JPH04366728A - Bypass unit for flow rate sensor - Google Patents

Bypass unit for flow rate sensor

Info

Publication number
JPH04366728A
JPH04366728A JP3181517A JP18151791A JPH04366728A JP H04366728 A JPH04366728 A JP H04366728A JP 3181517 A JP3181517 A JP 3181517A JP 18151791 A JP18151791 A JP 18151791A JP H04366728 A JPH04366728 A JP H04366728A
Authority
JP
Japan
Prior art keywords
chamber
flow rate
bypass
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3181517A
Other languages
Japanese (ja)
Other versions
JP2582961B2 (en
Inventor
Isao Suzuki
勲 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON M K S KK
Original Assignee
NIPPON M K S KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON M K S KK filed Critical NIPPON M K S KK
Priority to JP3181517A priority Critical patent/JP2582961B2/en
Priority to US07/897,797 priority patent/US5295394A/en
Publication of JPH04366728A publication Critical patent/JPH04366728A/en
Application granted granted Critical
Publication of JP2582961B2 publication Critical patent/JP2582961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide the bypass unit of a flow rate sensor, which properly realizes a laminar flow condition. CONSTITUTION:The bypass unit of a flow rate sensor includes two flow passages 6 and 7 through which fluid comes in and out, and a chamber 10 communicated with the flow passages 6 and 7. And fluid is introduced to a sensor pipe 15 out of the chamber 10 through branched flow passage 12 and 13. The inside of the chamber 10 is provided with fluid introduction holes 24 and 25 which are housed in a gap interspaced with the inner wall of the chamber 10 while being formed coaxially with both the flow passages 6 and 7, a bypass axial body 20 including through holes which are bored out of the fluid introduction holes 24 and 25 to the circumferential direction, and is also provided with a cut-off case 18 which has a communicating through hole 31 bored on its circumferential surface and cuts off a space between the bypass axial body 20 and the inner wall of the chamber 10 with the exception of the communicating through hole.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば、熱式の質量流
量センサ等に用いることができるバイパスユニットに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bypass unit that can be used, for example, in a thermal mass flow sensor.

【0002】0002

【従来の技術】従来、流体のバイパス部において流量を
検出するために層流状態を得る必要があることが知られ
ている。このため、バイパス部に各種の層流素子を介装
させることが行われ、層流素子としては特開昭60−1
0120 号公報に示された如き素子が知られている。
2. Description of the Related Art Conventionally, it has been known that it is necessary to obtain a laminar flow state in order to detect the flow rate in a fluid bypass section. For this reason, various laminar flow elements are installed in the bypass section, and as a laminar flow element, Japanese Patent Laid-Open No. 60-1
A device as shown in Japanese Patent No. 0120 is known.

【0003】しかしながら、上記層流素子は挿入するワ
イヤが曲った状態で圧入され取り付けられ易く、ワイヤ
に曲りが生じた場合には該層流素子の入口部と出口部と
における差圧が流量に比例しなくなるため、流量の検出
が精度良く行い得ない。特に、ワイヤの曲りが極端にな
ると流体に渦が生じ差圧が一定せず実用に向かなくなる
However, the laminar flow element is easily installed by being press-fitted with the inserted wire bent, and if the wire is bent, the pressure difference between the inlet and outlet of the laminar flow element will affect the flow rate. Since it is no longer proportional, the flow rate cannot be detected with high accuracy. In particular, if the wire becomes extremely bent, vortices will occur in the fluid and the differential pressure will not be constant, making it unsuitable for practical use.

【0004】また、上記層流素子が設けられているバイ
パス部へ到る流路がバイパス部に直線的に長く続く場合
や流体の流量が少ない範囲では、バイパス部へ流入する
流体の乱れは少ない。しかし、多くの場合は、流量計へ
到る直前で流路が曲げられてバイパス部へと到る構成と
なっている。この曲げの状態によって、センサ出力に差
が生じることが知られており、かかる不具合を除去する
ため、バイパス部の入口付近にメッシュ状の整流フィル
タを配置することが行われるが、整流フィルタを配した
場合にはこの部分で圧力損失が大きくなるという問題点
が生じる。
[0004] Furthermore, when the flow path leading to the bypass section where the laminar flow element is provided continues for a long time in a straight line in the bypass section, or when the flow rate of the fluid is small, the turbulence of the fluid flowing into the bypass section is small. . However, in many cases, the flow path is bent just before reaching the flow meter and reaches a bypass section. It is known that a difference occurs in the sensor output depending on the state of bending, and in order to eliminate this problem, a mesh-shaped rectifier filter is placed near the inlet of the bypass section. In this case, a problem arises in that pressure loss increases in this part.

