JPS61193042A - Differential pressure gauge - Google Patents

Differential pressure gauge

Info

Publication number
JPS61193042A
JPS61193042A JP3397985A JP3397985A JPS61193042A JP S61193042 A JPS61193042 A JP S61193042A JP 3397985 A JP3397985 A JP 3397985A JP 3397985 A JP3397985 A JP 3397985A JP S61193042 A JPS61193042 A JP S61193042A
Authority
JP
Japan
Prior art keywords
differential pressure
fluid
flow
pressure
communication pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3397985A
Other languages
Japanese (ja)
Inventor
Mitsuo Ueda
上田 三男
Yoshito Abe
義人 阿部
Mineo Ikeoka
峯雄 池岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3397985A priority Critical patent/JPS61193042A/en
Publication of JPS61193042A publication Critical patent/JPS61193042A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To measure even small differential pressure with high precision without being affected by the temperature of conductive fluid by measuring the differential pressure of the conductive fluid by utilizing electromagnetically induced force. CONSTITUTION:A communication pipe 6 is provided between the upstream-side high-pressure part 2a and downstream-side low-pressure part 2b of an orifice 2 and an electromagnetic flow meter and an electromagnetic brake 9 are interposed. When the fluid flows in the pipe 1, a pressure difference is generated across the orifice 2 and part of the fluid is diverted into the communication pipe 6. The velocity and rate of the diverted fluid are detected by the flow meter 7, whose signal is sent from an indication part 8 to a device 10. Then, the electromagnetic brake 9 is expected to intercept the flow of the fluid with the current sent through the device 10. Its braking force is proportional to the current supplied to the electromagnetic brake 9, so the current value is varied and read while the flow in the communication pipe is measured by the flow meter, and then the current in proportional to the braking force and the braking force is proportional to the differential pressure, which is found from the current value.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、管路内を流れる流体の2個所間の差圧を測
定する差圧針に関するものであるが、特に、液体金属、
その他の導電性流体について好適なものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a differential pressure needle that measures the differential pressure between two locations of a fluid flowing in a pipe, and in particular, it relates to a differential pressure needle that measures the differential pressure between two locations of a fluid flowing in a pipe.
It is suitable for other conductive fluids.

[従来技術と問題点] 流体の流速または流量を測定する手段として、ピトー管
等による方法、オリフィス前後の圧力差による方法など
がある。
[Prior Art and Problems] As means for measuring the flow rate or flow rate of fluid, there are a method using a pitot tube, etc., a method using a pressure difference before and after an orifice, and the like.

ピトー管等による方法では、流速が201/秒程度の場
合は、ピトー管に生じる差圧が水柱で2鶴程度の小さい
ものとなるので、流速が小さい場合は誤差率が大きくな
り、精度が悪い。
In methods using pitot tubes, etc., when the flow velocity is about 201/sec, the differential pressure generated in the pitot tube is small, about 2 cranes in the water column, so when the flow velocity is small, the error rate increases and the accuracy is poor. .

第4図に示すものは、従来のオリフィスを利用した流量
針である。管1内に計測対象流体が流れるが、オリフィ
ス2を設け、オリフィス前後に生じる圧力差を測定して
流量を算出するものである。
What is shown in FIG. 4 is a flow needle using a conventional orifice. A fluid to be measured flows in a pipe 1, and an orifice 2 is provided, and the flow rate is calculated by measuring the pressure difference that occurs before and after the orifice.

オリフィス2の上流側から導かれた高圧側圧力導管3a
と、下流側から導かれた低圧側圧力導管3bとの間の圧
力差を差圧検出部4で検出し、これを差圧指示部5に表
示させ、この差圧から流量を算定するものである。差圧
検出部4には、ダイヤフラム変位式、ベローズ変位式な
どのものが使用されるが、例えば、液体金属等の流体で
は、高温であり、また、危険であるので、破損や漏洩の
生じないよう頑丈なものにしなければならないので、ダ
イヤフラムやベローズ等の受圧部の剛性も高く作られる
ので、差圧検出感度が悪くなり、水柱数ミリメートル以
下の差圧については、十分な精度で測定することができ
ない。
High pressure side pressure conduit 3a led from the upstream side of orifice 2
A pressure difference detection unit 4 detects the pressure difference between the pressure conduit 3b and the low pressure side pressure conduit 3b led from the downstream side, displays this on a pressure difference indicator 5, and calculates the flow rate from this pressure difference. be. A diaphragm displacement type, a bellows displacement type, or the like is used for the differential pressure detection unit 4, but for example, fluids such as liquid metal are high temperature and dangerous, so it is necessary to avoid damage or leakage. Since the pressure receiving parts such as the diaphragm and bellows must be made with high rigidity, the differential pressure detection sensitivity becomes poor, and it is difficult to measure differential pressures of less than a few millimeters of water column with sufficient accuracy. I can't.

