JPS6398519A - Liquid metal flow rate measuring device of high speed breeder reactor - Google Patents

Liquid metal flow rate measuring device of high speed breeder reactor

Info

Publication number
JPS6398519A
JPS6398519A JP24299086A JP24299086A JPS6398519A JP S6398519 A JPS6398519 A JP S6398519A JP 24299086 A JP24299086 A JP 24299086A JP 24299086 A JP24299086 A JP 24299086A JP S6398519 A JPS6398519 A JP S6398519A
Authority
JP
Japan
Prior art keywords
flow rate
liquid metal
output
eddy current
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24299086A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
寿之 鈴木
Takao Watanabe
渡辺 孝雄
Takayuki Ishida
隆之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24299086A priority Critical patent/JPS6398519A/en
Publication of JPS6398519A publication Critical patent/JPS6398519A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To obtain the flow rate output and temp. output in an average flow speed region, by arranging an eddy current type flowmeter and a thermometer in the same well at the place in piping generating the average flow speed of a liquid metal. CONSTITUTION:A structure wherein a thermocouple type thermometer 19 is provided in the same well as an eddy current type flowmeter is incorporated in a measuring pipe 4. The output voltages from the secondary coils 9, 10 of the eddy current type flowmeter are converted by a flow rate converter 12 to be outputted to a temp. compensation device 21. The output signal from the thermocouple type thermometer 19 is converted by a temp. converter 20 to be outputted to the temp. compensation device 21. In the temp. compensation device 21, the signal from the flow rate converter 12 is compensated by the signal from the temp. converter 20 to be outputted as a flow rate signal improved in accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高速増殖炉の液体金属の流量測定に係り、特
に大口径配管内の流量測定に好適な流量計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to measuring the flow rate of liquid metal in a fast breeder reactor, and particularly to a flow meter suitable for measuring the flow rate in large-diameter piping.

〔従来の技術〕[Conventional technology]

従来、液体金属冷却型高速増殖炉の液体金属(ナトリウ
ム)流量計として、主に電磁流量計が用いられている・ 励磁電源1.励磁コイル2.及びコア3からなる電磁石
により、流れの方向に垂直に磁界が加えられている測定
管4に液体が流れると、液体の流速に比例した起電力が
液体に誘導される。この起電力を磁界内の測定管4の流
れ方向に対し垂直になる位置に対向して設けられた一対
の電極5,6で検知し、流量変換器7により変換を行う
ことにより、体積流量を測定するものである。
Conventionally, electromagnetic flowmeters have been mainly used as liquid metal (sodium) flowmeters in liquid metal cooled fast breeder reactors. Excitation power source 1. Excitation coil 2. When liquid flows through the measurement tube 4 to which a magnetic field is applied perpendicularly to the flow direction by an electromagnet consisting of a core 3 and a magnetic field perpendicular to the flow direction, an electromotive force proportional to the flow rate of the liquid is induced in the liquid. This electromotive force is detected by a pair of electrodes 5 and 6 placed opposite each other in a position perpendicular to the flow direction of the measuring tube 4 in the magnetic field, and converted by the flow rate converter 7 to calculate the volumetric flow rate. It is something to be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

うに、電磁流量計による大口径配管の液体金属流量測定
においては、流量と出力起電力との直線性が保てなくな
ること等のため実流校正の必要が有り、実際の配管、流
体等を模擬した大規模な装置による実流校正試験を行わ
なければならない点や、出力起電力の流体温度依存性や
ゆらぎ等が増大することから測定性能が低下する点に問
題があった。
When measuring the flow rate of liquid metal in large-diameter piping using an electromagnetic flowmeter, it is necessary to calibrate the actual flow because the linearity between the flow rate and the output electromotive force cannot be maintained. There were problems in that an actual flow calibration test had to be performed using a large-scale device, and that measurement performance deteriorated due to increased fluid temperature dependence and fluctuation of the output electromotive force.

