JPH0242319A - Fluid measuring device - Google Patents

Fluid measuring device

Info

Publication number
JPH0242319A
JPH0242319A JP19393088A JP19393088A JPH0242319A JP H0242319 A JPH0242319 A JP H0242319A JP 19393088 A JP19393088 A JP 19393088A JP 19393088 A JP19393088 A JP 19393088A JP H0242319 A JPH0242319 A JP H0242319A
Authority
JP
Japan
Prior art keywords
fluid
conduit
mass flow
viscosity
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19393088A
Other languages
Japanese (ja)
Other versions
JP2579349B2 (en
Inventor
Yutaka Ogawa
小川 胖
Shingo Gomi
五味 信吾
Shinichi Tanaka
伸一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP19393088A priority Critical patent/JP2579349B2/en
Publication of JPH0242319A publication Critical patent/JPH0242319A/en
Application granted granted Critical
Publication of JP2579349B2 publication Critical patent/JP2579349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To measure the coefficient of viscosity at low cost by detecting pressure drop which occurs when fluid flows in a conduit by a differential pressure detecting means. CONSTITUTION:A signal from a detector (b) is amplified in a driving circuit (e), controlled to be a constant amplitude, and drives a driving coil (c), so that a closed loop is constituted. Therefore, a driving frequency becomes a natural frequency and density rho is calculated from the natural frequency by a arithmetic circuit (f). After the signals from the detectors (a) and (b) are shaped, the phases thereof are compared and Coriolis force is detected from a time difference corresponding to a phase difference so as to obtain mass flow (g). Therefore, the coefficient of viscosity mu can be computed by measuring the pressure drop in each flow. If the relation among the pressure drop, the mass flow (g) and the coefficient of viscosity mu is previously fixed, the coefficient of viscosity mucan be directly calculated from the pressure drop and the mass flow (g).

Description

【発明の詳細な説明】 捉4分更 本発明は、流体計測装置、より詳細には、コリオリ質量
流量計と該コリオリ質量流量計の流入流出端の圧力損失
を計測して質量流量、密度、粘度を算出する流体計測装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a fluid measuring device, more specifically, a Coriolis mass flowmeter and a method for measuring the pressure loss at the inflow and outflow ends of the Coriolis mass flowmeter to determine mass flow rate, density, The present invention relates to a fluid measuring device that calculates viscosity.

丈米艮宜 2点間で支持された流体が流通する導管の中央部を加振
した場合、支持点と加振部との間において流体の流れ方
向と振動の向きとのベクトル積に等しい方向に質量流量
に比例したコリオリの力が発生されることが知られてお
り、導管の両支持点と加振部との間では振動の向きが反
対であることから、コリオリの力を導管振動の基準線に
対する位相差として検出するコリオリ質量流量計が試み
られている。導管が直管の場合は検出する位相差が小さ
いので、S/N比が悪化し流量計測精度を向上すること
が困難とされていたが、これを解決するために特公昭6
0−34683号公報において、導管を第2軸に軸対称
な湾曲導管とし、第2軸に直交する第1軸を支持点とし
て間口するコリオリ流量計が提示されている。この流量
計は導管の先端部において、第1軸まわりに固有振動数
で駆動することにより第2軸まわりにコリオリの力に比
例した捩りモーメントが作用し、該捩りモーメントを湾
曲導管の両腕部が湾曲導管の基準面を通過するときの時
間差として検出されている。この方式においては、導管
の第2軸まわりの捩り剛性が小さいことから高感度に測
定できる特徴をもっているが、更に第1軸まわりに固有
振動数で加振することから流体の密度も計測できる。即
ち、固有振動数は導管のばね定数と導管質量との比の平
方根に比例し、単管質量は、導管の単体質量と、該導管
内に収容される流体の質量との和であり、流体の質量は
予め知られている導管内容積と密度との積であられされ
るので固有振動数は密度の関数として求められる。尚、
導管を固有振動数で加振して質量流量と流体密度を算出
する方式は、前記特公昭60−34683号公報におい
て開示されているが、導管が直管の場合においても固有
振動での加振により質量流量と密度とは求められるもの
である。
When the center of a conduit through which fluid flows supported between two points is vibrated, the direction between the supporting point and the vibrating part is equal to the vector product of the fluid flow direction and the vibration direction. It is known that a Coriolis force proportional to the mass flow rate is generated in the pipe, and since the directions of vibration are opposite between the supporting points of the conduit and the vibrating part, the Coriolis force is Coriolis mass flowmeters that detect as a phase difference with respect to a reference line have been attempted. When the conduit is straight, the phase difference to be detected is small, so the S/N ratio worsens and it is difficult to improve the accuracy of flow rate measurement.To solve this problem, the
No. 0-34683 discloses a Coriolis flowmeter in which the conduit is a curved conduit that is axially symmetrical about a second axis, and the first axis perpendicular to the second axis is used as a support point. This flowmeter is driven around the first axis at a natural frequency at the tip of the conduit, so that a torsional moment proportional to the Coriolis force acts around the second axis, and the torsional moment is transferred to both arms of the curved conduit. is detected as the time difference when passing through the reference plane of the curved conduit. This method has the characteristic of being able to measure with high sensitivity because the torsional rigidity around the second axis of the conduit is small, but it is also possible to measure the density of the fluid because it is excited around the first axis at a natural frequency. That is, the natural frequency is proportional to the square root of the ratio of the conduit's spring constant to the conduit mass, and the single tube mass is the sum of the unitary mass of the conduit and the mass of the fluid contained within the conduit. Since the mass of is calculated as the product of the pre-known internal volume of the conduit and the density, the natural frequency can be determined as a function of density. still,
A method of calculating the mass flow rate and fluid density by exciting a conduit at its natural frequency is disclosed in the above-mentioned Japanese Patent Publication No. 60-34683. The mass flow rate and density are determined by