[発明の目的] そこで、この発明の目的は、被計測流体の温度によって
影響を受けず、小さい差圧でも精度良く測定できる差圧
針を提供することにある。
[Object of the Invention] Therefore, an object of the present invention is to provide a differential pressure needle that is not affected by the temperature of the fluid to be measured and can accurately measure even a small differential pressure.

[解決手段] この目的を達成するため、この発明は、導電性流体が流
れる管路内の2個所の差圧を計測する差圧計において、
前記2個所を連通ずるように設けられた連通管と、該連
通管内を流れる前記流体の流量を計測する流量針と、前
記連通管内を流れる前記流体の流れを制動する電磁ブレ
ーキと、該電磁ブレーキに供給される電流を計測する電
流計とを具備したことを特徴とする。
[Solution Means] In order to achieve this object, the present invention provides a differential pressure gauge that measures the differential pressure between two locations in a conduit through which a conductive fluid flows.
A communication pipe provided to communicate the two locations, a flow rate needle that measures the flow rate of the fluid flowing within the communication pipe, an electromagnetic brake that brakes the flow of the fluid flowing within the communication pipe, and the electromagnetic brake. The invention is characterized in that it is equipped with an ammeter that measures the current supplied to the device.

[作用] この発明は、以上の構成としたので、測定すべき2個所
に圧力差があれば、その2個所を連通ずるように設けら
れた連通管には差圧に応じた流れが生じる。この連通管
内の流れを制動するように、電磁ブレーキに電流を供給
する。制動力は電磁ブレーキに供給される電流に比例す
るので、連通管内の流れを流量計で計測しながら、電流
値を変化させ、その電流値を電流計で読みとれば、電流
は制動力に比例し、制動力は差圧に比例するので、電流
値により差圧を求めることができる。
[Function] Since the present invention has the above configuration, if there is a pressure difference between two locations to be measured, a flow corresponding to the pressure difference is generated in the communication pipe provided to communicate the two locations. Electric current is supplied to the electromagnetic brake so as to brake the flow within this communication pipe. The braking force is proportional to the current supplied to the electromagnetic brake, so if you change the current value while measuring the flow in the communication pipe with a flowmeter and read the current value with an ammeter, the current will be proportional to the braking force. Since the braking force is proportional to the differential pressure, the differential pressure can be determined from the current value.

[実施例コ 以下この発明を図示の実施例について説明する。[Example code] The present invention will be described below with reference to the illustrated embodiments.

第1図乃至第3図はこの発明の実施例を示す。この実施
例はオリフィス流量針の差圧計測の例である。第1図に
おいて、管l内を流れる流体流路にオリフィス2を設け
、前後の圧力差を計測して流量を測定する。その差圧を
求めるため、オリフィス2の上流側高圧部2aと下流側
低圧部2bとの間を連通ずるように連通管6を設ける。
1 to 3 show embodiments of the invention. This example is an example of differential pressure measurement of an orifice flow needle. In FIG. 1, an orifice 2 is provided in a fluid flow path flowing inside a pipe 1, and the flow rate is measured by measuring the pressure difference between the front and rear sides. In order to determine the differential pressure, a communication pipe 6 is provided so as to communicate between the upstream high pressure section 2a and the downstream low pressure section 2b of the orifice 2.

連通管6には電磁流量計7と電磁ブレーキ9とを介在さ
せる。
An electromagnetic flowmeter 7 and an electromagnetic brake 9 are interposed in the communication pipe 6.