このほか、大口怪配管向流量計として超音波流量計があ
る。超音波流量計は、超音波の送信子及び受信子を配管
外壁に取付け、流体の速度によって超音波の見かけ上の
伝播速度が異なるという原理を利用したものである。超
音波流量計は、伝播速度が温度によって変化するほか、
配管の肉厚が腐食や固着物のため変化すると測定誤差が
生じ、補正も非常に複雑になる欠点があった。
In addition, there is an ultrasonic flowmeter as a large-mouth, large-pipe directional flowmeter. An ultrasonic flow meter has an ultrasonic transmitter and receiver attached to the outer wall of a pipe, and utilizes the principle that the apparent propagation speed of ultrasonic waves varies depending on the velocity of the fluid. In addition to the fact that the propagation velocity of an ultrasonic flow meter changes depending on the temperature,
Measurement errors occur when the wall thickness of the piping changes due to corrosion or adhered substances, and correction is also extremely complicated.

本発明の目的は、大口径配管の液体金属流量測定におい
ても簡単な補正で信頼性が高く測定性能が良く、かつ、
実流校正が不要な流量計を提供することにある。
The purpose of the present invention is to achieve high reliability and good measurement performance with simple correction even in the measurement of liquid metal flow rate in large-diameter piping, and to
The object of the present invention is to provide a flowmeter that does not require actual flow calibration.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、流量の測定に渦電流式流量計を用い、配管
内の平均流速を示す箇所に渦電流式流量計を設け、さら
に、同一ウェル内の温度計を設け、温度計からの出力信
号と、流体温度の変化により変動する流量信号とを取り
出せるようにした。又、具体的実施例にあっては、配管
内の流速は配管の中心部で最も速く、周辺部に近づくに
従って遅くなる分布をしているので配管内の平均流速を
下記の手段で求めている。
The above purpose is to use an eddy current flowmeter to measure the flow rate, install the eddy current flowmeter at a point in the pipe that indicates the average flow velocity, and also install a thermometer in the same well, and collect the output signal from the thermometer. and a flow rate signal that fluctuates due to changes in fluid temperature. In addition, in the specific example, the flow velocity in the pipe is the fastest in the center of the pipe and becomes slower as it approaches the periphery, so the average flow velocity in the pipe is determined by the following method. .

(1)配管内の平均流速を示す位@(同一円周上の任意
の箇所)に流量計と温度計を設置する。
(1) Install a flow meter and a thermometer at a location that indicates the average flow velocity in the pipe (at any location on the same circumference).

または、 (2)配管内の半径方向に複数個の流量計と温度計を設
置し、出力信号を平均する。
Or (2) Install multiple flowmeters and thermometers in the radial direction within the piping and average the output signals.

〔作用〕[Effect]

渦電流式流量計は、検出端を測定管内に設置するもので
、測定管が大口径の場合でも出力特性が本質的に変らな
いため、実流校正を行う必要がなしAo また、流体の温度変化による流量計出力の変化は、渦電
流式流量計の同一ウェル内に設けた熱電対式温度計から
の両信号により補償できるように両信号を取り出せる。
Eddy current flowmeters have the detection end installed inside the measurement tube, and the output characteristics essentially do not change even if the measurement tube has a large diameter, so there is no need to perform actual flow calibration. Both signals can be taken out so that a change in the flowmeter output due to the change can be compensated for by both signals from the thermocouple thermometer provided in the same well of the eddy current flowmeter.

さらに、原子炉に適用する場合に要求される冗長性に対
しても流量計が小型であるため配管内の平均流速を示す
設置とすることにより信頼性向上が容易に図れる。
Furthermore, with respect to the redundancy required when applied to a nuclear reactor, since the flowmeter is small, reliability can be easily improved by installing it to indicate the average flow velocity in the piping.

[実施例] 以下、本発明の具体的一実施例を第1図、第2図、第5
図、第6図及び第7図により説明する。
[Example] Hereinafter, a specific example of the present invention will be described with reference to FIGS. 1, 2, and 5.
This will be explained with reference to FIGS. 6 and 7.