【0005】更に、センサの計測分解能には限界があり
、センサ管やバイパスに流すことのできる流量にも以下
のような制限がある。つまり、センサ管の入口と出口と
の差圧△P1 と該センサ管を流れる流体の流量Q1 
との間の比例関係は差圧△P1 及び流量Q1 が所定
以上大きくなると崩れ流量の高精度な検出を行い得ない
。また、バイパス部の入口と出口との差圧△P2 と該
バイパス部を流れる流体の流量Q2 との間の比例関係
は、差圧△P2 及び流量Q2 が所定以上大きくなる
と崩れ、流量の高精度な検出を行い得ない。即ち、差圧
が流量に比例する範囲においては層流として扱うことが
できるが、差圧、流量が大きくなると、差圧が流量の2
乗に比例して増加する乱流となり流量検出に適さなくな
るのである。
Furthermore, there is a limit to the measurement resolution of the sensor, and there are also the following limitations to the flow rate that can flow through the sensor pipe or bypass. In other words, the pressure difference △P1 between the inlet and outlet of the sensor tube and the flow rate Q1 of the fluid flowing through the sensor tube
When the differential pressure ΔP1 and the flow rate Q1 become larger than a predetermined value, the proportional relationship between them collapses and the flow rate cannot be detected with high accuracy. In addition, the proportional relationship between the differential pressure △P2 between the inlet and outlet of the bypass section and the flow rate Q2 of the fluid flowing through the bypass section collapses when the differential pressure △P2 and the flow rate Q2 become larger than a predetermined value. It is not possible to perform accurate detection. In other words, in the range where the differential pressure is proportional to the flow rate, it can be treated as laminar flow, but as the differential pressure and flow rate increase, the differential pressure becomes 2 times the flow rate.
This results in turbulent flow that increases in proportion to the multiplication factor, making it unsuitable for flow rate detection.

【0006】ここで、層流について考察すると、一般的
にレイノルズ数RDが2320以下が層流と称され、レ
イノルズ数RD は、 RD =(4Qρ)/(πDη)        ……
(1)で表わされる。ここに、 Q;管を流れる流体の体積流量 ρ;管を流れる流体の密度 η;管を流れる流体の粘度 D;管の等価直径 である。(1) 式により、RD を一定としてQを多
くとるためには、Dを大きくすれば良いことが理解され
る。しかし、センサ管の径やバイパス部の径を大きくす
るには、センサ自体の大きさに制限があることから、小
径の通路を重ねてバイパス部に配置し、実質的にDを大
きくしたのと同様にさせる手法もある。
[0006] Now, considering laminar flow, generally a Reynolds number RD of 2320 or less is called laminar flow, and the Reynolds number RD is as follows: RD = (4Qρ)/(πDη)...
It is expressed as (1). Here, Q: volumetric flow rate ρ of the fluid flowing through the tube; density η of the fluid flowing through the tube; viscosity D of the fluid flowing through the tube; equivalent diameter of the tube. From equation (1), it is understood that in order to increase Q while keeping RD constant, D should be increased. However, in order to increase the diameter of the sensor tube and the diameter of the bypass section, there is a limit to the size of the sensor itself. There are also methods to do the same.

【0007】しかしながら、測定する流量の範囲を広く
するためには、また、各種の流体に対応して測定を可能
とするためには各種の層流素子が多数必要となるという
問題点があった。
However, in order to widen the range of flow rates to be measured and to make measurements compatible with various fluids, a large number of various laminar flow elements are required. .

【0008】[0008]

