JPS59192972A - Measuring device for static electricity - Google Patents

Measuring device for static electricity

Info

Publication number
JPS59192972A
JPS59192972A JP6752483A JP6752483A JPS59192972A JP S59192972 A JPS59192972 A JP S59192972A JP 6752483 A JP6752483 A JP 6752483A JP 6752483 A JP6752483 A JP 6752483A JP S59192972 A JPS59192972 A JP S59192972A
Authority
JP
Japan
Prior art keywords
static electricity
voltage
optical fiber
vessel
voltage sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6752483A
Other languages
Japanese (ja)
Inventor
Tsutomu Mitsui
三井 勉
Toshio Ikenaga
池永 年夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6752483A priority Critical patent/JPS59192972A/en
Publication of JPS59192972A publication Critical patent/JPS59192972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To raise a detection potential and to detect and measure accurately and safely static electricity by storing a spherical electrode which incorporates a voltage sensor provided with a light source for intermittent irradiation in a metallic vessel with an insulating coating, and packing electric resistance material therein. CONSTITUTION:An optoelectric converting voltmeter is connected through optical fiber cables 18 and 19 to the voltage sensor 16' which uses electrooptic crystal 13 having photoelectric effect, and the light source 31 irradiates the crystal 13 intermittently with a beam through an optical fiber cable 32. The spherical electrode 41 which incorporates the sensor 16' is stored in the metallic vessel 45 coated with an insulator 44, and the electric resistance material 47 is charged in the space in the vessel 45. Therefore, a conductive path is formed between the vessel 45 and spherical electrode 41 to detect a voltage developed outside of the vessel 45 by the sensor 16', and the display value on the optoelectric voltmeter is read through the cables 18 and 19 to detect and measure accurately and safely static electricity.

Description

【発明の詳細な説明】 この発明は帯電している流体の静電気を検出する測定装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device for detecting static electricity in a charged fluid.

液体、気体、粉体等の静電気を帯電し得る流体、例えば
油脂類を例にとると、油脂類をパイプ輸送して貯蔵タン
クに貯蔵する場合、油脂類がパイプ、ポンプ、フィルタ
ーを通って流動するとき、これらと接触することによっ
て帯電し、貯蔵タンク内では高電位帯電物となる。
Taking a liquid, gas, powder, or other fluid that can be electrostatically charged, such as oil or fat, for example, if the oil or fat is transported by pipe and stored in a storage tank, the oil or fat will flow through pipes, pumps, or filters. When it comes into contact with these objects, it becomes charged and becomes a high-potential charged object in the storage tank.

ところで、貯蔵タンク等ではその貯蔵量を知るために測
定を行なう場合、検尺等金属体を降下浸漬することがあ
る。このとき帯電している油脂類と金属体との間で火花
放電が起り、これが油脂類や気化ガスに着火して爆発す
る火災を起すことがある。
By the way, when measuring to know the amount stored in a storage tank or the like, a metal object such as a measuring stick may be lowered and immersed. At this time, a spark discharge occurs between the charged oil and fat and the metal body, and this may ignite the oil and fat or vaporized gas, causing an explosion and fire.

このため、消防、運輸等の関係機関においては、当該静
電気の発生による事故を未然に防止する対策として、静
電気の発生電位を事前に測定する手段の検討が進められ
、静電気を安全にしかも正確に測定できる装置の出現が
望まれている。
For this reason, related organizations such as fire departments and transportation are considering ways to measure the potential of static electricity in advance as a measure to prevent accidents caused by the generation of static electricity. It is hoped that a device that can measure this will emerge.

ところで貯蔵された流体の帯電状況を知るために、その
帯電位を測定する従来の方法どして、第1図に示すよう
に、油槽1の油中に浸漬させる電極2と静電電圧轟13
を金属り一1〜線4て接続した測定装置が用いられてい
た。
By the way, in order to know the charged state of the stored fluid, the conventional method of measuring the charged potential is as shown in FIG.
A measuring device was used in which the metal wires 1 to 4 were connected.

しかし、上記のような測定装置は測定り−1−線に金属
を使うため、途中放電現象を起し、電界をじよう乱する
ため、正確な測定ができない。
However, since the above-mentioned measuring device uses metal for the measurement wire, a discharge phenomenon occurs during the measurement and the electric field is disturbed, making it impossible to make accurate measurements.

また、曲面において火花放電を起し、曲面やガス体に着
火し、爆発、火災を引き起す危険性がある。
In addition, there is a risk that spark discharge will occur on the curved surface, igniting the curved surface or the gas body, and causing an explosion or fire.

