JPH0153426B2 - - Google Patents

Info

Publication number
JPH0153426B2
JPH0153426B2 JP56110339A JP11033981A JPH0153426B2 JP H0153426 B2 JPH0153426 B2 JP H0153426B2 JP 56110339 A JP56110339 A JP 56110339A JP 11033981 A JP11033981 A JP 11033981A JP H0153426 B2 JPH0153426 B2 JP H0153426B2
Authority
JP
Japan
Prior art keywords
fluid
measured
guide tube
eddy current
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56110339A
Other languages
Japanese (ja)
Other versions
JPS5811864A (en
Inventor
Motoyoshi Ikemi
Ryusaku Kubota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP11033981A priority Critical patent/JPS5811864A/en
Publication of JPS5811864A publication Critical patent/JPS5811864A/en
Publication of JPH0153426B2 publication Critical patent/JPH0153426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/08Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring variation of an electric variable directly affected by the flow, e.g. by using dynamo-electric effect

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、渦電流式検出部の位置測定方法に関
するものであり、詳しくは案内管内における検出
部の位置を高精度に検出する方法に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for measuring the position of an eddy current type detection section, and more specifically to a method for detecting the position of a detection section within a guide tube with high accuracy. It is.

<従来の技術> 一般に、ナトリウムなどの導電性を有する被測
定流体の温度、流速、空〓率などを測定する装置
として、被測定流体中に発生する渦電流を用いた
渦電流式測定装置が用いられている。
<Prior art> Eddy current measuring devices that use eddy currents generated in the fluid to be measured are generally used as devices to measure the temperature, flow velocity, porosity, etc. of a fluid to be measured that has conductivity such as sodium. It is used.

ある種の原子炉では、冷却材として液体金属ナ
トリウム(以下ナトリウムという)を用い、ナト
リウムを炉容器の下部から流入させて炉心を通過
させ、炉容器の上部から流出させるように構成さ
れている。
Some nuclear reactors use liquid metal sodium (hereinafter referred to as sodium) as a coolant and are configured so that the sodium enters the reactor vessel from the bottom, passes through the reactor core, and exits the reactor vessel from the top.

このような原子炉では、炉心の上部にナトリウ
ムの流れ方向に沿つて複数の案内管を配置し、各
案内管内に1次コイルを挟むようにして2次コイ
ルが配置された検出部を挿入して、炉心上部にお
けるナトリウムの流速、温度、空〓率などを測定
することが行われている。そして、これらの測定
結果から、炉の運転状態の監視や炉心の異常検出
が行われる。
In such a nuclear reactor, a plurality of guide tubes are arranged in the upper part of the reactor core along the flow direction of sodium, and a detection section in which a secondary coil is arranged so as to sandwich the primary coil is inserted into each guide tube. Measurements are being taken of the sodium flow rate, temperature, void ratio, etc. in the upper part of the reactor core. Based on these measurement results, the operating state of the reactor is monitored and abnormalities in the reactor core are detected.

ところで、これらの測定は、検出部を案内管内
の先端部の所定の位置に配置した状態で行わなけ
ればならない。このためには、検出部が案内管内
の所定の位置に配置されていることを検出する必
要がある。
Incidentally, these measurements must be performed with the detection section placed at a predetermined position at the tip of the guide tube. For this purpose, it is necessary to detect that the detection section is placed at a predetermined position within the guide tube.

このような案内管内における検出部の位置を検
出する方法として、例えば特開昭52−139462号の
ような方法が提案されている。この方法は、案内
管内の所定位置に導電率の異なつた部分を加工し
ておき、検出部の32次コイルの出力変化または1
次コイルの自己インピーダンスの変化を検出し
て、検出部が案内管内の所定の位置に配置されて
いることを検出するようにしたものである。
As a method of detecting the position of the detecting portion within the guide tube, a method such as that disclosed in Japanese Patent Application Laid-Open No. 139462/1983 has been proposed, for example. This method involves machining parts with different conductivities at predetermined positions within the guide tube, and detecting changes in the output of the 32nd coil of the detection unit or
The change in self-impedance of the secondary coil is detected to detect that the detection section is placed at a predetermined position within the guide tube.