【発明が解決しようとする課題】上記に対し、バイパス
部の中央部に円柱状中子を設けて層流を得るようにした
ものが、実開昭59−72514 号公報に開示されて
いる。かかるバイパス部の構成によれば特開昭60−1
0120 号公報に示された層流素子によるようにワイ
ヤの曲りによる乱流の発生を除去できるものの、バイパ
ス部にに流入した流体が直接、センサの流体導入口にあ
るため、ノイズの原因である渦を検出してしまう問題点
があった。さらに、測定する流量範囲を広くするために
様々な大きさのバイパス部を用意する必要がある点につ
いては解決され得ないものであった。更に、流量を10
0cc 以下と少なくする場合には、中子の外周面及び
バイパス丸穴の内壁の加工精度を極めて高くする必要が
あり、工数がかかり、また、高価となる問題点があった
[Problems to be Solved by the Invention] In order to solve the above problem, Japanese Utility Model Application Publication No. 59-72514 discloses a system in which a cylindrical core is provided in the center of the bypass section to obtain laminar flow. According to the configuration of such a bypass section, Japanese Patent Application Laid-open No. 60-1
Although the laminar flow element shown in Publication No. 0120 can eliminate turbulent flow caused by bending of the wire, the fluid flowing into the bypass section is directly at the fluid inlet of the sensor, which causes noise. There was a problem with detecting vortices. Furthermore, the need to provide bypass sections of various sizes in order to widen the range of flow rates to be measured cannot be solved. Furthermore, the flow rate was increased to 10
When reducing the amount to 0 cc or less, the processing accuracy of the outer circumferential surface of the core and the inner wall of the bypass round hole must be extremely high, which poses the problem of requiring many man-hours and increasing the cost.

【0009】本発明はこのような従来の流量センサのバ
イパス構造が有する問題点を解決せんとしてなされたも
ので、その目的は適切な層流状態を実現し、また、測定
流量範囲を容易に変更できる流量センサのバイパスユニ
ットを提供することである。
The present invention was made to solve the problems of the bypass structure of conventional flow rate sensors, and its purpose is to realize an appropriate laminar flow state and to easily change the measured flow rate range. It is an object of the present invention to provide a bypass unit for a flow rate sensor that can be used.

【0010】0010

【課題を解決するための手段】本発明に係る流量センサ
のバイパスユニットは、流体が出入りする2の流路及び
この流路に連通する室を有し、この室から分岐流路を介
して流体をセンサ管に導びく構造である流量センサのバ
イパスユニットにおいて、前記室内に当該室の内壁との
間に空隙を有して収容され、前記2の流路と同軸的に形
成された流体導入穴と、この流体導入穴から外周方向へ
穿設された透孔とを有するバイパス軸体を備えることを
特徴とする。
[Means for Solving the Problems] A bypass unit for a flow rate sensor according to the present invention has two flow channels through which fluid enters and exits, and a chamber communicating with the flow channels, and from which fluid flows through a branch channel. In a bypass unit of a flow rate sensor having a structure for guiding a flow rate sensor to a sensor pipe, a fluid introduction hole is accommodated in the chamber with a gap between it and the inner wall of the chamber and is formed coaxially with the second flow path. and a through hole bored in the outer circumferential direction from the fluid introduction hole.

【0011】上記のバイパスユニットでは、周囲面に連
絡透孔が穿設され、前記バイパス軸体と前記室の内壁と
の間を前記連絡透孔を除いて遮断する遮断ケースが備え
られていることを特徴とする。
[0011] The above-mentioned bypass unit is provided with a blocking case having a communicating hole bored in the peripheral surface and blocking the connection between the bypass shaft body and the inner wall of the chamber except for the communicating hole. It is characterized by

【0012】更に、上記のバイパスユニットでは、前記
連絡透孔は前記遮断ケースの長手方向に異なる距離をお
いて複数個形成され、当該連絡透孔のいずれか1の連絡
透孔を除き、蓋がなされて閉じられていることを特徴と
する。
Furthermore, in the above bypass unit, a plurality of the communicating holes are formed at different distances in the longitudinal direction of the blocking case, and the lid is closed except for any one of the communicating holes. It is characterized by being made and closed.

【0013】本発明に係るバイパスユニットは、流体が
出入りする2の流路及びこの流路に連通する室を有し、
この室から分岐流路を介して流体をセンサ管に導びく構
造である流量センサのバイパスユニットであって、前記
室内に当該室の内壁との間に空隙を有し、前記2の流路
と同軸的に設けられ、前記空隙に流体を流すバイパス軸
体と、周面の長手方向に異なる距離をおいて複数個の連
絡透孔が形成され、当該連絡透孔のいずれか1の連絡透
孔を除き、蓋がなされて閉じられるとともに、前記バイ
パス軸体と前記室の内壁との間を前記1の連絡透孔を除
いて遮断する遮断ケースとが備えられていることを特徴
とする。
[0013] The bypass unit according to the present invention has two channels through which fluid enters and exits, and a chamber communicating with the channels,
A bypass unit for a flow rate sensor having a structure in which fluid is guided from this chamber to a sensor pipe via a branch flow path, the chamber having a gap between the chamber and the inner wall of the chamber, and having a gap between the second flow path and the inner wall of the chamber. A bypass shaft that is coaxially provided and allows fluid to flow into the gap, and a plurality of communication holes are formed at different distances in the longitudinal direction of the circumferential surface, and any one of the communication holes is formed. The chamber is characterized by being provided with a blocking case which is closed with a lid and which blocks the connection between the bypass shaft body and the inner wall of the chamber except for the first communication through hole.