上記のような金属リードを使用した測定装置の問題を解
消するため、電気光学効果を利用した電圧センサーと光
フアイバーケーブルを用いた測定装置が近年提案されて
いる。
In order to solve the problems of measuring devices using metal leads as described above, measuring devices using a voltage sensor using an electro-optic effect and an optical fiber cable have been proposed in recent years.

電気光学効果を利用した電気センサー(ビスマス、シリ
コン、Aキザイド、通称BSOセンセンという)の基本
的な構造は第2図に示すように、複数の電気光学結晶1
1,12,13.44を並べ、中間電気光学結晶13の
前後に電極a、bを設(プ、両電極aとbをリード線a
’ 、b’ で電源15に接続して電圧はンザー16を
形成すると共に、発光ダイオ−一ド17の光1つ′を光
フアイバーケーブル18で一方喘部、      の電
気光学結晶11にSき、使方端部の電気光学結晶14か
ら出た光Pを光フアイバーケーブル1って受光ダイオー
ド20に導くようにしたものである。
The basic structure of an electric sensor (bismuth, silicon, Axide, commonly known as BSO sensor) that utilizes the electro-optic effect is as shown in Figure 2, which consists of multiple electro-optic crystals 1.
1, 12, 13.44 are arranged, and electrodes a and b are installed before and after the intermediate electro-optic crystal 13.
', b' are connected to the power supply 15 to form a voltage sensor 16, and one light from the light emitting diode 17 is sent to the electro-optic crystal 11 of the other part through the fiber optic cable 18. The optical fiber cable 1 guides the light P emitted from the electro-optic crystal 14 at the used end to the light receiving diode 20.

ところで、上記のセンサー16を透過する光の吊Pは、
電極aと1間に印加される電圧Vに対して第3図に示す
ような特性を有する。
By the way, the height P of the light that passes through the sensor 16 is
It has the characteristics shown in FIG. 3 with respect to the voltage V applied between electrodes a and 1.

つまり、被測定電圧Vが零のときの光の強さPに対し、
正極性の電圧を印加づ−ると光の強さPはPOより強く
なり、負極性であるとPOより弱くなる。
In other words, for the light intensity P when the voltage to be measured V is zero,
When a voltage of positive polarity is applied, the light intensity P becomes stronger than PO, and when a voltage of negative polarity is applied, it becomes weaker than PO.

上記のようなセンサーを電圧測定に使用した従来の測定
方法として、探釧型と球状電極型の二種類がある。
There are two types of conventional measurement methods using the above-mentioned sensors for voltage measurement: a probe type and a spherical electrode type.

前者の探釧型は第4図に示すように、油槽21内の油A
中に探剣電極22を挿入し、センサー16における一方
電極をリード線a′で探釘電極22に、また他方電極を
リード線b′で油槽21に接続し、油Aと油槽21、す
なわち大地間の電位差を測定するものである。
The former probe type, as shown in FIG.
Insert the probe electrode 22 into the sensor 16, connect one electrode of the sensor 16 to the probe electrode 22 with a lead wire a', and connect the other electrode to the oil tank 21 with a lead wire b'. It measures the potential difference between

また、球状電極型は第5図のように、絶縁した二つの電
極23と24で形成した球状電極25内にセンサ゛−1
6を密封収納し、両電極23.24にレノ1ノー16の
電極をリード線a’、b’ で接続し、光フアイバーケ
ーブル18.19を接続した球状電極25を油槽26の
油A内に挿入し、球状電極25の表面電界を検出づるよ
うにしたものである。
In addition, in the spherical electrode type, as shown in FIG.
6 is hermetically sealed, the electrodes of Reno 1 and No. 16 are connected to both electrodes 23 and 24 with lead wires a' and b', and the spherical electrode 25 to which the optical fiber cable 18 and 19 is connected is placed in the oil A of the oil tank 26. The spherical electrode 25 is inserted so that the surface electric field of the spherical electrode 25 can be detected.

ところで、上記両測定方法は、光フアイバーケーブル4
8.49の伝送損失が長時間の間に変化しlこり、発光
ダイオード17の出力が変化り′ると、第3図における
光の強さにおりるPoが変化する。このため、あたかも
被測定電圧Vが変化したため、光の強さPが変化したか
の如く検出測定され、正確41測定結果が得られないと
いう問題がある。
By the way, both of the above measurement methods are based on the optical fiber cable 4.
As the transmission loss of 8.49 changes over a long period of time and the output of the light emitting diode 17 changes, the light intensity Po in FIG. 3 changes. For this reason, there is a problem in that the measurement is performed as if the intensity of light P had changed because the voltage to be measured V had changed, and accurate measurement results could not be obtained.

従来、被測定電圧Vが交流の場合は第6図に示づように
、光の強さPを直流成分PC)。と交流成分PACに分
離し、変調度mを求めることにより、Poつより直流成
分pocの変化を無視することができた。
Conventionally, when the voltage to be measured V is AC, as shown in FIG. 6, the intensity of light P is the DC component PC). By separating the current and AC components into AC components PAC and determining the modulation degree m, it was possible to ignore changes in the DC component poc.

しかし、静電気の場合、第6図に示したような交流のと
きのように、光の強さPの変化分の直流成分Poeと交
流成分PAcを分離することがでさないので、光の強さ
Pの変化はそのまま測定誤差となって表われ、正確な測
定か行なえないという問題がある。
However, in the case of static electricity, unlike in the case of alternating current as shown in Figure 6, it is not possible to separate the direct current component Poe and the alternating current component PAc corresponding to the change in the light intensity P. There is a problem in that changes in the height P directly appear as measurement errors, making it impossible to perform accurate measurements.

この発明は、静電気の測定時に生じた上記のような問題
点を解消するためになされたものであり、静電気を安全
かつ正確に検出測定できる測定装置を提供することを目
的とする。
The present invention was made in order to solve the above-mentioned problems that occurred when measuring static electricity, and an object of the present invention is to provide a measuring device that can safely and accurately detect and measure static electricity.

この発明の構成は、光フアイバーケーブルを介して光線
を断続的に照射する光源を設けた電圧センサーを球電極
に内蔵し、この球電極を絶縁体で外周を被覆した金属槽
内に収納し、この金属槽内の空間に電気抵抗物質を充填
し、静電気を高精度に測定することができるようにした
ものである。
The structure of this invention is that a voltage sensor equipped with a light source that intermittently irradiates a light beam via an optical fiber cable is built into a spherical electrode, and this spherical electrode is housed in a metal tank whose outer periphery is covered with an insulator. The space inside this metal tank is filled with an electrically resistive material, making it possible to measure static electricity with high precision.

以下、この発明の実施例を添付図面の第7図ないし第1
2図にもとづ′いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 7 to 1 of the accompanying drawings.
This will be explained based on Figure 2.

第7図はこの発明の測定装置に用いる電圧センサー16
′ の構造を示しており、第2図で示した従来の電圧セ
イサーと同一部分は同一符号をf」シて説明を省略する
FIG. 7 shows a voltage sensor 16 used in the measuring device of this invention.
The same parts as those of the conventional voltage sacer shown in FIG.

電極a、bを設けた中間電気光学結晶13を、外周の一
辺に所要大ぎさの突出部13′ を備えた大きさに形成
し、別の光源31から光フアイバーケーブル32を介し
て突出部13′ に光33を照射するように構成されて
いる。
The intermediate electro-optic crystal 13 provided with electrodes a and b is formed to a size with a protrusion 13' of a required size on one side of the outer periphery, and the protrusion 13 is connected to another light source 31 via an optical fiber cable 32. ' is configured to irradiate the light 33.

上記電気光学結晶11.12.13及び14は例えば8
2、え、SjOユ。のような光伝導効果と電気光学効果
をあわせもったものを用いて形成Jる。
The electro-optic crystals 11, 12, 13 and 14 are, for example, 8
2. Eh, SjOyu. It is formed using a combination of photoconductive effect and electro-optic effect such as.

第7図に示した電圧センサー16′ においていま中間
電気光学結晶13の突出部13′ に光33を照射する
と、光伝導効果により絶縁抵抗か低下する。絶縁抵抗が
低下すると電気光学結晶13の電極aと1間に蓄えられ
た電荷が減少し、電極aと1間の電j王Vabか低下す
る。
In the voltage sensor 16' shown in FIG. 7, when the protrusion 13' of the intermediate electro-optic crystal 13 is irradiated with light 33, the insulation resistance decreases due to the photoconductive effect. When the insulation resistance decreases, the charge stored between the electrodes a and 1 of the electro-optic crystal 13 decreases, and the electric charge Vab between the electrodes a and 1 decreases.

また突出部13′ に対する光33の照射を停止すると
絶縁抵抗が回復し、電極aと1間の電圧Vabが再び高
(なる。
Furthermore, when the irradiation of the light 33 to the protrusion 13' is stopped, the insulation resistance is restored and the voltage Vab between the electrodes a and 1 becomes high again.

このように、突出部13′ に7・1する光33の照射
ど停止を繰り返すことにより、第8図に示づ−ような交
流的に変化りる電圧が表われることになり、第8図のよ
うな電圧か電気光学結晶13に印°加されるど電圧ヒン
→、1−46’ を透過りる光の量1つは第9図に示り
通りとなる。
In this way, by repeating the irradiation and stopping of the light 33 on the protrusion 13', a voltage that changes in an alternating current manner as shown in FIG. 8 appears, and as shown in FIG. When a voltage such as is applied to the electro-optic crystal 13, the amount of light transmitted through the voltage hin→, 1-46' is as shown in FIG.

第9図のように、光を照射し−(いる間の出力光POと
照射光を停止した場合の変化分PACを比較し、m=P
AC/POで変調度を求めることにより、入力電圧の大
きさを求めることが可能である。
As shown in Figure 9, compare the output light PO while the light is irradiated and the change PAC when the irradiation light is stopped, m = P
By determining the degree of modulation using AC/PO, it is possible to determine the magnitude of the input voltage.

従って、第7図に示した電圧センサー16′ を第4図
または第5図の従来例と同様に使用覆ることによって、
POの変化分(ドリフト)の影響を受けずに静電気の検
出が可能となる。
Therefore, by replacing the voltage sensor 16' shown in FIG. 7 with the conventional example shown in FIG. 4 or 5,
Static electricity can be detected without being affected by changes in PO (drift).

この発明は上記のような電圧センサー16′ を用い、
更に高い静電圧を検出することによって測定精度の向上
をはかるようにしたものであり、第10図と第11図に
示すように、電圧センサー16′ を球電極41内に蜜
月収納し、上記レンザー16′ の電(qiaとbを球
N極41の絶縁された電極42.43に各々接続し、の
球電極41を外周が絶縁体44で覆われた金属槽45内
に組込み、球電極41に取(=Jけた絶縁パイプ4Gを
金属槽45の上部から外部に川通さU、光、電圧計用の
光フアイバーケーブル18.19および突出部13′ 
に対づる光照射用光フアイバーケーブル32を絶縁パイ
プ46に沿って各々外部に引出している。
This invention uses the voltage sensor 16' as described above,
The measurement accuracy is improved by detecting an even higher electrostatic voltage, and as shown in FIGS. 10 and 11, the voltage sensor 16' is housed inside the spherical electrode 41, and the above-mentioned lens 16' are connected to the insulated electrodes 42 and 43 of the spherical N pole 41, and the spherical electrode 41 is assembled into a metal tank 45 whose outer periphery is covered with an insulator 44. A J-sized insulated pipe 4G is passed from the top of the metal tank 45 to the outside, an optical fiber cable 18, 19 for the light and voltmeter, and a protrusion 13'.
Optical fiber cables 32 for light irradiation are led out along insulated pipes 46, respectively.

前記金属槽45の内部空間には、107〜16’1度の
電気抵抗をもった液体、粉体等の電気抵抗物質47を充
噴し、金属[45と球電極41との間に一種の導電路を
形成し、金属槽45の内部雰囲気の抵抗を下げることに
よって、金属槽45の外部に生じた電圧を電圧センサ−
−16′で検出し、光フアイバーケーブル1つを介して
光/電圧計の表示値を読みとり、静電気の検出測定を行
なうものである。
The internal space of the metal tank 45 is filled with an electrically resistive material 47 such as a liquid or powder having an electrical resistance of 107 to 16'1 degree, and a kind of electrical resistance material 47 is filled between the metal [45 and the spherical electrode 41]. By forming a conductive path and lowering the resistance of the internal atmosphere of the metal tank 45, the voltage generated outside the metal tank 45 is detected by a voltage sensor.
-16' and read the display value of the optical/voltmeter via one optical fiber cable to detect and measure static electricity.

この発明のm11定は上記のような構成であり、例えば
第12図に示すように、金属4I45をタンカー48の
油槽内の油面に浮上させ、送油管49による注油11・
7に際して発生ずる静電気を検出測定Jるものであり、
光源31から電圧センサー16′の電気光学結晶13に
おける突出部13′ に光の照射と停止を繰返し、PO
の変化分の影響を受けずに、曲面に生じた静電気の検出
を行なうものである。
The m11 constant of the present invention has the above-mentioned configuration. For example, as shown in FIG.
This method detects and measures static electricity generated during 7.
Light is repeatedly irradiated and stopped from the light source 31 to the protrusion 13' of the electro-optic crystal 13 of the voltage sensor 16', and the PO
This method detects static electricity generated on a curved surface without being affected by changes in .

なお、金属槽45の最外部を絶縁体44で覆って油面と
隔離覆ると共に、金属槽45を油面に浮上設置して測定
を行なうと、注油、送油等で曲面が変動しても曲面に追
従し、金属槽45と曲面の間において、火花放電を起す
ことがなく、安全かつ粘度よく測定することができる。
Note that if the outermost part of the metal tank 45 is covered with an insulator 44 to isolate it from the oil surface, and the metal tank 45 is floated on the oil surface for measurement, even if the curved surface changes due to oil filling, oil feeding, etc. It follows the curved surface and can safely and accurately measure viscosity without causing spark discharge between the metal tank 45 and the curved surface.

また、静電気の測定は上記油のような液体に限らず、着
火危険性のあるガス雰囲気中の帯電状態あるいは流動す
る粉体中の帯電状態を測定づ゛る等にも使用できる。
Furthermore, the measurement of static electricity is not limited to liquids such as oil, but can also be used to measure the charging state in a gas atmosphere with the risk of ignition or the charging state in flowing powder.

以上のように、この発明によると、上記のような構成で
あるので、以下に列挙づる効果がある。
As described above, according to the present invention, since it has the above configuration, it has the following effects.

(1)  光電導効果を持つ電気光学結晶に光を照射し
て抵抗を下げ、検出電位を上げると共に、電圧レンサー
を内蔵した球電極とこれを収納する金属槽との空間を電
気抵抗物質で埋め、金属槽内雰囲気の抵抗を下げるよう
にしたので、静電気の検出電位が大幅に上昇し、正確で
安全に静電気の検出3i11定が可能になる。
(1) The electro-optic crystal, which has a photoconductive effect, is irradiated with light to lower its resistance and increase the detection potential, and the space between the spherical electrode with a built-in voltage lenser and the metal tank that houses it is filled with an electrically resistive material. Since the resistance of the atmosphere inside the metal tank is lowered, the detection potential of static electricity is significantly increased, making it possible to accurately and safely detect static electricity.

(2)金属槽の外周を絶縁体で覆い、しかも測定電圧の
取り出しおよび光の照射に光フアイバー77=プルを使
用したので、被測定流体との間での放電現象がなくなり
、放電が発因で爆発や火災が生じる流体に対しても安全
に静電気を測定覆ることがCきる。
(2) Since the outer periphery of the metal tank is covered with an insulator, and an optical fiber 77 (pull) is used to take out the measurement voltage and irradiate the light, there is no discharge phenomenon between the fluid to be measured and the occurrence of discharge. It is possible to safely measure static electricity even in fluids that can cause explosions or fires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の静電気測定装置を示す説明図、第2図は
電圧センサーの基本構造を示ず系統図、第3図は電圧セ
ン4ノーを透過する光量の特性図、第4図は電圧センυ
−を使用した従来の第1の例を示づ゛測定系統図、第5
図は同第2の例を示す測定系統図、第6図は光の入用と
停止による入力電圧と変調度を示す関係図、第7図はこ
の発明に使用する電圧センサーの接続系統図、第8図は
電圧センサーにかかる印加電圧と時間の関係を示づ説明
図、第9図は同」−における光の照射と停止の入力電圧
と変調度の関係を示す説明図、第10図はこの弁明に係
る測定装嵌の一部切欠正面図、第11図は同上にお【プ
る球電極部分の拡大断面図、第12図は同上の使用状態
を示す模擬測定図である。 11.12,13,14・・・電気光学結晶13′ ・
・・突出部  16・・・電L[センリーー18.19
.32・光フアイバーケーブル31・・・光漏!   
a、b・・・電極第1図 第2図 第8図 第4図 第9図 第10図 第12図
Figure 1 is an explanatory diagram showing a conventional static electricity measuring device, Figure 2 is a system diagram without showing the basic structure of the voltage sensor, Figure 3 is a characteristic diagram of the amount of light transmitted through the voltage sensor, and Figure 4 is the voltage sensor. Sen υ
- The first example of the conventional method using
Figure 6 is a measurement system diagram showing the second example, Figure 6 is a relationship diagram showing the input voltage and modulation degree depending on the on/off of light, and Figure 7 is a connection diagram of the voltage sensor used in this invention. FIG. 8 is an explanatory diagram showing the relationship between the applied voltage applied to the voltage sensor and time, FIG. FIG. 11 is an enlarged sectional view of the ball electrode portion shown in the above, and FIG. 12 is a simulated measurement diagram showing the state of use of the same. 11.12,13,14... Electro-optic crystal 13' ・
・Protruding part 16... Electric L [Senry-18.19
.. 32・Optical fiber cable 31...Light leakage!
a, b... Electrode Figure 1 Figure 2 Figure 8 Figure 4 Figure 9 Figure 10 Figure 12

Claims (1)

【特許請求の範囲】[Claims] 光電導効果を持つ電気光学結晶を用いた電圧センサーに
光フアイバーケーブルを介して光/電気変換電圧言1を
接続し、この電圧センサーの電気光学結晶に光フアイバ
ーケーブルを介して光線を断続的に照射する光源を設け
、前記電圧センサーを球型極内に内蔵し、この球電極を
絶縁体で外周を被覆した金属槽内に収納し、金属槽内の
空間に電気抵抗物質を充填したことを特徴とする静電気
測定装置。
An optical/electric conversion voltage signal 1 is connected to a voltage sensor using an electro-optic crystal with a photoconductive effect via an optical fiber cable, and a light beam is intermittently transmitted to the electro-optic crystal of the voltage sensor via the optical fiber cable. A light source for irradiation is provided, the voltage sensor is built into a spherical electrode, the spherical electrode is housed in a metal tank whose outer periphery is covered with an insulator, and the space inside the metal tank is filled with an electrically resistive material. Characteristic static electricity measuring device.
JP6752483A 1983-04-15 1983-04-15 Measuring device for static electricity Pending JPS59192972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6752483A JPS59192972A (en) 1983-04-15 1983-04-15 Measuring device for static electricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6752483A JPS59192972A (en) 1983-04-15 1983-04-15 Measuring device for static electricity

Publications (1)

Publication Number Publication Date
JPS59192972A true JPS59192972A (en) 1984-11-01

Family

ID=13347444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6752483A Pending JPS59192972A (en) 1983-04-15 1983-04-15 Measuring device for static electricity

Country Status (1)

Country Link
JP (1) JPS59192972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037562A (en) * 2000-11-14 2002-05-22 김영호 Measurement apparatus for static electricity
KR20020078673A (en) * 2001-04-07 2002-10-19 김영호 Electrostatic Measurement Apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020037562A (en) * 2000-11-14 2002-05-22 김영호 Measurement apparatus for static electricity
KR20020078673A (en) * 2001-04-07 2002-10-19 김영호 Electrostatic Measurement Apparatus

Similar Documents

Publication Publication Date Title
CN107015072B (en) Sealed non-contact handheld electrostatic instrument based on electric field sensor
US3812424A (en) Capacitive wire gauge
US3863147A (en) Capacitance sensing apparatus
US3965415A (en) Alternating voltage method of electrically detecting damage to an enamel layer having one or more tantalum plugs
JPS59192972A (en) Measuring device for static electricity
JPS60256068A (en) Measurement of voltage of power cable
US3624828A (en) Volume measuring system
JPS608754A (en) Electrostatic potential measuring device
JPS60169771A (en) Electrostatic potential detection apparatus
JPH0217071B2 (en)
SU1150524A2 (en) Pickup for measuring corrosion rate
JPS6029672A (en) Auxiliary electrode in static electricity potential measuring device
CN207424111U (en) A kind of closed type non-contact hand-held electro static instrument based on electric-field sensor
JPS6118880A (en) Electrostatic probe
JPS5566747A (en) Lining defect detection
JPS59164965A (en) Static electricity measuring apparatus
EP0186584B1 (en) Apparatus for the detection of an enclosed electrically-conducting material, and uses of this apparatus
JPS59220653A (en) Electrostatic potential detecting apparatus
SU813260A1 (en) Current meter
JPS59193364A (en) Voltage detecting apparatus
EP0052960B1 (en) Apparatus for monitoring float level and method for detecting leaks by use of the apparatus
JPH04320975A (en) Static electricity monitor
SU978056A1 (en) Static electricity potential measuring method
RU2195691C1 (en) Sonde and device evaluating electric field in earth's crust
CN117168292A (en) Pressure pipeline crack depth measuring device, system and method based on potential method