第6図は、渦電流式流量計の原理図を示している。渦電
流式流量計は、燃料集合体出口流速計として使用される
渦電流式流速計と同じ検出原理であり、1次コイル8,
2次コイル9,10.1次電源11.流量変換器12及
びウェル13により構成される。1次コイル8は1次電
源11により交流励磁されているa2次コイル9と2次
コイル10は差動コイルを形成しているためウェル13
外部の流体に流れがない場合は1次コイル8を流れる電
流の磁界により2次コイル9,10に電圧が誘導される
ものの、2次コイル9の誘導電圧と2次コイル1oの誘
導電圧には電位差がないので流量変換器12に出力され
る電圧は相殺され零となる。しかし、流体が流れている
場合、例えば実線14に示す方向に流体が流れ、1次コ
イルによる磁界が一点鎖a15に示す方向にできている
とき、1次コイルによる磁界と流体が交差するため。
FIG. 6 shows a principle diagram of an eddy current flowmeter. The eddy current flowmeter has the same detection principle as the eddy current flowmeter used as the fuel assembly outlet flowmeter, and the primary coil 8,
Secondary coil 9, 10. Primary power supply 11. It is composed of a flow rate converter 12 and a well 13. The primary coil 8 is AC excited by the primary power source 11.aThe secondary coil 9 and the secondary coil 10 form a differential coil, so the well 13
When there is no flow in the external fluid, voltage is induced in the secondary coils 9 and 10 by the magnetic field of the current flowing through the primary coil 8, but the induced voltage in the secondary coil 9 and the induced voltage in the secondary coil 1o are Since there is no potential difference, the voltage output to the flow rate converter 12 is canceled out and becomes zero. However, when the fluid is flowing, for example, in the direction shown by the solid line 14, and the magnetic field by the primary coil is created in the direction shown by the dotted chain a15, the magnetic field by the primary coil and the fluid intersect.

二点銀fi16.17に示すような方向に渦電流が発生
する。この渦電流の方向は、流体が交差する磁界の方向
が異なるため、2次コイル9付近と2次コイル10付近
では逆になる。これらの渦電流による磁界は2次コイル
9付近では、1次コイル8を流れる電流による磁界を打
ち消す方向に働き、2次コイル10付近では、1次コイ
ル8を流れる電流による磁界に加えられる方向へ働く。
Eddy currents are generated in the directions shown in the two-point silver fi16.17. The direction of this eddy current is opposite in the vicinity of the secondary coil 9 and in the vicinity of the secondary coil 10 because the direction of the magnetic field where the fluid intersects is different. The magnetic field caused by these eddy currents acts in the direction of canceling the magnetic field caused by the current flowing through the primary coil 8 near the secondary coil 9, and acts in the direction of being added to the magnetic field caused by the current flowing through the primary coil 8 near the secondary coil 10. work.

その結果、2次コイル9の誘導電圧と2次コイル10の
誘導電圧には電位差が生じ、出力電圧として流量変換器
12に送られる。この出力電圧は流体の流速に比例する
もので、流量変換器12により変換される。
As a result, a potential difference occurs between the induced voltage of the secondary coil 9 and the induced voltage of the secondary coil 10, which is sent to the flow rate converter 12 as an output voltage. This output voltage is proportional to the fluid flow rate and is converted by the flow rate converter 12.

また、第5図に示すように流量変換器12からの出力は
流体温度の変化により変動する。これは、流体温度の変
化により流体の電気抵抗が変化し。
Further, as shown in FIG. 5, the output from the flow rate converter 12 fluctuates due to changes in fluid temperature. This is because the electrical resistance of the fluid changes due to changes in fluid temperature.

渦電流の大きさが変動することが主な原因であり、精度
良く流量を測定するためには、流量変換器12からの出
力信号を温度補償する必要がある。
The main cause is fluctuations in the magnitude of eddy currents, and in order to accurately measure the flow rate, it is necessary to temperature compensate the output signal from the flow rate converter 12.