【0014】[0014]

【作用】本発明に係る流量センサのバイパスユニットは
以上の通りに構成されるので、流路から到来した流体は
流体導入穴へ到り、その前方へ到ることなく外周方向へ
透孔を介してぬけるので、メッシュによるフィルタのよ
うな大きな圧力損失なく層流の始点となる条件を提供す
る。
[Operation] Since the bypass unit of the flow rate sensor according to the present invention is constructed as described above, the fluid arriving from the flow path reaches the fluid introduction hole and flows toward the outer circumference through the through hole without reaching the front of the fluid introduction hole. Since it is transparent, it provides conditions for starting laminar flow without the large pressure loss that occurs with mesh filters.

【0015】また、遮断ケースが設けられることにより
、この遮断ケースの内壁とバイパス軸の外周面との間で
層流が実現され、流量が少ない場合にもこの一般的には
フラットな部分の加工精度を向上させれば良く、加工が
容易となる。
Furthermore, by providing the cutoff case, laminar flow is realized between the inner wall of the cutoff case and the outer circumferential surface of the bypass shaft, and even when the flow rate is small, machining of this generally flat part is possible. It is only necessary to improve accuracy, and processing becomes easier.

【0016】更に、遮断ケースの連絡透孔を選択するこ
とによりセンサ管における差圧の範囲を変更でき、広範
囲な流量の測定に対し容易に対応可能である。
Furthermore, the range of differential pressure in the sensor tube can be changed by selecting the communication through-hole in the blocking case, making it possible to easily measure a wide range of flow rates.

【0017】[0017]

【実施例】以下、添付図面の図1乃至図7を参照して本
発明の実施例に係る流量センサのバイパスユニットを説
明する。これらの図において同一の構成要素には同一の
符号を付し重複する説明を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A bypass unit for a flow rate sensor according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 7 of the accompanying drawings. In these figures, the same components are designated by the same reference numerals and redundant explanations will be omitted.

【0018】ユニット筐体1は外形が直方体であって、
図1に示されるように両側面には配管用フィッティング
2,3がボルトにより結合される。配管用フィッティン
グ2,3には外端部に突出したねじ部4,5が形成され
、配管と結合可能とされている。配管用フィッティング
2,3のねじ部4,5はユニット筐体1の側面中央部に
位置し、ねじ部4,5が外周となる部分には流路6,7
が形成されている。配管用フィッティング2,3とユニ
ット筐体1との結合部には、シールリングガイド8及び
シールリング9が介装され、流体の漏れを防止する。 ユニット筐体1には、図の左側中央から円柱状に大径の
室10が穿設され、図の右側中央から円柱状に小径の導
路11が形成されている。室10のほぼ中央部から上面
には分岐路12が貫通形成され、同様に、導路11の中
央部から上面には分岐路13が貫通形成されている。分
岐路12,13の上部にはセンサ管に通じる穴を有する
シール14を介して、センサ管15が設けられたセンサ
筐体べース16がねじ止めされる。センサ管15には発
熱抵抗体171 ,172 が設けられ、図示せぬ抵抗
とブリッジ回路が構成されて公知の手法にて流量検出が
行われる。室10には、その内壁より小径の外径を有し
、一端に室10の内壁に接する径のフランジ19が形成
された中空円筒状の遮断ケース18が挿入されている。 遮断ケース18の内側には、略円筒状のバイパス軸体2
0が挿入されている。
The unit housing 1 has a rectangular external shape,
As shown in FIG. 1, piping fittings 2 and 3 are connected to both sides with bolts. The piping fittings 2 and 3 have threaded portions 4 and 5 that protrude from their outer ends so that they can be connected to piping. The threaded parts 4 and 5 of the piping fittings 2 and 3 are located at the center of the side surface of the unit housing 1, and the flow passages 6 and 7 are located on the outer periphery of the threaded parts 4 and 5.
is formed. A seal ring guide 8 and a seal ring 9 are interposed at the joint between the piping fittings 2 and 3 and the unit housing 1 to prevent fluid leakage. In the unit housing 1, a cylindrical large-diameter chamber 10 is formed from the center on the left side of the figure, and a small-diameter guide path 11 is formed in a cylindrical shape from the center on the right side of the figure. A branch path 12 is formed penetratingly from the center of the chamber 10 to the upper surface thereof, and similarly, a branch path 13 is formed penetratingly from the center portion of the guide path 11 to its upper surface. A sensor housing base 16 provided with a sensor tube 15 is screwed onto the upper part of the branch passages 12 and 13 via a seal 14 having a hole communicating with the sensor tube. The sensor tube 15 is provided with heating resistors 171 and 172, and a bridge circuit is constructed with resistors (not shown) to detect the flow rate using a known method. A hollow cylindrical blocking case 18 is inserted into the chamber 10, and has an outer diameter smaller than the inner wall thereof, and a flange 19 having a diameter that contacts the inner wall of the chamber 10 at one end. Inside the cutoff case 18, a substantially cylindrical bypass shaft body 2 is provided.
0 is inserted.