電磁流量計7の原理的構造は第2図のようである。連通
管6内の流体の流動方向(連通管6の軸線方向)に対し
て直角の方向に磁界が生じるように永久磁石14を設置
し、連通管6の軸線と永久磁石14の磁界との双方に対
して垂直方向に、流体の電位差を検知する電位差検知電
極13a。
The basic structure of the electromagnetic flowmeter 7 is shown in FIG. The permanent magnet 14 is installed so that a magnetic field is generated in a direction perpendicular to the fluid flow direction in the communication tube 6 (the axial direction of the communication tube 6), and both the axis of the communication tube 6 and the magnetic field of the permanent magnet 14 are generated. A potential difference detection electrode 13a that detects a potential difference in the fluid in a direction perpendicular to the direction.

13bを設け、この電位差検知電極13aと13bとの
間の電位差を電磁流量計検出部8で読みとれるように接
続しである。これは、磁束を切るように導電性物体が移
動すると、その移動速度に比例した電圧が発生すること
を利用したものである。
13b is provided and connected so that the electromagnetic flowmeter detection section 8 can read the potential difference between the potential difference detection electrodes 13a and 13b. This takes advantage of the fact that when a conductive object moves to break the magnetic flux, a voltage proportional to the speed of the movement is generated.

電磁ブレーキ9の原理的構造は、第3図に示すように、
連通管6の軸線に直角の方向に磁界を作るように永久磁
石16が設置され、連通管6の軸線と磁界の双方に垂直
方向に流体中に電流が流れるように電流供給用ブスバー
158.15’bが設けられており、直流電源12から
電流が供給される。これは、電流が磁束を切るように流
れると、それに直角方向に電磁力が生じるというファラ
デーの左手の法則を利用したものである。
The basic structure of the electromagnetic brake 9 is as shown in FIG.
A permanent magnet 16 is installed to create a magnetic field in a direction perpendicular to the axis of the communication tube 6, and a current supply bus bar 158.15 is installed so that a current flows in the fluid in a direction perpendicular to both the axis of the communication tube 6 and the magnetic field. 'b is provided, and current is supplied from the DC power supply 12. This is based on Faraday's left-hand rule, which states that when a current flows through a magnetic flux, an electromagnetic force is generated in a direction perpendicular to it.

第1図において、直流型#+12から電磁ブレーキ9へ
の電流供給路には電力調節装置10が設けられており、
電磁流量計7からの信号によって制御される。また、電
磁ブレーキ9に供給される電流を計測する電流計11が
設けられている。
In FIG. 1, a power adjustment device 10 is provided in the current supply path from the DC type #+12 to the electromagnetic brake 9.
It is controlled by a signal from an electromagnetic flowmeter 7. Further, an ammeter 11 for measuring the current supplied to the electromagnetic brake 9 is provided.

流体が管l内を流れると、オリフィス2の前後間に圧力
差が生じる。この圧力差によって、連通管6内に一部の
流体が分流して流れる。圧力差が大きいほど分流流体の
流れは速い。その分流流体の流速又は流量は電磁流量計
検出部7によって検出され、その信号は指示部8から電
力調節装置IOに送られる。電磁ブレーキ9は、電力調
節装置10を介して送られる電流によって、前述の原理
によって、流体の流れをせき止めようとする。
When fluid flows through the tube 1, a pressure difference is created across the orifice 2. Due to this pressure difference, a part of the fluid flows in the communication pipe 6 in a divided manner. The larger the pressure difference, the faster the flow of the diverted fluid. The flow velocity or flow rate of the diverted fluid is detected by the electromagnetic flow meter detection section 7, and the signal is sent from the indicator section 8 to the power adjustment device IO. The electromagnetic brake 9 attempts to stop the flow of fluid by the electric current sent via the power regulating device 10 according to the principle described above.

連通管6内の流れをせき止めたとすれば、そのせき止め
に要する力Fは、当該せき止め個所における連通管6の
流れの横断面積をA、高圧側2aの圧力をPl、低圧倒
2bの圧力をP2とすれば、F=A (Pl−P2 )
  ・・・・・・ +11である。すなわち流れをせき
止める力Fは差圧(Pl−P2 )に比例する。
If the flow in the communication pipe 6 is dammed, the force F required for the damming is given by A, the cross-sectional area of the flow in the communication pipe 6 at the damming point, Pl, the pressure on the high pressure side 2a, and P2, the pressure on the low pressure side 2b. Then, F=A (Pl-P2)
・・・・・・ +11. That is, the force F that blocks the flow is proportional to the differential pressure (Pl-P2).

一方、電磁ブレーキFBは、磁界の磁束密度をB、ブス
バー15から供給される電流をI、当該部の管6の内径
をdとすれば、 FB=B +  d  ・・・・・・  (2)である
On the other hand, the electromagnetic brake FB has the following formula: FB=B + d (2 ).

そこで、連通管6内の流れがゼロとなるように電磁ブレ
ーキ9に電流を供給すれば、そのときは、流体力Fとせ
き止め力FBとが釣合、っており、F=FBであるので
、 A (PI −P2 ) =Bld  ・・・・・・ 
(3)また、A−πd2/4であるから、 (Pl −P2 )=4B I/πd ・・・・・・ 
(4)となる。この式を成立させるためには、流量計7
からの信号を電力調節装置10に入れ、流量がゼロにな
るように電磁ブレーキ9への供給電流を自動的に調節さ
せればよい。
Therefore, if current is supplied to the electromagnetic brake 9 so that the flow in the communication pipe 6 becomes zero, then the fluid force F and the damming force FB are balanced, and F=FB. , A (PI - P2) = Bld...
(3) Also, since A−πd2/4, (Pl −P2 )=4B I/πd ・・・・・・
(4) becomes. In order to make this equation hold, flowmeter 7
The signal from the electromagnetic brake 9 may be input into the power adjustment device 10 to automatically adjust the current supplied to the electromagnetic brake 9 so that the flow rate becomes zero.

式(4)において、磁束密度B及び管の直径dを設定す
れば、差圧(PL −P2 )は電流lに比例すること
になり、電流1を電流計11によって計測すれば差圧(
PI −P2 )を算出することができる。
In equation (4), if the magnetic flux density B and the tube diameter d are set, the differential pressure (PL - P2) will be proportional to the current l, and if the current 1 is measured by the ammeter 11, the differential pressure (
PI-P2) can be calculated.

なお、小さい差圧を測定する場合は、磁束密度を小さく
するか、又は管の内径dを大きくすれば、電流Iを大き
くすることができるので微差圧の計/1111に好都合
である。
Note that when measuring a small differential pressure, the current I can be increased by decreasing the magnetic flux density or increasing the inner diameter d of the tube, which is convenient for the micro differential pressure meter /1111.

また、一般に差圧計は温度の影響を受けることが多いが
、この差圧計は電磁力を利用したので温度による影響は
ない。
Additionally, differential pressure gauges are generally affected by temperature, but this differential pressure gauge uses electromagnetic force, so it is not affected by temperature.

なお、この実施例では、流量計7は電磁流量計としたが
、他の種類の流量計でもよい。
In this embodiment, the flowmeter 7 is an electromagnetic flowmeter, but other types of flowmeters may be used.

[発明の効果] 以上説明したように、この発明によれば、液体金属その
他の導電性流体の差圧を、電磁誘導力を利用して測定す
るものであるから、温度によって影響を受けることもな
く測定不能となることもない。また、小さい差圧であっ
ても、磁束密度を小さくすれば、電流値を大きくするこ
とができるので、精度良く測定することができる。また
、機構として可動部がないので、脆弱部がなく、破損や
漏洩のおそれがないので、特に、危険な流体に対して好
適である。
[Effects of the Invention] As explained above, according to the present invention, the differential pressure of liquid metal or other conductive fluid is measured using electromagnetic induction force, so it may not be affected by temperature. It will not become impossible to measure. Further, even if the differential pressure is small, the current value can be increased by reducing the magnetic flux density, so it can be measured with high accuracy. Furthermore, since there are no moving parts as a mechanism, there are no fragile parts and there is no risk of breakage or leakage, making it particularly suitable for use with dangerous fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明図、第2図は電磁流量計
の説明図、第3図は電磁ブレーキの65i!明図、第4
図は従来の差圧針の説明図である。 図において、6は連通管、7は電磁流量計検出部、8は
電磁流置針指示部、9は電磁ブレーキ、10は電力調節
装置、11は電流計、12は直流電源、13は電位差検
知電極、15は電流供給用ブスバー、14.16は永久
磁石である。 復代理人  弁理士 原田幸男
Fig. 1 is a detailed explanatory diagram of this invention, Fig. 2 is an explanatory diagram of an electromagnetic flowmeter, and Fig. 3 is an explanatory diagram of the electromagnetic brake 65i! Mingzu, No. 4
The figure is an explanatory diagram of a conventional differential pressure needle. In the figure, 6 is a communication pipe, 7 is an electromagnetic flowmeter detection part, 8 is an electromagnetic flow needle indicator, 9 is an electromagnetic brake, 10 is a power regulator, 11 is an ammeter, 12 is a DC power supply, and 13 is a potential difference detection electrode. , 15 is a current supply bus bar, and 14.16 is a permanent magnet. Sub-agent Patent Attorney Yukio Harada