第1図は、渦電流式流量計と同一ウェル13内に熱電対
式温度計19を設けたものを測定管4に組み込んだ図で
ある。また、流体の流速は測定管4の中心に近くなるほ
ど速くなるので、平均流速源し流量計を4箇設けた図で
ある。測定管内の流複数の流量計を設置し、各流量計か
らの出力を演算器22に出力する。配管内の流速は、第
7図に矢印で示すように、中心部で速く、周辺部に近づ
くに従って遅くなる分布となる。演算器22では、流速
の分布を検知し、平均流速による出力信号として流量変
換器12に出力すること等が考えられた る、第7図のよう桜流量計の配置は、測定対象流量の範
囲が広く、管内の流速分布の変化が無視できない場合に
適する。渦電流式流量計の2次コイル9,10からの出
力電圧は、流量変換器12で変換され温度補償器21に
出力される。熱電対式温度計19からの出力信号は、温
度変換器20により変換され温度補償器21に出力され
、また。
FIG. 1 is a diagram in which an eddy current flowmeter and a thermocouple thermometer 19 provided in the same well 13 are assembled into a measuring tube 4. Furthermore, since the flow velocity of the fluid increases as it approaches the center of the measuring tube 4, the drawing shows an average flow velocity source and four flowmeters. A plurality of flowmeters are installed in the measurement pipe, and the output from each flowmeter is output to the calculator 22. As shown by the arrows in FIG. 7, the flow velocity in the pipe is fast in the center and slows down as it approaches the periphery. The arithmetic unit 22 detects the distribution of flow velocity and outputs it to the flow rate converter 12 as an output signal based on the average flow velocity. Suitable for a wide range of applications where changes in flow velocity distribution within the pipe cannot be ignored. Output voltages from the secondary coils 9 and 10 of the eddy current flowmeter are converted by a flow rate converter 12 and output to a temperature compensator 21. The output signal from the thermocouple thermometer 19 is converted by a temperature converter 20 and output to a temperature compensator 21.

必要によっては温度信号として使用することもできる。It can also be used as a temperature signal if necessary.

温度補償器21では、流量変換器12からの信号を温度
変換器20からの信号により補償し、精度良い流量信号
として出力する。
The temperature compensator 21 compensates the signal from the flow rate converter 12 with the signal from the temperature converter 20 and outputs it as a highly accurate flow rate signal.

温度補償器21は、第5図に示すように流量−出力特性
が流体の温度によって変化するのを補正するもので、第
8図に構成を示す6 流量信号は、乗算器31に入力され、関数発生器30を
通した温度信号と乗算される。これにより、第5図に示
す流量−出力特性の勾配が温度によって補正され、温度
に依存しない第9図のような流量−出力特性が得られる
The temperature compensator 21 corrects the change in the flow rate-output characteristic depending on the temperature of the fluid as shown in FIG. 5, and the configuration is shown in FIG. Multiplied by the temperature signal passed through function generator 30. As a result, the gradient of the flow rate-output characteristic shown in FIG. 5 is corrected by temperature, and the flow rate-output characteristic shown in FIG. 9, which is independent of temperature, is obtained.

関数発生器30は、流量−出力特性の温度依存性に非直
線性を含む場合、補正するもので、非直線性が小さい時
には省略できるものである。
The function generator 30 is used to correct when the temperature dependence of the flow rate-output characteristic includes nonlinearity, and can be omitted when the nonlinearity is small.

本実施例によれば、大口径配管内の液体金属流量測定に
おいても、出力特性が大きく変わることがあっても精度
良く流量が測定できること及び、流量の他に温度も測定
したい場合、温度補償に使用している温度計の信号を使
用することができるので物量が低減できること等の効果
がある。
According to this example, even when measuring the flow rate of liquid metal in large-diameter piping, the flow rate can be measured with high accuracy even if the output characteristics may change significantly, and if it is desired to measure the temperature in addition to the flow rate, temperature compensation can be used. Since the signal from the thermometer in use can be used, there are effects such as the ability to reduce the amount of material used.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、平均流速域での流量出力
と温度出力を得ることができるので、出力特性が大きく
変化することなく実流校正の必要性が低減出来る上に、
同−域且つ平均流速域での面出力を得ているので、面出
力を温度補償の為に利用した際の精度が良くなるという
効果がある。
As described above, according to the present invention, since it is possible to obtain the flow rate output and temperature output in the average flow velocity range, the need for actual flow calibration can be reduced without significantly changing the output characteristics.
Since the surface output is obtained in the same range and in the average flow velocity range, there is an effect that the accuracy when the surface output is used for temperature compensation is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の流体の流れ方向の断面図及
び信号処理図、第2図は第1図の1−1線断面図、第3
図は電磁流量計の原理図、第4図は電磁流量計の流速−
出力起電力グラフ図、第5図は渦電流式流量計の流量−
流量変換器出力グラフ図、第6図は渦電流式流量計の原
理図、第7図は流速の分布を考慮し複数の流量計を設け
た場合の流体の流れ方向の断面図及び信号処理図、第8
図は第1図中の温度補償器回路の詳細ブロック図、第9
図は温度補正後の流量−出力特性グラフ図である。 4・・・測定管、8・・・1次コイル、9,10・・・
2次コイル、12・・・流量変換器、19・・・熱電対
式温度計、20・・・温度変換器、21・・・温度補償
器、−°、代理人 弁理士 小川勝馬 ゝ′□・1.・
ノ茶 (口 2(・・苗度柚償呑 ]9・・・熟τ灯へ易A針 第7霞 第3の Z 肋起員コイ1し 1 シ紀V実4矢さ 一何争斂当略端モ ←躬R鈍橙g 第ゴ囚 2Z・・・省算券 31−芋X番 茶q口 遅量−
FIG. 1 is a sectional view in the fluid flow direction and a signal processing diagram of an embodiment of the present invention, FIG. 2 is a sectional view taken along the line 1-1 in FIG. 1, and FIG.
The figure shows the principle of an electromagnetic flowmeter, and Figure 4 shows the flow velocity of an electromagnetic flowmeter.
Output electromotive force graph, Figure 5 shows the flow rate of the eddy current flowmeter.
Flow converter output graph diagram, Figure 6 is a principle diagram of an eddy current flowmeter, and Figure 7 is a cross-sectional diagram in the fluid flow direction and signal processing diagram when multiple flowmeters are installed in consideration of flow velocity distribution. , 8th
The figure is a detailed block diagram of the temperature compensator circuit in Figure 1, and Figure 9 is a detailed block diagram of the temperature compensator circuit in Figure 1.
The figure is a flow rate-output characteristic graph diagram after temperature correction. 4...Measuring tube, 8...Primary coil, 9, 10...
Secondary coil, 12...Flow rate converter, 19...Thermocouple thermometer, 20...Temperature converter, 21...Temperature compensator, -°, Agent Patent attorney Katsuma Ogawa ゝ'□・1.・
Nocha (mouth 2 (...Naedo Yuzu Compensation) 9...Juku τ light to Yi A needle 7 Kasumi 3rd Z Rikuori member Koi 1 Shi 1 Shiki V fruit 4 Yasa I what conflict At present, it's a bit boring.

Claims (1)

【特許請求の範囲】 1、液体金属を冷却材として使用する高速増殖炉と、前
記液体金属が流動する配管とを備えた原子炉において、
前記液体金属の平均流速を生じる前記配管内の箇所又は
その近傍に、渦電流式流量計と温度計とを同一ウェル内
に設けて設置し、前記両計測装置の出力ラインを前記配
管外へ出して成ることを特徴とした高速増殖炉の液体金
属流量計測装置。 2、特許請求の範囲の第1項において、前記両計測装置
の出力ラインは、前記渦電流式流量計の温度補償器の入
力側に接続することにより配管外へ出されていることを
特徴とした高速増殖炉の液体金属流量計測装置。
[Claims] 1. A nuclear reactor equipped with a fast breeder reactor that uses liquid metal as a coolant and piping through which the liquid metal flows,
An eddy current flowmeter and a thermometer are installed in the same well at or near a location in the piping where the average flow velocity of the liquid metal occurs, and the output lines of both measuring devices are brought out of the piping. A liquid metal flow rate measurement device for a fast breeder reactor characterized by the following features: 2. In claim 1, the output lines of both of the measuring devices are connected to the input side of the temperature compensator of the eddy current flowmeter to be taken out of the piping. A liquid metal flow rate measurement device for a fast breeder reactor.
JP24299086A 1986-10-15 1986-10-15 Liquid metal flow rate measuring device of high speed breeder reactor Pending JPS6398519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24299086A JPS6398519A (en) 1986-10-15 1986-10-15 Liquid metal flow rate measuring device of high speed breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24299086A JPS6398519A (en) 1986-10-15 1986-10-15 Liquid metal flow rate measuring device of high speed breeder reactor