【0019】バイパス軸体20は図2(a)に側面図が
、図2(b)に断面図が示されるように両側部にフラン
ジ21,22を有し、中央部に円柱芯部23を有する。 フランジ21,22の側方中央部からは、流路6,流路
7(導路11)に同軸的に有底の流体導入穴24,25
が円柱芯部23の端部まで形成されている。フランジ2
1,22と円柱芯部23との間は細径にされた首部26
,27が形成され、首部26,27と流体導入穴24,
25との間には円の中心から外周へ向う透孔28,29
が放射状に8穴づつ形成されている。なお、フランジ2
2,23の外周径は、円柱芯部23の外周径より大径に
形成され、遮断ケース18との間に流体が流れる間隙が
生じるようにされている。
The bypass shaft 20 has flanges 21 and 22 on both sides, and a cylindrical core 23 in the center, as shown in a side view in FIG. 2(a) and in a sectional view in FIG. 2(b). have From the lateral center portions of the flanges 21 and 22, bottomed fluid introduction holes 24 and 25 are coaxially connected to the channels 6 and 7 (conducting channel 11).
is formed up to the end of the cylindrical core portion 23. Flange 2
1, 22 and the cylindrical core 23 is a neck 26 having a narrow diameter.
, 27 are formed, and the neck portions 26, 27 and the fluid introduction hole 24,
25, there are through holes 28, 29 extending from the center of the circle to the outer periphery.
Eight holes are formed radially. In addition, flange 2
The outer circumferential diameters of the cylinders 2 and 23 are larger than the outer circumferential diameter of the cylindrical core part 23, so that a gap is created between the cylinders and the blocking case 18 through which fluid flows.

【0020】遮断ケース18はその平面図が図3に示さ
れるように、フランジ19から長手方向に距離の異なる
、例えば、3個の連絡透孔31(31A〜31C)が穿
設されており、このうちいずれか1つだけが使用され、
他の連絡透孔31は図4に示されるように蓋体32によ
って閉じられ使用されない。
As the plan view of the blocking case 18 is shown in FIG. 3, for example, three communication holes 31 (31A to 31C) are bored at different distances from the flange 19 in the longitudinal direction. Only one of these is used,
The other communicating holes 31 are closed by the lid 32 as shown in FIG. 4 and are not used.

【0021】以上の如く構成されたバイパスユニットに
おいては、遮断ケース18と室10の内壁との間の間隙
40が遮断ケース18とバイパス軸体20との間の間隙
50より十分広く構成される。ここで、流体が図の左か
ら右へ流れるものとしたとき、流体導入穴24に到来し
た流体はその正面壁に衝突し、流れをやや緩めて透孔2
8を介して首部26へ出る。この首部26は「圧力だめ
」となっており、首部27が「圧力だめ」となることと
相俟って首部27及び首部27との間の間隙50がチャ
ネルとなって層流が実現される。一方、センサ管15の
上流側端部の圧力は、分岐路12,間隙40,連絡透孔
31が、間隙40に比べて十分に広いから、変位せずに
首部26の圧力に等しい。また、センサ管15の下端側
端部の圧力は、首部27の圧力に等しい。従って、セン
サ管15により検出される差圧は首部26から首部27
までの差圧となる。
In the bypass unit constructed as described above, the gap 40 between the cutoff case 18 and the inner wall of the chamber 10 is configured to be sufficiently wider than the gap 50 between the cutoff case 18 and the bypass shaft 20. Here, when the fluid is assumed to flow from left to right in the figure, the fluid that has arrived at the fluid introduction hole 24 collides with the front wall of the fluid introduction hole 24, and the flow is slightly slowed down to the through hole 24.
8 to the neck 26. This neck 26 serves as a "pressure reservoir", and together with the fact that the neck 27 serves as a "pressure reservoir", the neck 27 and the gap 50 between the neck 27 become a channel, realizing laminar flow. . On the other hand, the pressure at the upstream end of the sensor tube 15 is equal to the pressure at the neck 26 without displacement because the branch passage 12, the gap 40, and the communication hole 31 are sufficiently wider than the gap 40. Further, the pressure at the lower end of the sensor tube 15 is equal to the pressure at the neck 27 . Therefore, the differential pressure detected by the sensor tube 15 is from the neck 26 to the neck 27.
The differential pressure will be up to.