従1断辺U仁 上述した振動形のコリオリ質量流量計においては、振動
周波数を流体を含む導管の固有振動数で加振することに
より質量流量と密度とが計測できることが示されたが、
流体の計測においては、流体の性状を知るために更に粘
度を計測することが要求さ・れることがあり、この場合
においては、別に粘度計を設置する必要があり、粘度計
の費用と設置箇所の確保等経済的に多額の負担を要した
In the vibrating Coriolis mass flowmeter described above, it was shown that the mass flow rate and density can be measured by exciting the vibration frequency at the natural frequency of the conduit containing the fluid.
When measuring fluids, it may be necessary to further measure the viscosity in order to know the properties of the fluid. In this case, it is necessary to install a separate viscometer, and the cost and location of the viscometer are It required a huge financial burden, such as securing the

口 占 ゛のための 本発明は、上述の問題点を解決するためになされたもの
で、コリオリ質量流量計において流体の流通する導管内
の粘性により生ずる圧力差を測定し、質量流量・密度に
加えて粘度を求めるもので、コリオリ質量流量計に圧力
計を付加する簡単な構成により安価な流体計測装置を提
供することを目的とするものである。即ち、本発明の流
体計測装置は、2点間で支持固定された等径の導管と、
該導管を導管中央部において支持点まわりに固有振動数
で駆動する駆動手段と、該迄区動手段および支持点の間
において、流体の流れにより生ずるコリオリの力を検出
する検出手段と、導管の所定区間における流体の差圧を
検出する差圧検出手段と、前記コリオリの力から流体の
質量流量を、前記固有振動数から流体密度を、前記所定
区間の導管寸法諸元、前記質量流量、流体密度および流
体差圧に基づいて、流体粘度を各々演算する演算手段と
から構成したものである。
The present invention has been made to solve the above-mentioned problems, and uses a Coriolis mass flowmeter to measure the pressure difference caused by viscosity in a conduit through which fluid flows, and calculates the mass flow rate and density. In addition, the viscosity is determined, and the object is to provide an inexpensive fluid measuring device with a simple configuration in which a pressure gauge is added to a Coriolis mass flow meter. That is, the fluid measurement device of the present invention includes a conduit of equal diameter supported and fixed between two points,
a driving means for driving the conduit at a natural frequency around a support point in the center of the conduit; a detection means for detecting a Coriolis force caused by a fluid flow between the moving means and the support point; differential pressure detection means for detecting a differential pressure of a fluid in a predetermined section; a mass flow rate of the fluid from the Coriolis force; a fluid density from the natural frequency; dimensional specifications of the conduit in the predetermined section; the mass flow rate; The fluid viscosity is calculated based on the density and the fluid pressure difference.