Claims (1)

【特許請求の範囲】[Claims] 導電性流体が流れる管路内の2個所の差圧を計測する差
圧計において、前記2個所を連通するように設けられた
連通管と、該連通管内を流れる前記流体の流量を計測す
る流量計と、前記連通管内を流れる前記流体の流れを制
動する電磁ブレーキと、該電磁ブレーキに供給される電
流を計測する電流計とを具備したことを特徴とする差圧
計。
A differential pressure gauge that measures the differential pressure between two locations in a conduit through which a conductive fluid flows, includes a communication pipe provided to communicate the two locations, and a flowmeter that measures the flow rate of the fluid flowing within the communication pipe. A differential pressure gauge comprising: an electromagnetic brake that brakes the flow of the fluid flowing through the communication pipe; and an ammeter that measures the current supplied to the electromagnetic brake.
JP3397985A 1985-02-22 1985-02-22 Differential pressure gauge Pending JPS61193042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3397985A JPS61193042A (en) 1985-02-22 1985-02-22 Differential pressure gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3397985A JPS61193042A (en) 1985-02-22 1985-02-22 Differential pressure gauge

Publications (1)

Publication Number Publication Date
JPS61193042A true JPS61193042A (en) 1986-08-27

Family

ID=12401602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3397985A Pending JPS61193042A (en) 1985-02-22 1985-02-22 Differential pressure gauge

Country Status (1)

Country Link
JP (1) JPS61193042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072591C (en) * 1997-06-09 2001-10-10 萩原忠 Closing mechanism for opening of container
JP2002308298A (en) * 2001-04-18 2002-10-23 Daizo:Kk Sealed container

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1072591C (en) * 1997-06-09 2001-10-10 萩原忠 Closing mechanism for opening of container
JP2002308298A (en) * 2001-04-18 2002-10-23 Daizo:Kk Sealed container

Similar Documents

Publication Publication Date Title
CN111919092B (en) Magnetic inductive flowmeter and measuring point with a magnetic inductive flowmeter of this type
CN101545795A (en) Fluent metal electrical flow meter
US3443432A (en) Flowmeter
US3530714A (en) Target flowmeter
CN113167613B (en) Magnetic inductive flowmeter
JPS61193042A (en) Differential pressure gauge
CN207147558U (en) A kind of binary channels wide-range than flowmeter
JP2014526704A (en) Non-contact measurement method and apparatus for mass flow rate or volume flow rate of conductive fluid
JPH085419A (en) Flow meter
CN112525369A (en) Platinum resistor temperature sensor packaging structure and temperature measurement using method thereof
CN209247080U (en) The throttling set of built-in high-precision sensor
JPH10170320A (en) Flowmeter
JPH0242319A (en) Fluid measuring device
CN104280076A (en) High-precision large-diameter vortex flowmeter
CN109282866B (en) High-precision gas micro-flowmeter and gas flow measuring method
CN215178056U (en) High-precision electromagnetic flowmeter calibration system
JPH01272922A (en) Vortex flowmeter
KR20010059327A (en) System for measuring flow rate
KR20220137349A (en) Ultrasonic Flow Meter
RU2299419C2 (en) Method and device for determining density of liquids
HU188358B (en) Flow-meter
JPS6398519A (en) Liquid metal flow rate measuring device of high speed breeder reactor
RU2057295C1 (en) Flowmeter
SU1755053A1 (en) Instantaneous fluid meter
JPH04366728A (en) Bypass unit for flow rate sensor