【0022】このため、小流量の測定の場合には、図5
に示されるように、連絡透孔31Aを用い、他の連絡透
孔31B,31Cについては図4に示した蓋32を用い
て閉じる。これにより、間隙40の全長で発生される最
大の差圧を有効に検出することになり、小流量時の差圧
についても的確に検出が行われ、小流量に対応できる。 また、中流量の測定の場合には、図6に示されるように
連絡透孔31Bを用い、他の連絡透孔31A,31Cを
閉じ、大流量の測定の場合には、図7に示されるように
連絡透孔31Cを用い、他の連絡透孔31A,31Bを
閉じる。このように、本実施例では蓋32によって閉じ
る連絡透孔31を選択し、間隙40のストロークを変え
ることにより測定流量の変化に対応できる。また、間隙
40を狭くして小流量に対応する場合でも、遮断ケース
18は円筒状で内壁がほぼストレートで鏡面仕上等の加
工が容易である。また、実施例のバイパスユニットは上
記とは逆に流体を流すときにも、バイパス軸体が左右対
称であり、精度良く測定が可能である。なお、遮断ケー
ス18を図5乃至図7に示されるようにして使用する場
合には、バイパス軸は間隙40を形成するものであれば
他の形状であってもよい。
Therefore, in the case of measuring a small flow rate, the method shown in FIG.
As shown in FIG. 4, the communication hole 31A is used, and the other communication holes 31B and 31C are closed using the lid 32 shown in FIG. As a result, the maximum differential pressure generated over the entire length of the gap 40 can be effectively detected, and the differential pressure at the time of a small flow rate can also be accurately detected, making it possible to cope with a small flow rate. In addition, in the case of measuring a medium flow rate, the connecting hole 31B is used as shown in FIG. 6, and the other connecting holes 31A and 31C are closed, and in the case of measuring a large flow rate, the connecting hole 31B is used as shown in FIG. Using the communication hole 31C, close the other communication holes 31A and 31B in the same manner. In this way, in this embodiment, by selecting the communicating hole 31 that is closed by the lid 32 and changing the stroke of the gap 40, changes in the measured flow rate can be accommodated. Further, even when the gap 40 is narrowed to accommodate a small flow rate, the cutoff case 18 is cylindrical and has a substantially straight inner wall, making it easy to process it to a mirror finish or the like. Moreover, even when the bypass unit of the embodiment flows the fluid in the opposite manner to the above, the bypass shaft body is left-right symmetrical, and accurate measurement is possible. It should be noted that when the blocking case 18 is used as shown in FIGS. 5 to 7, the bypass shaft may have another shape as long as it forms the gap 40.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、流
路から到来した流体は流体導入穴に到りその前方の壁に
当たり「圧力ぬけ」へ透孔を介して到ることになるので
、従来のメッシュによるフィルタを用いた場合のように
は大きな圧力損失がなく、層流の始点となる条件が提供
され、適切な層流を実現する。
[Effects of the Invention] As explained above, according to the present invention, the fluid arriving from the flow path reaches the fluid introduction hole, hits the wall in front of it, and reaches the "pressure release" through the through hole. , there is no large pressure loss as in the case of using a conventional mesh filter, and conditions are provided for the starting point of laminar flow to achieve proper laminar flow.

【0024】また、遮断ケースが設けられることにより
、この遮断ケースの内壁とバイパス軸の外周面との間で
層流が実現され、流量が少ない場合にも一般的にはスト
レートでフラットな部分の加工精度を向上させることで
対応でき、加工が容易となる。
Furthermore, by providing the cutoff case, laminar flow is realized between the inner wall of the cutoff case and the outer circumferential surface of the bypass shaft, and even when the flow rate is small, it is generally possible to maintain a straight and flat part of the flow. This can be addressed by improving machining accuracy, making machining easier.