ところが、このような方法では、原子炉が運転
状態に入ると、検出部と案内管内の導電率の異な
つた部分との相対位置が構成材料の線膨張率の違
いや案内管の振動などで変化することがある。
However, with this method, when the reactor enters operation, the relative position between the detection part and parts of the guide tube with different conductivities changes due to differences in linear expansion coefficient of the constituent materials, vibration of the guide tube, etc. There are things to do.

この結果、検出部の1次コイルに対する2次コ
イルおよび周辺の電磁気的な対称性が損われ、測
定誤差を生じることになり、好ましくない。
As a result, the electromagnetic symmetry of the secondary coil and its surroundings with respect to the primary coil of the detection section is impaired, resulting in a measurement error, which is undesirable.

そこで、このような不都合を解決する方法とし
て、被測定流体の流れ方向に沿つて被測定流体中
に配置された案内管内に、軸方向に沿つて1次コ
イルおよび2次コイルが配置された検出部を、そ
の出力信号に基づいて管内における位置を検出し
ながら挿入配置することが提案されている。
Therefore, as a method to solve this inconvenience, a detection method is proposed in which a primary coil and a secondary coil are arranged along the axial direction in a guide tube arranged in the fluid to be measured along the flow direction of the fluid to be measured. It has been proposed to insert and arrange a tube while detecting its position in a pipe based on its output signal.

第1図はこのような方法を適用する装置の具体
例を示す構成説明図、第2図は第1図の等価回路
図である。これら図において、1は検出部、2は
リード線、3は案内管、4は励磁信号線、L1
L3は検出部1に対する被測定流体の相対的な液
面位置である。
FIG. 1 is a configuration explanatory diagram showing a specific example of an apparatus to which such a method is applied, and FIG. 2 is an equivalent circuit diagram of FIG. 1. In these figures, 1 is a detection part, 2 is a lead wire, 3 is a guide tube, 4 is an excitation signal line, L 1 ~
L 3 is the relative liquid level position of the fluid to be measured with respect to the detection unit 1.

検出部1は、1次コイル11と1次コイル11
を挟むようにして軸方向に沿つて配置された2次
コイル12,13とで構成されている。1次コイ
ル11は、励磁信号源4により交流励磁される。
案内管3は例えばステンレスで構成されていて、
矢印で示す被測定流体の流れ方向に沿つて被測定
流体中に配置されている。この案内管内3には検
出部1が挿入配置される。
The detection unit 1 includes a primary coil 11 and a primary coil 11.
The secondary coils 12 and 13 are arranged along the axial direction so as to sandwich the secondary coils 12 and 13. The primary coil 11 is excited with alternating current by the excitation signal source 4 .
The guide tube 3 is made of stainless steel, for example.
It is arranged in the fluid to be measured along the flow direction of the fluid to be measured as indicated by the arrow. The detection section 1 is inserted into the guide tube 3.

このように構成された装置の動作を説明する。
なお、以下の説明において、案内管3の肉厚は全
長にわたつて均一とする。
The operation of the device configured in this way will be explained.
In the following description, it is assumed that the wall thickness of the guide tube 3 is uniform over its entire length.

検出部1を案内管3内に挿入するのにあたつ
て、検出部1の1次コイル11を励磁信号源4に
より励磁しておく。上流側に位置する2次コイル
12の出力電圧をE1、下流側に位置する2次コ
イル13の出力電圧をE2とすると、検出部1が
被測定流体の液面L1から十分離れている間の出
力電圧は、E1≒E2になる。検出部1が液面L1
近付くと、被測定流体中に渦電流が流れて1次コ
イル11による磁束を打消すようになり、2次コ
イル12と鎖交する磁束が減少してE1<E2にな
る。検出部1を被測定流体の液面L2下の案内管
3内に挿入するのにしたがつてE1はますます減
少し、1次コイル11の中心が液面L3よりも十
分下の位置に達するとE1はほぼ一定値になる。
Before inserting the detection section 1 into the guide tube 3, the primary coil 11 of the detection section 1 is excited by the excitation signal source 4. Assuming that the output voltage of the secondary coil 12 located on the upstream side is E 1 and the output voltage of the secondary coil 13 located on the downstream side is E 2 , the detection unit 1 is sufficiently far from the liquid level L 1 of the fluid to be measured. The output voltage during this period becomes E 1 ≒ E 2 . When the detection unit 1 approaches the liquid level L1 , an eddy current flows in the fluid to be measured and cancels the magnetic flux caused by the primary coil 11, and the magnetic flux interlinking with the secondary coil 12 decreases, causing E1 <E becomes 2 . As the detection part 1 is inserted into the guide tube 3 below the liquid level L2 of the fluid to be measured, E1 decreases more and more until the center of the primary coil 11 is well below the liquid level L3 . Once the position is reached, E 1 becomes a nearly constant value.

一方、2次コイル13の出力電圧E2も被測定
流体の液面L1に近付くにしたがつて減少し、被
測定流体の液面L3に対して十分な深さの案内管
3内に挿入されるとほぼ一定値となり、再びE1
≒E2になる。
On the other hand, the output voltage E 2 of the secondary coil 13 also decreases as it approaches the liquid level L 1 of the fluid to be measured. Once inserted, it becomes an almost constant value and becomes E 1 again.
It becomes ≒E 2 .

第3図は検出部1の挿入量Dと検出部1の出力
電圧との関係を示す特性例図であつて、横軸には
挿入量Dをとり、縦軸には出力電圧をとつたもの
であり、(a)は各出力電圧E1,E2の変化を示し、
bは差電圧E2−E1の変化を示し、(c)は和電圧E2
+E1の変化を示している。
FIG. 3 is a characteristic diagram showing the relationship between the insertion amount D of the detection section 1 and the output voltage of the detection section 1, where the horizontal axis shows the insertion amount D and the vertical axis shows the output voltage. , and (a) shows the changes in each output voltage E 1 and E 2 ,
b shows the change in the differential voltage E 2 −E 1 , and (c) shows the sum voltage E 2
It shows a change of +E 1 .

これら第3図から明らかなように、出力電圧
E2、差電圧E2−E1あるいは和電圧E2+E1のうち
少なくとも1つを観測することにより、検出部1
が例えば第2図の液面L3と検出部1との相対位
置関係に示すような被測定流体の液面下の管内の
所定の基準位置に達したことが検出できる。ここ
で、第2図における被測定流体の液面位置L3
絶対位置は、別途設置されている液面計などで精
度よく測定することができる。また、第2図の位
置関係における液面L3と1次コイル11の中心
位置との距離lは、予め実験などにより求めてお
くことができる。さらに、液面下の管内における
基準位置からの検出部1の移動量は、被測定流体
の流速信号が被測定流体と検出部1との相対速度
に比例することから、被測定流体が静止している
ものとすると、整流平滑された流速信号を積分す
ることにより求めることができる。第4図に、こ
のような移動量を求める回路の一例を示す。第4
図において、5は整流平滑回路、6は積分器、7
は出力端子である。
As is clear from these Figure 3, the output voltage
By observing at least one of E 2 , differential voltage E 2 -E 1 or sum voltage E 2 +E 1 , the detection unit 1
It can be detected that the liquid has reached a predetermined reference position in the pipe below the liquid level of the fluid to be measured, as shown in the relative positional relationship between the liquid level L3 and the detection unit 1 in FIG. 2, for example. Here, the absolute position of the liquid level position L3 of the fluid to be measured in FIG. 2 can be measured with high accuracy using a separately installed liquid level gauge or the like. Further, the distance l between the liquid level L 3 and the center position of the primary coil 11 in the positional relationship shown in FIG. 2 can be determined in advance through experiments or the like. Furthermore, since the flow velocity signal of the fluid to be measured is proportional to the relative velocity between the fluid to be measured and the detection part 1, the amount of movement of the detection part 1 from the reference position in the pipe below the liquid level is determined when the fluid to be measured is stationary. , it can be obtained by integrating the rectified and smoothed flow velocity signal. FIG. 4 shows an example of a circuit for determining such a movement amount. Fourth
In the figure, 5 is a rectifier and smoothing circuit, 6 is an integrator, and 7 is a rectifier and smoothing circuit.
is the output terminal.

このように、検出部1の出力信号に基づいて検
出部1が被測定流体の液面下の管内の所定の基準
位置に達したことを検出するとともに、液面下の
管内での基準位置からの検出部1の移動量を検出
することにより、検出部1を管内の所望の位置に
挿入配置できる。
In this way, based on the output signal of the detection unit 1, the detection unit 1 detects that the fluid to be measured has reached a predetermined reference position in the pipe below the liquid level, and also By detecting the amount of movement of the detection section 1, the detection section 1 can be inserted and placed at a desired position within the tube.

<発明が解決しようとする課題> しかし、このような従来の位置測定方法によれ
ば、被測定流体が静止している場合には高精度の
位置測定が期待できるが、被測定流体が移動して
いる場合には被測定流体中を流れる渦電流も被測
定流体の移動に応じて変動することになり、検出
部1の位置測定にあたつて測定誤差を生じること
になる。
<Problems to be Solved by the Invention> However, with such conventional position measurement methods, highly accurate position measurement can be expected when the fluid to be measured is stationary, but when the fluid to be measured is moving, In this case, the eddy current flowing in the fluid to be measured will also vary according to the movement of the fluid to be measured, resulting in a measurement error when measuring the position of the detection section 1.

本発明は、このような点に着目したものであ
り、その目的は、被測定流体の移動の影響を受け
ることなく高精度で渦電流式検出部の位置測定が
行える方法を提供することにある。
The present invention has focused on these points, and its purpose is to provide a method that can measure the position of an eddy current detection unit with high precision without being affected by the movement of the fluid to be measured. .

<課題を解決するための手段> 本発明の渦電流式検出部の位置測定方法は、 被測定流体の流れ方向に沿つて被測定流体中に
配置された案内管内に、軸方向に沿つて1次コイ
ルおよび2次コイルが配置された検出部を、その
出力信号に基づいて管内における位置を検出しな
がら挿入配置するのにあたつて、 前記検出部の1次コイルの励磁周波数を、検出
部が被測定流体の液面下の管内の所定の基準位置
に達するまでは渦電流が被測定流体に流れるよう
に選定し、検出部が被測定流体の液面下の管内の
所定の基準位置に達した時点で渦電流が案内管の
みに流れるように選定することを特徴とする。
<Means for Solving the Problems> The method for measuring the position of an eddy current detection unit according to the present invention includes the following steps: A method for measuring the position of an eddy current detection unit according to the present invention includes the following steps: When inserting and arranging the primary coil and the detection unit in which the secondary coil is arranged while detecting the position in the pipe based on its output signal, the excitation frequency of the primary coil of the detection unit is determined by the detection unit. The eddy current is selected so that it flows through the fluid to be measured until it reaches a predetermined reference position in the pipe below the liquid level of the fluid to be measured, and the detection unit reaches a predetermined reference position in the pipe below the liquid level of the fluid to be measured. It is characterized in that the eddy current is selected so that it flows only through the guide tube at the point when the eddy current reaches the guide tube.

<作 用> 検出部が案内管内の所定の基準位置に達するま
での間は被測定流体に流れる渦電流を利用して検
出部の現在位置を算出し、検出部が案内管内の所
定の基準位置に達した後は案内管のみに渦電流を
流して検出部の移動量を算出する。
<Function> Until the detection part reaches the predetermined reference position in the guide tube, the current position of the detection part is calculated using the eddy current flowing in the fluid to be measured, and the detection part reaches the predetermined reference position in the guide tube. After reaching this point, an eddy current is applied only to the guide tube to calculate the amount of movement of the detection section.

<実施例> 本発明では、前述のような被測定流体の移動に
伴う測定誤差を除去するために、検出部1が被測
定流体の液面下の管内の所定の位置に達したこと
を検出した時点で励磁周波数を切り換えて渦電流
の浸透深さを浅くし、渦電流が被測定流体には浸
透しないようにする。
<Example> In the present invention, in order to eliminate the measurement error caused by the movement of the fluid to be measured as described above, the detection unit 1 detects when the detection unit 1 reaches a predetermined position in the pipe below the liquid level of the fluid to be measured. At this point, the excitation frequency is switched to reduce the depth of penetration of the eddy current, so that the eddy current does not penetrate into the fluid to be measured.

すなわち、渦電流の浸透深さδは、 δ=1/√ で表わすことができる。ここで、μは案内管3の
透磁率、ωは角励磁周波数、σは案内管3の導電
率である。
That is, the penetration depth δ of the eddy current can be expressed as δ=1/√. Here, μ is the magnetic permeability of the guide tube 3, ω is the angular excitation frequency, and σ is the electrical conductivity of the guide tube 3.

この式から明らかなように、角励磁周波数ωを
変化させることにより渦電流の浸透深さδを任意
の値に設定できる。
As is clear from this equation, by changing the angular excitation frequency ω, the penetration depth δ of the eddy current can be set to an arbitrary value.

したがつて、角励磁周波数ωを案内管3肉厚に
応じた適切な値に選定することにより、渦電流は
被測定流体に流れることなく案内管のみに流れる
ようになる。
Therefore, by selecting the angular excitation frequency ω to an appropriate value depending on the wall thickness of the guide tube 3, the eddy current will flow only through the guide tube without flowing into the fluid to be measured.

これにより、検出部1の検出コイル12,13
の出力信号E1,E2は被測定流体の移動の影響を
受けなくなり、例えば原子炉の運転中であつても
高精度の位置測定が行える。
As a result, the detection coils 12 and 13 of the detection unit 1
The output signals E 1 and E 2 are no longer affected by the movement of the fluid to be measured, allowing highly accurate position measurement even during operation of a nuclear reactor, for example.

なお、上記説明では、検出部1として、軸方向
に沿つて1次コイルを挟むようにして2次コイル
12,13が配置されたものを用いる例について
説明したが、少なくとも2個のコイルが軸方向に
沿つて配置されたものを用い、これらコイル位を
相補的に1次コイルおよび2次コイルとして切り
換えるようにしてもよい。
In the above description, an example was described in which the secondary coils 12 and 13 are arranged so as to sandwich the primary coil along the axial direction as the detecting section 1. These coil positions may also be switched in a complementary manner as a primary coil and a secondary coil.

<発明の効果> 以上説明したように、本発明によれば、被測定
流体の移動の影響を受けることなく高精度で案内
管内における渦電流式検出部の位置測定が行える
渦電流式検出部の位置測定方法が実現でき、実用
上の効果は大きい。
<Effects of the Invention> As explained above, according to the present invention, the eddy current detection unit can measure the position of the eddy current detection unit in the guide tube with high accuracy without being affected by the movement of the fluid to be measured. The position measurement method can be realized and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は渦電流式測定装置の具体例を示す構成
説明図、第2図は第1図の等価回路図、第3図は
第1図における検出部の挿入量と検出部の出力電
圧との関係を示す特性例図、第4図は検出部の移
動量を求める回路の具体例である。 1…検出部、2…リード線、3…案内管、4…
励磁信号源、5…整流平滑回路、6…積分器、7
…出力端子。
Fig. 1 is a configuration explanatory diagram showing a specific example of an eddy current measuring device, Fig. 2 is an equivalent circuit diagram of Fig. 1, and Fig. 3 shows the insertion amount of the detection section and the output voltage of the detection section in Fig. 1. FIG. 4, which is a characteristic diagram showing the relationship between the two, is a specific example of a circuit for determining the amount of movement of the detection section. 1...Detection part, 2...Lead wire, 3...Guide tube, 4...
Excitation signal source, 5... Rectifier and smoothing circuit, 6... Integrator, 7
...Output terminal.

Claims (1)

【特許請求の範囲】 1 被測定流体の流れ方向に沿つて被測定流体中
に配置された案内管内に、軸方向に沿つて1次コ
イルおよび2次コイルが配置された検出部を、そ
の出力信号に基づいて管内における位置を検出し
ながら挿入配置するのにあたつて、 前記検出部の1次コイルの励磁周波数を、検出
部が被測定流体の液面下の管内の所定の基準位置
に達するまでは渦電流が被測定流体に流れるよう
に選定し、検出部が被測定流体の液面下の管内の
所定の基準位置に達した時点で渦電流が案内管の
みに流れるように選定することを特徴とする渦電
流式検出部の位置測定方法。
[Scope of Claims] 1. A detection unit in which a primary coil and a secondary coil are arranged along the axial direction in a guide tube arranged in the fluid to be measured along the flow direction of the fluid to be measured, During insertion and placement while detecting the position in the pipe based on the signal, the detection part adjusts the excitation frequency of the primary coil of the detection part to a predetermined reference position in the pipe below the surface of the fluid to be measured. The eddy current should be selected so that it flows through the fluid to be measured until it reaches the target fluid, and the eddy current should be selected so that it flows only through the guide tube when the detection unit reaches a predetermined reference position in the pipe below the surface of the fluid to be measured. A method for measuring the position of an eddy current detection unit, characterized in that:
JP11033981A 1981-07-15 1981-07-15 Eddy current type measurement system Granted JPS5811864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11033981A JPS5811864A (en) 1981-07-15 1981-07-15 Eddy current type measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11033981A JPS5811864A (en) 1981-07-15 1981-07-15 Eddy current type measurement system

Publications (2)

Publication Number Publication Date
JPS5811864A JPS5811864A (en) 1983-01-22
JPH0153426B2 true JPH0153426B2 (en) 1989-11-14

Family

ID=14533242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11033981A Granted JPS5811864A (en) 1981-07-15 1981-07-15 Eddy current type measurement system

Country Status (1)

Country Link
JP (1) JPS5811864A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0295609A3 (en) * 1987-06-15 1991-01-09 Kollmorgen Corporation Printed circuit windings for screened inductance sensors, especially sensors for level measurement
JP2952550B2 (en) * 1993-09-13 1999-09-27 矢崎総業株式会社 Protective cover for battery post connection terminal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431785A (en) * 1977-08-15 1979-03-08 Yokogawa Hokushin Electric Corp Eddy current type current meter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431785A (en) * 1977-08-15 1979-03-08 Yokogawa Hokushin Electric Corp Eddy current type current meter

Also Published As

Publication number Publication date
JPS5811864A (en) 1983-01-22

Similar Documents

Publication Publication Date Title
KR930007114B1 (en) Electromagnetic flowmeter utilizing magnetic fields of a plurality of frequencies
JP2698749B2 (en) Combined coating thickness gauge for non-ferrous coatings on iron substrates and non-conductive coatings on conductive substrates
US6661224B1 (en) Method for inductive measurement of a dimension of an object
US3948100A (en) Probe for measuring the level of a liquid
US3942377A (en) Electromagnetic flowmeter
JPH033164B2 (en)
JPH0153426B2 (en)
US3611119A (en) Method for measuring the ferrite content of a material
JP2854256B2 (en) Apparatus for discontinuously detecting the thickness of a layer above a metal melt
US3967382A (en) Plenum chamber length measurement system for nuclear fuel
EP0441074A3 (en) Inductive sensor and device for measuring displacements of a movable object
JP3575264B2 (en) Flow velocity measuring method and device
JPS5983004A (en) Method for measuring thickness of wall of refractories for fused metal container
JPH0124267B2 (en)
JP3337118B2 (en) Electromagnetic flow meter
JPS6017701Y2 (en) mold level meter
KR860000020B1 (en) Measuring device of velocity and thickness
JPH10104038A (en) Method and apparatus for measurement of flow velocity
JPS62124404A (en) Gap measuring method for double tube
JPH08211086A (en) Method and device for measuring flow velocity
JPH05280921A (en) Section measuring device of steel material
JPH08262051A (en) Method and apparatus for measuring flow velocity
JP2000162227A (en) Method and apparatus for measurement of flow velocity
JPS5844967B2 (en) How to detect the position of an eddy current flowmeter inside a pipe
SU1185090A1 (en) Method and apparatus for measuring the consumption of electroconductive media