Publications (1)

Publication Number Publication Date
JPS6398519A true JPS6398519A (en) 1988-04-30

Family

ID=17097254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24299086A Pending JPS6398519A (en) 1986-10-15 1986-10-15 Liquid metal flow rate measuring device of high speed breeder reactor

Country Status (1)

Country Link
JP (1) JPS6398519A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148400A (en) * 2000-11-15 2002-05-22 Sukegawa Electric Co Ltd Inverter type nucleus crushing target system
JP2021121007A (en) * 2020-01-31 2021-08-19 株式会社Screenホールディングス Substrate processing device and substrate processing method
WO2023086986A1 (en) * 2021-11-15 2023-05-19 Westinghouse Electric Company Llc Non-invasive liquid metal flow measurement in liquid metal fuel assemblies, reactor coolant pumps, and test cartridges
WO2024017749A1 (en) * 2022-07-22 2024-01-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for measuring the flow rate of an electrically conductive liquid in a pipe with correction of the temperature effect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148400A (en) * 2000-11-15 2002-05-22 Sukegawa Electric Co Ltd Inverter type nucleus crushing target system
JP2021121007A (en) * 2020-01-31 2021-08-19 株式会社Screenホールディングス Substrate processing device and substrate processing method
WO2023086986A1 (en) * 2021-11-15 2023-05-19 Westinghouse Electric Company Llc Non-invasive liquid metal flow measurement in liquid metal fuel assemblies, reactor coolant pumps, and test cartridges
WO2024017749A1 (en) * 2022-07-22 2024-01-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for measuring the flow rate of an electrically conductive liquid in a pipe with correction of the temperature effect
FR3138208A1 (en) * 2022-07-22 2024-01-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for measuring the flow of an electrically conductive liquid in a pipe with correction of the effect of temperature

Similar Documents

Publication Publication Date Title
US3592055A (en) Directional sensor
CN103140742B (en) Electromagnetic flowmeter
CN105509824B (en) A kind of magneto flow of liquid metal gauge
JPH033164B2 (en)
JPS6398519A (en) Liquid metal flow rate measuring device of high speed breeder reactor
US4357835A (en) Electromagnetic flowmeter in shielded lines
CN205373787U (en) Magneto liquid metal flowmeter
CN110470254A (en) A kind of pipeline creep measurement system and method
CN114910130A (en) Phase difference type liquid metal electromagnetic flowmeter and flow measuring method
CN100425953C (en) External drum internal target rod flow sensor
EP3770560A1 (en) Magnetic flowmeter assembly with glitch removing capability
Poornapushpakala et al. An analysis on eddy current flowmeter—A review
RU127905U1 (en) FLUID METER FLOW METER
US6230570B1 (en) Turbulent spot flowmeter
JPH02103418A (en) Insertion type electromagnetic flowmeter
Head Electromagnetic flowmeter primary elements
EP3628982B1 (en) Full bore magnetic flowmeter assembly
Turner LIQUID METAL FLOW MEASUREMENT (SODIUM) STATE-OF-THE-ART STUDY.
JPH01272922A (en) Vortex flowmeter
EP3759441B1 (en) An electromagnetic flowmeter
JP2005207755A (en) Electromagnetic flowmeter
JP2929731B2 (en) Karman vortex flowmeter and method of manufacturing the same
Cao et al. Uncertainty Analysis of Fluid Flow Measurement in Pipeline
JPH04204091A (en) Core flow measurement of liquid metal cooling nuclear reactor
JPH041526A (en) Temperature detecting mechanism of orifice flowmeter