去−」1−舅一 第1図は1本発明の流体計測装置における本体部の構成
および作動ブロック図を示す図で、(A)図は平面図、
(B)図は(A)図における矢視り一り断面図、(C)
図は作動ブロック図で、図中、1は基板で、該基板1に
は一端に直交した支持部材11が一体的に配設されてお
り該支持部材11はU字形の導管2を貫通固設している
。導管2は流入口21並びに流出口22である開口をも
ち。
Figure 1 is a diagram showing the configuration and operation block diagram of the main body in the fluid measuring device of the present invention, and Figure (A) is a plan view;
(B) Figure is a sectional view taken along the arrow in Figure (A), (C)
The figure is an operation block diagram. In the figure, 1 is a board, and the board 1 is integrally provided with a support member 11 perpendicular to one end, and the support member 11 is fixedly fixed through a U-shaped conduit 2. are doing. The conduit 2 has openings which are an inlet 21 and an outlet 22.

該開口近傍で支持部材11に第1軸X−X軸上で固設さ
れている。また、導管2は第1軸と直交する第2軸(y
−y)に軸対称であり、該第2軸上に導管2を駆動する
駆動手段3が装着されている。
It is fixed to the support member 11 near the opening on the first axis XX axis. Further, the conduit 2 has a second axis (y
-y), on which a driving means 3 for driving the conduit 2 is mounted.

駆動手段3は駆動コイル32と、該駆動コイル32内に
挿入されて電磁力を発生する永久磁石33とで要部を構
成し磁石33は支持板31に固設され、支持板31は導
管2の湾曲部に固着され、駆動コイル32は取付台34
に固設され基板1に配置される。検出器41.42は第
2軸に対し導管2の対称位置に配設されるもので電磁検
出器である。磁石45は紙面に直交した方向に着磁され
取付バンド46により導管2の両腕に固着されており、
コイル44は磁石45の磁束と叉交するように巻回され
て取付台43を介して固設される。
The main parts of the driving means 3 include a driving coil 32 and a permanent magnet 33 that is inserted into the driving coil 32 and generates an electromagnetic force.The magnet 33 is fixed to a support plate 31, and the support plate 31 The drive coil 32 is fixed to the curved part of the mounting base 34.
and is arranged on the substrate 1. The detectors 41 and 42 are arranged at symmetrical positions in the conduit 2 with respect to the second axis and are electromagnetic detectors. The magnet 45 is magnetized in a direction perpendicular to the plane of the paper and is fixed to both arms of the conduit 2 by attachment bands 46.
The coil 44 is wound so as to intersect the magnetic flux of the magnet 45 and is fixedly mounted via the mounting base 43.

また、導管2の流入、流出口21.22近傍には該流入
、流出口21,22に連通する導管23が配設され差圧
検出器5に導びかれ、導管2内を流通する流体の圧力損
失を検出する。
Further, a conduit 23 is disposed near the inflow and outflow ports 21 and 22 of the conduit 2 and communicates with the inflow and outflow ports 21 and 22, and is guided to the differential pressure detector 5, and the fluid flowing through the conduit 2 is Detect pressure loss.