【0025】更に、遮断ケースの連絡透孔を選択するこ
とによりセンサ管における差圧の範囲を変更でき広範囲
な流量の測定に対し、少ない部品の変更で容易に対応で
きる。  更に、バイパス軸体を左右対称としたとき、
流体が逆流した場合でも正確な負の差圧が得られるため
逆方向からの流体の流量を検出可能である。
Furthermore, by selecting the communication through hole in the blocking case, the range of differential pressure in the sensor tube can be changed, and measurement of a wide range of flow rates can be easily handled by changing a small number of parts. Furthermore, when the bypass shaft body is made bilaterally symmetrical,
Even when fluid flows backwards, an accurate negative differential pressure can be obtained, making it possible to detect the flow rate of fluid from the opposite direction.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の断面図。FIG. 1 is a sectional view of one embodiment of the present invention.

【図2】本発明の一実施例の要部構成図。FIG. 2 is a configuration diagram of main parts of an embodiment of the present invention.

【図3】本発明の一実施例の要部平面図。FIG. 3 is a plan view of essential parts of an embodiment of the present invention.

【図4】本発明の一実施例の要部断面図。FIG. 4 is a sectional view of a main part of an embodiment of the present invention.

【図5】本発明の一実施例の要部断面図。FIG. 5 is a sectional view of a main part of an embodiment of the present invention.

【図6】本発明の一実施例の要部断面図。FIG. 6 is a sectional view of a main part of an embodiment of the present invention.

【図7】本発明の一実施例の要部断面図。FIG. 7 is a sectional view of a main part of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  ユニット筐体                
  2.3  配管用フィッティング 4,5  ねじ部                 
   6,7  流路10  室          
                  11  導路1
2,13  分岐路                
    15  センサ管18  遮断ケース    
                20  バイパス軸
体24,25  流体導入穴            
    31A〜31C  連絡透孔
1 Unit housing
2.3 Piping fittings 4, 5 threaded part
6,7 Channel 10 Chamber
11 Guideway 1
2,13 Branch road
15 Sensor tube 18 Shutoff case
20 Bypass shaft body 24, 25 Fluid introduction hole
31A-31C communication hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  流体が出入りする2の流路及びこの流
路に連通する室を有し、この室から分岐流路を介して流
体をセンサ管に導びく構造である流量センサのバイパス
ユニットにおいて、前記室内に当該室の内壁との間に空
隙を有して収容され、前記2の流路と同軸的に形成され
た流体導入穴と、この流体導入穴から外周方向へ穿設さ
れた透孔とを有するバイパス軸体を備えることを特徴と
する流量センサのバイパスユニット。
Claims: 1. A bypass unit for a flow rate sensor, which has a structure including two channels through which fluid enters and exits, and a chamber communicating with the channels, and guides the fluid from the chamber to a sensor pipe via a branch channel. , a fluid introduction hole accommodated in the chamber with a gap between it and the inner wall of the chamber and formed coaxially with the second flow path; and a transparent hole bored from the fluid introduction hole toward the outer circumference. A bypass unit for a flow rate sensor, comprising a bypass shaft having a hole.
【請求項2】  周囲面に連絡透孔が穿設され、前記バ
イパス軸体と前記室の内壁との間を前記連絡透孔を除い
て遮断する遮断ケースが備えられていることを特徴とす
る請求項1記載の流量センサのバイパスユニット。
2. A connecting hole is bored in the surrounding surface, and a blocking case is provided that blocks the connection between the bypass shaft body and the inner wall of the chamber except for the connecting hole. A bypass unit for a flow rate sensor according to claim 1.
【請求項3】  前記連絡透孔は前記遮断ケースの長手
方向に異なる距離をおいて複数個形成され、当該連絡透
孔のいずれか1の連絡透孔を除き、蓋がなされて閉じら
れていることを特徴とする請求項1または請求項2記載
の流量センサのバイパスユニット。
3. A plurality of the communicating holes are formed at different distances in the longitudinal direction of the blocking case, and all but one of the communicating holes are covered and closed. The bypass unit for a flow rate sensor according to claim 1 or 2, characterized in that:
【請求項4】流体が出入りする2の流路及びこの流路に
連通する室を有し、この室から分岐流路を介して流体を
センサ管に導びく構造である流量センサのバイパスユニ
ットにおいて、前記室内に当該室の内壁との間に空隙を
有し、前記2の流路と同軸的に設けられ、前記空隙に流
体を流すバイパス軸体と、周面の長手方向に異なる距離
をおいて複数個の連絡透孔が形成され、当該連絡透孔の
いずれか1の連絡透孔を除き、蓋がなされて閉じられる
とともに、前記バイパス軸体と前記室の内壁との間を前
記1の連絡透孔を除いて遮断する遮断ケースとが備えら
れていることを特徴とする流量センサのバイパスユニッ
ト。
4. A bypass unit for a flow rate sensor having a structure including two channels through which fluid enters and exits, and a chamber communicating with the channels, and guiding the fluid from the chambers to the sensor pipe via a branch channel. , a bypass shaft body having a gap between the chamber and the inner wall of the chamber, provided coaxially with the second flow path, and allowing fluid to flow into the gap, and a bypass shaft body arranged at different distances in the longitudinal direction of the circumferential surface; A plurality of communication holes are formed in the chamber, and all but one of the communication holes are covered and closed, and a plurality of communication holes are formed between the bypass shaft body and the inner wall of the chamber. A bypass unit for a flow rate sensor, comprising a blocking case that blocks all but a communication hole.
JP3181517A 1991-06-13 1991-06-13 Flow sensor bypass unit Expired - Fee Related JP2582961B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3181517A JP2582961B2 (en) 1991-06-13 1991-06-13 Flow sensor bypass unit
US07/897,797 US5295394A (en) 1991-06-13 1992-06-12 Bypass unit for a flowmeter sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3181517A JP2582961B2 (en) 1991-06-13 1991-06-13 Flow sensor bypass unit

