calculation device 12 that separates the displacement and velocity of 6 is provided, and the output thereof is taken out as a flow rate value and a flow rate change rate value for servo system feedback control etc. using a single detector. It is possible to prevent a decrease in measurement accuracy due to uneven operation of the detection mechanism, such as in the combination of a follower and a potentiometer. Additionally, in conventional flowmeters, there was no way to measure the fluid change rate without differentiating the flow rate.
According to the present invention, a wide range of flow rates and flow rate changes from low flow rates to large flow rates can be detected. Furthermore, since the flow rate and the rate of change in flow rate can be detected with one detection device, the detection device becomes compact. In addition, since a non-magnetic throttle is attached to the protrusion of the movable orifice 6 integrally with the movable orifice body 6A, the operation of the movable orifice 6 will not be hindered by adhesion of iron powder etc. mixed in the hydraulic oil. .
Furthermore, the shape of the fixed orifice 2 is processed so that the aperture opening area and the moving amount of the movable orifice have an appropriate functional form, so that the detected value proportional to the flow rate and the detected value proportional to the flow rate change rate can be Obtainable. Therefore, the flow rate and flow rate change rate detection device according to the present invention can be widely applied not only when using these signals for feedback control of a servo system but also to measuring the flow rate and flow rate change rate of general fluids. .

〔発明の効果〕〔Effect of the invention〕

上述のように、本発明によれば1個の検出装置
で微分といつた操作を用いることなく高精度に流
量と流量変化率を同時に検出することができるも
のである。その結果、ノイズの小さい信号をサー
ボ系フイードバツク制御に用いることができる
他、流量変化率の計測等に広く適用することがで
きる。
As described above, according to the present invention, the flow rate and the rate of change in flow rate can be simultaneously detected with high precision using one detection device without using operations such as differentiation. As a result, a signal with small noise can be used for servo system feedback control, and can also be widely applied to measurement of flow rate change rate, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流量および流量変化率検出装
置の一実施例を示す断面図、第2図は本発明に用
いられる可動オリフイス、1次コイルおよび2次
コイル部分の等価的な電気回路図、第3図は流量
および流量変化率の出力信号を分別するための演
算装置を示すブロツク図である。 1……管、2……固定オリフイス、6……可動
オリフイス、6A……可動オリフイス本体、6B
……非磁性体の可動オリフイス突起、7……ば
ね、8……1次コイル、9……交流電源、10,
11……検出用の2次コイル、12……演算装
置、14,15……ホロワ、16,17……同期
整流器、18,21……減算器、19,22……
低減濾波器、20,23……増幅器。
Fig. 1 is a sectional view showing an embodiment of the flow rate and flow rate change rate detection device of the present invention, and Fig. 2 is an equivalent electric circuit diagram of the movable orifice, primary coil, and secondary coil portion used in the present invention. , FIG. 3 is a block diagram showing an arithmetic device for separating output signals of flow rate and rate of change of flow rate. 1...Pipe, 2...Fixed orifice, 6...Movable orifice, 6A...Movable orifice body, 6B
... Non-magnetic movable orifice projection, 7 ... Spring, 8 ... Primary coil, 9 ... AC power supply, 10,
11... Secondary coil for detection, 12... Arithmetic unit, 14, 15... Follower, 16, 17... Synchronous rectifier, 18, 21... Subtractor, 19, 22...
Reduction filter, 20, 23...amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 流体が流れる管内に設けられた非磁性体の固
定オリフイスと、この固定オリフイスと共に絞り
を形成し、流体の流量に応じて絞りの前後に生ず
る差圧によつて前記管の内部を移動する可動オリ
フイスと、前記管の外壁に前記可動オリフイスの
移動域に沿つて巻かれた交流励磁用の1次コイル
と、前記管の外壁に沿つて前記1次コイルの両側
に巻かれた前記可動オリフイスの移動を検知する
2個の検知用の2次コイルとを備えており、前記
可動オリフイスの本体を強磁性体の磁石によつて
形成し、前記可動オリフイスの絞りを形成する突
起を非磁性体によつて形成し、前記2次コイルに
生ずる夫々の誘導起電圧を入力し、それらの電圧
の差電圧を演算して流体の流量変化率を得る第1
の減算器と、前記2次コイルに生ずる前記夫々の
誘導起電圧を入力して同期整流を行う2つの同期
整流器と、該2つの同期整流器によつて整流され
た信号の差を減算して流体の流量を求める第2の
減算器とを設けたことを特徴とする流量および流
量変化率検出装置。
1 A fixed orifice made of non-magnetic material provided in a pipe through which fluid flows, and a movable orifice that forms a throttle together with this fixed orifice and moves inside the pipe by the differential pressure generated before and after the throttle depending on the flow rate of the fluid. an orifice, a primary coil for alternating current excitation wound around the outer wall of the tube along the movement range of the movable orifice, and a primary coil for alternating current excitation wound around the outer wall of the tube on both sides of the primary coil. The main body of the movable orifice is formed of a ferromagnetic magnet, and the protrusion forming the aperture of the movable orifice is made of a non-magnetic material. The first step is to input the respective induced electromotive voltages generated in the secondary coil and calculate the difference voltage between these voltages to obtain the rate of change in fluid flow rate.
a subtracter, two synchronous rectifiers that perform synchronous rectification by inputting the respective induced electromotive voltages generated in the secondary coils, and a fluid by subtracting the difference between the signals rectified by the two synchronous rectifiers. 1. A flow rate and flow rate change rate detection device, comprising: a second subtractor for determining the flow rate.
JP14788581A 1981-09-21 1981-09-21 Device for detecting flow rate and flow rate changing rate Granted JPS5850419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14788581A JPS5850419A (en) 1981-09-21 1981-09-21 Device for detecting flow rate and flow rate changing rate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14788581A JPS5850419A (en) 1981-09-21 1981-09-21 Device for detecting flow rate and flow rate changing rate

Publications (2)

Publication Number Publication Date
JPS5850419A JPS5850419A (en) 1983-03-24
JPH0322563B2 true JPH0322563B2 (en) 1991-03-27

Family

ID=15440396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14788581A Granted JPS5850419A (en) 1981-09-21 1981-09-21 Device for detecting flow rate and flow rate changing rate

Country Status (1)

Country Link
JP (1) JPS5850419A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010314A1 (en) * 2006-07-20 2008-01-24 Nidec Sankyo Corporation Flow rate sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3020130B2 (en) * 1994-02-18 2000-03-15 工業技術院長 Composite material with pressure measurement function

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941329U (en) * 1972-07-13 1974-04-11
JPS5292554A (en) * 1976-01-29 1977-08-04 Jiekoo Kk Flow sensor
JPS57142517A (en) * 1981-01-26 1982-09-03 Deere & Co Two-way flow measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941329U (en) * 1972-07-13 1974-04-11
JPS5292554A (en) * 1976-01-29 1977-08-04 Jiekoo Kk Flow sensor
JPS57142517A (en) * 1981-01-26 1982-09-03 Deere & Co Two-way flow measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010314A1 (en) * 2006-07-20 2008-01-24 Nidec Sankyo Corporation Flow rate sensor

Also Published As

Publication number Publication date
JPS5850419A (en) 1983-03-24

Similar Documents

Publication Publication Date Title
US5090250A (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
US3965738A (en) Magnetic flowmeter
RU96107107A (en) ELECTROMAGNETIC FLOW METER WITH EMPTY DETECTOR
US5263374A (en) Flowmeter with concentrically arranged electromagnetic field
JPS5812533B2 (en) electromagnetic flow meter
JPH0791999A (en) Coriolis type mass flowmeter
JP3241725B2 (en) Variable area flow meter
JPH0322563B2 (en)
US3441053A (en) Industrial process control apparatus
US3433066A (en) Magnetic flowmeter apparatus
JPH08211085A (en) Flow velocity measuring device
JPS57192805A (en) Differential feedback type eddy current distance meter
JPH0441296Y2 (en)
SU1753253A1 (en) Linear displacement transducer
JP2801849B2 (en) Coriolis flow meter
KR860000020B1 (en) Measuring device of velocity and thickness
JPH03205513A (en) Detector of electromagnetic flow meter
JPS61248916A (en) Solenoid bearing device
RU2018088C1 (en) Flowmeter
JPS61193042A (en) Differential pressure gauge
JPH0331372B2 (en)
JPH01235816A (en) Coriolis type flow meter
SU836526A1 (en) Contact-free electromagnetic rate-of-flow meter
JPH07139980A (en) Electromagnetic flowmeter
JPH04138329A (en) Force balance type pressure transducer