以上、第1図(A)、(B)に示した本体部の動作を(
C)のブロック図により説明する。尚、(C)図におけ
る検出器(a)、(b)は第1図における検出器41.
42と対応し、駆動コイル(C)、差圧検出器(d)は
各々駆動コイル32、差圧検出器5と対応している。検
出器(b)の信号は駆動回路(e)で増幅され定振幅に
制御され駆動コイル(c)を駆動することで閉ループが
構成される。従って、駆動周波数は固有振動数であり、
この固有振動数から演算回路(f)により密度ρを算出
する。また、検出器(a)、(b)からの信号は整形後
位相比較され位相差に相当する時間差からコリオリの力
を検出して質量流量gが求められる。また、ニュートン
流体においては粘性係数μは次の如くして求められる。
The operation of the main body shown in FIGS. 1(A) and 1(B) is described above (
This will be explained using a block diagram of C). Note that the detectors (a) and (b) in FIG. 1C are the detectors 41.
42, and the drive coil (C) and differential pressure detector (d) correspond to the drive coil 32 and differential pressure detector 5, respectively. The signal from the detector (b) is amplified by the drive circuit (e), controlled to have a constant amplitude, and drives the drive coil (c) to form a closed loop. Therefore, the driving frequency is the natural frequency,
The density ρ is calculated from this natural frequency by the arithmetic circuit (f). Further, the signals from the detectors (a) and (b) are shaped and compared in phase, and the Coriolis force is detected from the time difference corresponding to the phase difference to determine the mass flow rate g. Further, in Newtonian fluid, the viscosity coefficient μ is determined as follows.

真直な円管において、各断面上での時間平均速度の分布
が変らないときは、流体摩擦による圧力損失ΔPの割合
も一定となり、 但し P□:流入側の圧力、ρ:流体密度、■=流速、
P2:流出側の圧力、d:導管径、Q=導管長さ、λ:
管摩擦係数である。
In a straight circular pipe, when the time-averaged velocity distribution on each cross section does not change, the ratio of pressure loss ΔP due to fluid friction will also be constant, where P□: pressure on the inlet side, ρ: fluid density, ■= flow rate,
P2: pressure on the outflow side, d: pipe diameter, Q = pipe length, λ:
is the pipe friction coefficient.

即ち、導管形状が一定であれば圧力損失は動圧ρv2/
2に比例し、比例定数は管摩擦係数λである。ここにお
いて、動圧ρv2/2は、質量流量(g)および密度(
ρ)が計測されて既知であり、導管断面積も定められて
いることから算出される。しかるに管摩擦係数λはレイ
ノルズ数(以降Reと記す)の関数である。ここで、但
し、νは動粘性係数で −”      ・・・(3) ν − ρ である。
In other words, if the conduit shape is constant, the pressure loss will be the dynamic pressure ρv2/
2, and the proportionality constant is the tube friction coefficient λ. Here, the dynamic pressure ρv2/2 is the mass flow rate (g) and the density (
It is calculated because ρ) has been measured and is known, and the cross-sectional area of the conduit is also determined. However, the tube friction coefficient λ is a function of the Reynolds number (hereinafter referred to as Re). Here, ν is the kinematic viscosity coefficient −” (3) ν − ρ.

導管内の流れが層流の場合は、管摩擦係数λは単純に粘
性係数μに逆比例し、比例定数も一定であるから(1)
、(2)式により、 μ■ΔP        ・・・(4)として粘性係数
μが求められ、層流限界は圧力損失ΔPに対して流速V
が正確に2乗となる範囲から定められる。また、導管内
の流れが乱流の場合の管摩擦係数λは、導管内壁面の粗
さにも依存するが、該粗さは個々の流量計導管において
定められているので単純にReの関数として与えられる
When the flow in a pipe is laminar, the pipe friction coefficient λ is simply inversely proportional to the viscosity coefficient μ, and the proportionality constant is also constant (1)
, (2), the viscosity coefficient μ is obtained as μ■ΔP (4), and the laminar flow limit is the flow velocity V with respect to the pressure loss ΔP.
is determined from the range in which is exactly squared. In addition, the pipe friction coefficient λ when the flow inside the pipe is turbulent depends on the roughness of the inner wall surface of the pipe, but since the roughness is determined for each flowmeter pipe, it is simply a function of Re. given as.

従って、各々の流量において圧力損失ΔPを計測すれば
粘性係数μを演算することができる。また、予め圧力損
失ΔPと質量流量gと粘性係数μとの関係が定められて
いれば、圧力損失ΔPと質量流量gとから粘性係数μが
直ちに算出できる。導管が湾曲管である場合は湾曲部に
おける2次流れの影響を受け、圧力損失を伴なうが、こ
の場合においても導管の形状寸法が定められていれば前
述の直管の場合と同様にして粘性係数μを算出すること
ができる。
Therefore, by measuring the pressure loss ΔP at each flow rate, the viscosity coefficient μ can be calculated. Further, if the relationship between the pressure loss ΔP, the mass flow rate g, and the viscosity coefficient μ is determined in advance, the viscosity coefficient μ can be immediately calculated from the pressure loss ΔP and the mass flow rate g. If the conduit is a curved pipe, it will be affected by the secondary flow at the curved part, resulting in pressure loss, but in this case as well, if the shape and dimensions of the conduit are determined, it can be treated in the same way as for the straight pipe described above. The viscosity coefficient μ can be calculated by

本出願人の実験によれば、導管が第1図に示したU字形
であるときの圧力損失ΔPは。
According to the applicant's experiments, the pressure loss ΔP when the conduit is U-shaped as shown in FIG.

ΔP =   (Kg/cm”)  −(5)ρ であることが確められ、密度ρと圧力損失ΔPを知れば
圧力損失係数Cが求められる。また、圧力損失係数Cと
質量流量gとの間には第2図に示した関係があり、この
関係は所定の流量計において粘性係数μをパラメータと
して実験的に求めたものである。従って(5)式によっ
て求めた圧力損失係数Cと、質量流量gとから粘性係数
μが算出できる。上述した関係は演算回路fに記憶され
、該記憶に基づいて演算される。尚、第2図における粘
性係数μm(C1〜14)の折点Ta(j=5〜12)
は層流から乱流への遷移域をあられす。本出顕人が求め
たU字導管において実験的に求めた(5)式と第2図と
から粘性係数μを算出する方法によれば層流域と乱流域
においてRe数の関数として示される管摩擦係数λとを
区別して演算することなしに粘性係数μを求めることが
できる。
It is confirmed that ΔP = (Kg/cm") - (5) ρ, and if the density ρ and pressure loss ΔP are known, the pressure loss coefficient C can be found. Also, the pressure loss coefficient C and the mass flow rate g can be calculated. There is a relationship shown in Figure 2 between them, and this relationship was experimentally determined using the viscosity coefficient μ as a parameter in a given flowmeter.Therefore, the pressure loss coefficient C determined by equation (5), The viscosity coefficient μ can be calculated from the mass flow rate g.The above-mentioned relationship is stored in the arithmetic circuit f, and is calculated based on the memory.The corner point Ta of the viscosity coefficient μm (C1 to 14) in FIG. (j=5~12)
hail the transition region from laminar to turbulent flow. According to the method of calculating the viscosity coefficient μ from the experimentally determined equation (5) and Figure 2 for the U-shaped conduit found by Akito Motode, the viscosity coefficient μ is calculated as a function of the Re number in the laminar region and the turbulent region. The viscosity coefficient μ can be determined without calculating separately from the friction coefficient λ.

第2図は、予め粘性係数μの知られた複数の流体に関し
ての質量流量gと圧力損失係数Cとの関係を示したもの
であり、上記において第2図の関係を予め記憶し、該記
憶値に基づいて粘性係数μを演算するものであるが、第
2図の関係が不明の場合は、該当する流体に関して複数
の質量流量の計測値に対応した圧力損失を検知して各々
の流体に関して粘性係数を校正して記憶し、該記憶値に
基づいて圧力損失および質量流量の計測値から粘性係数
を求めることもできる。
FIG. 2 shows the relationship between the mass flow rate g and the pressure loss coefficient C for a plurality of fluids whose viscosity coefficient μ is known in advance. The viscosity coefficient μ is calculated based on the value, but if the relationship shown in Figure 2 is unknown, the pressure loss corresponding to the measured values of multiple mass flow rates for the relevant fluid is detected and the viscosity coefficient μ is calculated for each fluid. It is also possible to calibrate and store the viscosity coefficient and determine the viscosity coefficient from the measured values of pressure loss and mass flow rate based on the stored values.

第2図の場合はニュートン流体についての関係であるが
、後者の場合は非ニユートン流体に関しても対応できる
。尚、すべての流体の粘性係数は温度の関係であり、上
記の関係は基準温度に補正された粘性係数として示され
ている。従って、当然のことながら、温度変化に対して
の粘度変化の関係は予め知られていることを前提として
いる。
Although the case in FIG. 2 is a relationship for Newtonian fluids, the latter case can also be applied to non-Newtonian fluids. The viscosity coefficients of all fluids are related to temperature, and the above relationship is shown as the viscosity coefficient corrected to the reference temperature. Therefore, as a matter of course, it is assumed that the relationship between viscosity change and temperature change is known in advance.

第1図においては差圧検出器5を流入口21゜流出口2
2の近傍において連通する圧力導入管23に接設してい
るが、各々の圧力導入管23部に圧力検出器を取付け、
この圧力検出器の出力信号をとってもよい。
In Fig. 1, the differential pressure detector 5 is connected to the inlet 21° and the outlet 2
2, a pressure detector is attached to each pressure introduction pipe 23,
The output signal of this pressure detector may also be taken.

第3図は、流出口22側に装着した場合を示すもので、
(A)図は平断面図、(B)図は(A)図の2−2矢視
断面図である。導管2の流出口22側面に取付座24を
溶着し、該取付座24を介して圧力検出器51を螺合装
着する。同様に流入口21側にも他の圧力検出器が装着
され相互の出力信号が演算回路(f)において演算され
る。
Figure 3 shows the case where it is installed on the outflow port 22 side.
(A) is a plan cross-sectional view, and (B) is a cross-sectional view taken along arrow 2-2 in (A). A mounting seat 24 is welded to the side surface of the outlet 22 of the conduit 2, and a pressure sensor 51 is screwed onto the mounting seat 24. Similarly, another pressure detector is installed on the inlet 21 side, and their output signals are calculated in the calculation circuit (f).

以上は、2点間で支持された等径の単一導管について述
べたが、本発明は、同形等大の導管を同一支持部材に平
行して支持された場合にも適用されるものである。この
場合、平行して支持された導管には同一の流体が分流さ
れることから支持部材に対して実質的に等しい固有振動
数をもった振動体となるので支持部材を振動節部として
音叉状に駆動される。質量流量および密度は単一導管の
場合と同一の原理に基づいて検知され、差圧検知手段は
平行導管に流通する流体の層流の圧力損失が検知される
Although the above description is about a single conduit of equal diameter supported between two points, the present invention is also applicable to a case where conduits of the same shape and size are supported in parallel on the same support member. . In this case, since the same fluid is divided into the conduits supported in parallel, the vibrating body has a natural frequency substantially equal to that of the support member, so the support member is used as a vibration node and is shaped like a tuning fork. driven by The mass flow rate and density are sensed on the same principle as in the case of a single conduit, and the differential pressure sensing means sense the pressure loss of the laminar flow of fluid flowing through the parallel conduits.

羞−一来 上述のように1本発明の流体計測装置によると、流体計
測対象となる物理量としての質量流量、密度および粘性
係数が測定され、しかも、粘性係数は単に導管に流通す
る圧力損失を差圧検出手段により検知するのみで、別に
高価な粘度計等を必要とせず、また、そのための設置場
所等を必要とせず安価に計測できる。
1. As mentioned above, according to the fluid measuring device of the present invention, the physical quantities to be measured in the fluid, such as mass flow rate, density, and viscosity coefficient, are measured, and the viscosity coefficient simply represents the pressure loss flowing through the conduit. It can be measured at low cost by simply detecting it using a differential pressure detection means, without requiring an expensive viscometer or the like, and without requiring an installation location.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の流体計測装置の平面図で。 (A)図は平面図、(B)図は(A)図のL−L矢視断
面図、(C)図は本発明の詳細な説明するブロック図、
第2図は、流体粘度μをパラメータとした質量流量gと
圧力損失係数Cとの関係をしめず実験結果を示す図、第
3図は、圧力検出器51の取付図で、(A)図は側断面
図、(B)図は(A)図のZ−Z矢視断面図である。 1・・・基板、2・・・導管、3・・・暉動手段、41
.42・・・検出手段、5・・・差圧検出器。 特許出頭人  オーバル機器工業株式会社」中1 第 図 −IQg、o G (kg/rn i n )第 図 (B)
FIG. 1 is a plan view of the fluid measuring device of the present invention. (A) is a plan view, (B) is a sectional view taken along the line L-L in (A), and (C) is a block diagram explaining the present invention in detail.
FIG. 2 is a diagram showing the experimental results showing the relationship between the mass flow rate g and the pressure loss coefficient C using the fluid viscosity μ as a parameter, and FIG. 3 is an installation diagram of the pressure detector 51, and (A) is a side sectional view, and (B) is a sectional view taken along the Z-Z arrow in FIG. (A). DESCRIPTION OF SYMBOLS 1... Substrate, 2... Conduit, 3... Driving means, 41
.. 42...Detection means, 5...Differential pressure detector. Patent Applicant: OVAL Kiki Kogyo Co., Ltd. 1st grade Figure - IQg, o G (kg/rn in) Figure (B)

Claims (1)

【特許請求の範囲】 1、2点間で支持固定された等径の導管と、該導管を導
管中央部において支持点まわりに固有振動数で駆動する
駆動手段と、該駆動手段および支持点の間において、流
体の流れにより生ずるコリオリの力を検出する検出手段
と、導管の所定区間における流体の差圧を検出する差圧
検出手段と、前記コリオリの力から流体の質量流量を、
前記固有振動数から流体密度を、前記導管の寸法諸元、
前記質量流量、流体密度および流体差圧から流体粘度を
各々演算する演算手段とを有することを特徴とする流体
計測装置。 2、前記導管を同形等大として流体を等流量に分配する
とともに該導管を2点間で平行して支持し、前記駆動手
段は、前記導管を各々の導管の支持点まわりに共振周波
数で逆位相に駆動することを特徴とする請求項第1項に
記載の流体計測装置。 3、前記導管をU字形状として開口近傍で軸対称に支持
し、該開口近傍における圧力差を検出する差圧検出手段
により前記導管内の圧力損失を計測し、該計測値におけ
る圧力損失と密度とを乗算して圧力損失係数を算出し、
該算出値及び質量流量を予め粘性係数をパラメータとし
て検知された質量流量と圧力損失係数との関係を記憶し
た記憶値と対比して該当する粘性係数を求めることを特
徴とする請求項第1項又は第2項に記載の流体計測装置
。 4、所定範囲の粘性係数をもち、予め複数の異なつた粘
性係数をもつ流体で、複数の異なる質量流量と該質量流
量に対応する導管の所定区間における流体の差圧との関
係から粘性係数を校正し、質量流量、密度および粘性係
数を計測するようにしたことを特徴とする請求項第1項
に記載の流体計測装置。
[Claims] A conduit of equal diameter supported and fixed between one or two points, a driving means for driving the conduit at a natural frequency around the support point in the center of the conduit, and a drive means and a support point a detection means for detecting the Coriolis force caused by the fluid flow; a differential pressure detection means for detecting the differential pressure of the fluid in a predetermined section of the conduit;
The fluid density is determined from the natural frequency, the dimensional specifications of the conduit,
A fluid measuring device comprising calculation means for calculating fluid viscosity from the mass flow rate, fluid density, and fluid differential pressure. 2. The conduits are made of the same shape and size to distribute the fluid at equal flow rates, and the conduits are supported in parallel between two points, and the driving means is configured to rotate the conduits in a resonant frequency around each support point of each conduit. 2. The fluid measuring device according to claim 1, wherein the fluid measuring device is driven in phase. 3. Support the conduit in a U-shape axially symmetrically near the opening, measure the pressure loss inside the conduit using a differential pressure detection means that detects the pressure difference in the vicinity of the opening, and calculate the pressure loss and density in the measured value. Calculate the pressure loss coefficient by multiplying by
Claim 1, wherein the calculated value and the mass flow rate are compared with a stored value that stores the relationship between the mass flow rate and the pressure loss coefficient, which is detected in advance using the viscosity coefficient as a parameter, to determine the corresponding viscosity coefficient. Or the fluid measuring device according to item 2. 4. For a fluid that has a viscosity coefficient in a predetermined range and has a plurality of different viscosity coefficients, the viscosity coefficient is determined from the relationship between a plurality of different mass flow rates and the differential pressure of the fluid in a predetermined section of the conduit corresponding to the mass flow rate. 2. The fluid measuring device according to claim 1, wherein the fluid measuring device measures calibration, mass flow rate, density, and viscosity coefficient.
JP19393088A 1988-08-02 1988-08-02 Fluid measurement device Expired - Lifetime JP2579349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19393088A JP2579349B2 (en) 1988-08-02 1988-08-02 Fluid measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19393088A JP2579349B2 (en) 1988-08-02 1988-08-02 Fluid measurement device

Publications (2)

Publication Number Publication Date
JPH0242319A true JPH0242319A (en) 1990-02-13
JP2579349B2 JP2579349B2 (en) 1997-02-05

Family

ID=16316109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19393088A Expired - Lifetime JP2579349B2 (en) 1988-08-02 1988-08-02 Fluid measurement device

Country Status (1)

Country Link
JP (1) JP2579349B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145524A (en) * 2004-11-23 2006-06-08 Krohne Ag Operating method of mass flowmeter
US7698956B2 (en) * 2006-03-14 2010-04-20 Oval Corporation Coriolis flow meter with vibrating direction restriction means
JP2012526987A (en) * 2009-05-11 2012-11-01 マイクロ モーション インコーポレイテッド Flow meter with a balanced reference member
WO2013097190A1 (en) * 2011-12-30 2013-07-04 西安东风机电有限公司 Method for measuring viscosity of flowing fluid based on bending vibration structure
JP2017505439A (en) * 2014-01-23 2017-02-16 ベルキン ビーブイBerkin B.V. Flow measurement system and method for determining at least one property of a medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5422750B2 (en) * 2009-12-01 2014-02-19 マイクロ モーション インコーポレイテッド Friction compensation of vibratory flow meter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145524A (en) * 2004-11-23 2006-06-08 Krohne Ag Operating method of mass flowmeter
US7698956B2 (en) * 2006-03-14 2010-04-20 Oval Corporation Coriolis flow meter with vibrating direction restriction means
JP2012526987A (en) * 2009-05-11 2012-11-01 マイクロ モーション インコーポレイテッド Flow meter with a balanced reference member
US8667852B2 (en) 2009-05-11 2014-03-11 Micro Motion, Inc. Flow meter including a balanced reference member
WO2013097190A1 (en) * 2011-12-30 2013-07-04 西安东风机电有限公司 Method for measuring viscosity of flowing fluid based on bending vibration structure
JP2017505439A (en) * 2014-01-23 2017-02-16 ベルキン ビーブイBerkin B.V. Flow measurement system and method for determining at least one property of a medium

Also Published As

Publication number Publication date
JP2579349B2 (en) 1997-02-05

Similar Documents

Publication Publication Date Title
JP2871096B2 (en) Inflow type Coriolis effect mass flowmeter
KR101802380B1 (en) Method and apparatus for determining and controlling a static fluid pressure through a vibrating meter
US9671268B2 (en) Detection of a change in the cross-sectional area of a fluid tube in a vibrating meter by determining a lateral mode stiffness
EP3129754B1 (en) Apparatus and method for detecting asymmetric flow in vibrating flowmeters
US7685888B2 (en) Coriolis measuring system with at least three sensors
JP2579349B2 (en) Fluid measurement device
US20230358658A1 (en) Dissolution monitoring method and apparatus
EP1409968A1 (en) Device and method for measuring mass flow of a non-solid medium
CN111263880B (en) Compact vibratory flowmeter
US20220107215A1 (en) Micro-coriolis mass flow sensor with strain measurement devices
JP6921280B2 (en) Compact flowmeter and related methods
JP3051681B2 (en) Coriolis flow meter
KR20240107173A (en) Coriolis flow meter external magnetic field quantification device and method
JPS63233328A (en) Mass flowmeter
WO2023239355A1 (en) Coriolis flowmeter with compensation for an external magnetic field
JPH0436409Y2 (en)
JPH04130224A (en) Mass flowmeter
KR20210146393A (en) Determination of the vapor pressure of a fluid within a metering assembly
JPH04324318A (en) Electromagnetic type dynamic pressure flow measuring device
JPH0299830A (en) Method and device for measuring flow rate in tube therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12