Publications (2)

Publication Number Publication Date
JPH04366728A true JPH04366728A (en) 1992-12-18
JP2582961B2 JP2582961B2 (en) 1997-02-19

Family

ID=16102141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181517A Expired - Fee Related JP2582961B2 (en) 1991-06-13 1991-06-13 Flow sensor bypass unit

Country Status (1)

Country Link
JP (1) JP2582961B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100760064B1 (en) * 2006-06-02 2007-09-18 한국산업기술대학교산학협력단 Apparatus for measuring high mass flow
JP2009516853A (en) * 2005-11-22 2009-04-23 エム ケー エス インストルメンツ インコーポレーテッド Vertically mounted mass flow sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972514U (en) * 1982-11-05 1984-05-17 大倉電気株式会社 Diversion mechanism
JPS5974327U (en) * 1982-11-10 1984-05-19 大倉電気株式会社 Diversion mechanism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972514U (en) * 1982-11-05 1984-05-17 大倉電気株式会社 Diversion mechanism
JPS5974327U (en) * 1982-11-10 1984-05-19 大倉電気株式会社 Diversion mechanism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009516853A (en) * 2005-11-22 2009-04-23 エム ケー エス インストルメンツ インコーポレーテッド Vertically mounted mass flow sensor
TWI408344B (en) * 2005-11-22 2013-09-11 Mks Instr Inc Vertical mount mass flow sensor
KR100760064B1 (en) * 2006-06-02 2007-09-18 한국산업기술대학교산학협력단 Apparatus for measuring high mass flow

Also Published As

Publication number Publication date
JP2582961B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US5295394A (en) Bypass unit for a flowmeter sensor
CN101430025B (en) Flow rate measurement valve
CN100354610C (en) Flow sensor
US3910113A (en) Method of selectively varying the differential output and overall performance characteristics of a proportional differential pressure producing fluid flow device
KR20040097292A (en) Averaging orifice primary flow element
US6044716A (en) Fluid pressure detector and air flow rate measuring apparatus using same
JP2005156570A (en) Device with thermal flowmeter used for internal combustion engine
US5333496A (en) In-line parallel proportionally partitioned by-pass metering device and method
US4282751A (en) Fluid flowmeter
US5279155A (en) Mass airflow sensor
US4592239A (en) Flowmeter
US3759098A (en) Apparatus for determining fluid flow in a conduit
US6923074B2 (en) Ball valve with flow-rate gauge incorporated directly in the ball
US2942465A (en) Fluid flow meter
CA1178087A (en) Flow measuring device with constant flow coefficient
US2260019A (en) Flow tube
JPH04366728A (en) Bypass unit for flow rate sensor
TW202107525A (en) Apparatus for measuring a fluid flow through a pipe of a semiconductor manufacturing device
JPH09101186A (en) Pitot-tube type mass flowmeter
CN218994430U (en) Acceleration type balance flow sensor
JPH11316144A (en) Differential pressure type flow meter
RU2201578C2 (en) Pickup of tachometric ball flowmeter ( variants )
JP3757009B2 (en) Split flow meter
CN219495325U (en) Plug-in type bar flowmeter
JPS6454220A (en) Small laminar flowmeter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961008

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees