JPS6173880A - Method and device for plating by vacuum deposition - Google Patents
Method and device for plating by vacuum depositionInfo
- Publication number
- JPS6173880A JPS6173880A JP59192574A JP19257484A JPS6173880A JP S6173880 A JPS6173880 A JP S6173880A JP 59192574 A JP59192574 A JP 59192574A JP 19257484 A JP19257484 A JP 19257484A JP S6173880 A JPS6173880 A JP S6173880A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- inert gas
- pressure
- vacuum
- atmospheric pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/561—Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/562—Details
- C21D9/565—Sealing arrangements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、真空蒸着メッキ方法及び真空蒸着メッキ装置
に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vacuum evaporation plating method and a vacuum evaporation plating apparatus.
真空蒸着メッキ手段において、真空室に大気圧側から塵
埃等の侵入を防止するために1従来よシ大気圧から漸次
減圧して段階的に真空を作るようにする手段と共に焼鈍
炉と真空室との間に高圧の不活性ガス雰囲気の室を設け
ることが提案されている(特公昭44−6576号公報
及び特開昭55−85742号公報参照)。In the vacuum evaporation plating method, in order to prevent dust etc. from entering the vacuum chamber from the atmospheric pressure side, 1. Conventionally, an annealing furnace and a vacuum chamber are used together with a means to gradually reduce the pressure from atmospheric pressure to create a vacuum in stages. It has been proposed to provide a chamber with a high-pressure inert gas atmosphere between them (see Japanese Patent Publication No. 44-6576 and Japanese Patent Application Laid-Open No. 55-85742).
ところで真空蒸着メッキを行う場合、帯鋼とメッキ金属
の皮膜の密着強度がI B ooot曲げ加工あるいは
逆再絞シ曲げ加工等の過酷な加工を行っても剥離やクラ
ックあるいはパツダリングが発生しないものでなくては
ならない。そのために水素ガス(4菖5〜75%)の雰
囲気ガス中で帯鋼が焼鈍還元され、帯鋼表面(真空蒸着
メッキしても十分メッキ金属の皮膜密着強度が得られる
活性な面が作られる。この表面性状を保ったまま真空室
を経て真空蒸着室へ帯鋼を案内すればその目的を達成す
ることができる。従来の上記提案は高圧室を設は真空室
への塵埃等の混入を防止することが目的であるが、これ
のみでは目的の真空蒸着されたメッキ成品を得ることは
できない。すなわち、帯鋼を焼鈍還元する焼鈍炉(大気
圧+5〜1011IIAq)と真空室をそのまま接続す
ると、焼鈍炉の水素ガス%−5〜75%を真空排気する
ことKなシ、万一真空が破れて空気(酸素ガス)が侵入
すると爆発の危険があシ、工業的には成シ立たない。By the way, when performing vacuum evaporation plating, the adhesion strength of the film between the steel strip and the plated metal is such that peeling, cracking, or padding will not occur even when subjected to severe processing such as I B ooot bending or reverse redrawing bending. Must-have. For this purpose, the steel strip is annealed and reduced in an atmosphere of hydrogen gas (5 to 75%) to create an active surface that provides sufficient film adhesion strength for the plated metal even when vacuum evaporated. This objective can be achieved by guiding the steel strip through a vacuum chamber and into a vacuum deposition chamber while maintaining this surface quality.The above-mentioned conventional proposal was to install a high-pressure chamber to prevent dust from entering the vacuum chamber. Although the purpose is to prevent this, it is not possible to obtain the desired vacuum-deposited plated product with this method alone.In other words, if the annealing furnace (atmospheric pressure + 5 to 1011 IIAq) for annealing and reducing the steel strip is directly connected to the vacuum chamber, It is not possible to evacuate the hydrogen gas% -5 to 75% in the annealing furnace.If the vacuum is broken and air (oxygen gas) enters, there is a risk of explosion, and it is not practical for industrial use. .
本発明は、焼鈍炉及び真空室の本来の機能を損わずに、
上記問題を解決する真空蒸着メッキ方法及び該方法を実
施するための真空蒸着メッキ装置を提供することを目的
とする。The present invention provides the following advantages: without impairing the original functions of the annealing furnace and vacuum chamber
It is an object of the present invention to provide a vacuum evaporation plating method that solves the above problems and a vacuum evaporation plating apparatus for implementing the method.
すなわち、本発明は、
(1)真空蒸着メッキ室の前の入口側真空シール装置と
焼鈍炉との間に入口側不活性ガス置換室を、真空蒸着メ
ッキ室の後の出口側真空シール装置と大気との間に出口
側不活性ガス置換室をそれぞれ設けるとともに、前記再
真空シール装置と該再真空シール装置の大気圧の室との
間に、再真空シール装置から該大気圧の室へ不活性ガス
を循環させ、かつ該不活性ガス中の水、油及び酸素を除
去する不活性ガス循環精製装置を設けた真空蒸着メッキ
装置において、焼鈍炉内の圧力りを大気圧以上、入口側
不活性ガス置換室内の圧力P1を大気圧以上、出口側不
活性ガス置換室内の圧力P1を大気圧以上、PI−P、
≧0餌ムq1人ロ側不活性ガス置換宜内の水素゛濃度を
2−0%以下に制御することを特徴とする真空蒸着メッ
キ方法、(2) 真空蒸着メッキ室の前の入口側真空
シール装置と焼鈍デとの間に入口側不活性ガス置換室を
、真空蒸着メッキ室の後の出口側真空シール装置と大気
との間に出口側不活性ガス置換室をそれぞれ設けるとと
もに、前記再真空シール装置と該再真空シール装置の大
気圧の室との間に、再真空クール装置から該大気圧の室
へ不活性ガスを循環させ、かつ該不活性ガス中の水、油
及び酸素を除去する不活性ガス循環fJ製装置を設けた
真空蒸着メッキ装置(おいて、前記焼鈍炉に圧力計を、
入口側不活性ガス置換室に圧力計、制御弁、自動弁、水
素濃度検知器及び放出弁を、出口側不活性ガス置換室に
圧力計及び自動弁を、再真空シール装置の大気圧の室に
非常用の不活性ガスタンクへ連通した自動弁を各々設け
たことを特徴とする真空蒸着メッキ装置、
に関するものである。That is, the present invention provides the following features: (1) An inert gas substitution chamber is provided between the inlet side vacuum sealing device in front of the vacuum evaporation plating chamber and the annealing furnace, and an outlet side vacuum sealing device is provided after the vacuum evaporation plating chamber. An inert gas exchange chamber on the outlet side is provided between the re-vacuum sealing device and the atmospheric pressure chamber of the re-vacuum sealing device. In a vacuum evaporation plating equipment equipped with an inert gas circulation purification device that circulates active gas and removes water, oil, and oxygen from the inert gas, the pressure inside the annealing furnace is set to above atmospheric pressure and the inlet side is heated. The pressure P1 inside the active gas replacement chamber is equal to or higher than atmospheric pressure, the pressure P1 inside the inert gas replacement chamber on the outlet side is equal to or higher than atmospheric pressure, PI-P,
A vacuum evaporation plating method characterized by controlling the hydrogen concentration within 2-0% or less within the range of inert gas substitution on the side of ≧0 bait, (2) Vacuum on the entrance side in front of the vacuum evaporation plating chamber. An inert gas exchange chamber on the inlet side is provided between the sealing device and the annealing device, and an inert gas exchange chamber on the outlet side is provided between the vacuum sealing device and the atmosphere on the outlet side after the vacuum evaporation plating chamber. Between the vacuum sealing device and the atmospheric pressure chamber of the revacuum sealing device, an inert gas is circulated from the revacuum cooling device to the atmospheric pressure chamber, and water, oil, and oxygen in the inert gas are removed. A vacuum evaporation plating apparatus equipped with an inert gas circulation fJ device for removal (a pressure gauge is installed in the annealing furnace,
A pressure gauge, control valve, automatic valve, hydrogen concentration detector, and release valve are installed in the inert gas exchange chamber on the inlet side, a pressure gauge and automatic valve are installed in the inert gas exchange chamber on the outlet side, and an atmospheric pressure chamber of the re-vacuum sealing device. The present invention relates to a vacuum evaporation plating apparatus characterized in that each of the vacuum evaporation plating apparatuses is provided with an automatic valve that communicates with an emergency inert gas tank.
本発明は、具体的には、焼鈍炉と真空シール装置の間に
窒素置換室を設け、また、焼鈍炉と窒素置換室の間及び
窒素置換室と真空シール装量との間に、真空シール装置
に用いているシールロールと同一仕様のシールロールを
それぞれ配置するものである。そして、焼鈍炉の圧力と
窒素置換室の圧力を等圧もしくは焼鈍炉の圧力を窒素置
換室の圧力よシ若干高めKしたことを特徴とする。すな
わち、同圧であれば焼鈍炉から水素ガスが窒素置換室へ
流入することもなく、したがって窒素置換室の水素量が
増大し爆発する危険もなく、また窒素置換室から窒素ガ
スが焼鈍炉へ流出し、焼鈍炉の雰囲気ガス(馬鱈5〜7
5%、N1−95〜25%)条件を満たさない焼鈍炉の
ゾーンが発生し焼鈍還元に不具合が生じるということも
無くすることができるものである。Specifically, the present invention provides a nitrogen substitution chamber between an annealing furnace and a vacuum sealing device, and also provides a vacuum seal between the annealing furnace and the nitrogen substitution chamber and between the nitrogen substitution chamber and the vacuum sealing device. Seal rolls with the same specifications as the seal rolls used in the device are arranged. The annealing furnace is characterized in that the pressure in the annealing furnace and the pressure in the nitrogen substitution chamber are equal to each other, or that the pressure in the annealing furnace is slightly higher than the pressure in the nitrogen substitution chamber. In other words, if the pressure is the same, hydrogen gas will not flow from the annealing furnace into the nitrogen substitution chamber, and therefore there will be no risk of an explosion due to an increase in the amount of hydrogen in the nitrogen substitution chamber, and nitrogen gas will not flow from the nitrogen substitution chamber into the annealing furnace. Atmospheric gas from the annealing furnace (cod 5 to 7) leaked out and
5%, N1-95 to 25%)) It is also possible to eliminate the occurrence of zones in the annealing furnace that do not satisfy the conditions and problems in annealing reduction.
また、本発明において上記シールロールは気体通過面積
が極めて小さくなる構造としてあシ、ガスの流量はチョ
ーク条件下(低圧/高圧の圧力比がcL52以下の時)
でさえ少なhガスタイトの構造となっている。したがっ
て等圧の場合気体の流動はなく、また、たとえ焼鈍炉側
の圧力を若干高くした差圧がついても、気体の流動によ
るリーク量は無視し得るほど少ない。シールロールのわ
ずかの隙間を介して水素ガスが窒素置換室へ拡散する。In addition, in the present invention, the seal roll has a structure in which the gas passage area is extremely small, and the gas flow rate is under choke conditions (when the pressure ratio of low pressure / high pressure is less than cL52).
However, it has a tight structure with little H gas. Therefore, when the pressure is equal, there is no gas flow, and even if there is a differential pressure that slightly increases the pressure on the annealing furnace side, the amount of leakage due to the gas flow is so small that it can be ignored. Hydrogen gas diffuses into the nitrogen substitution chamber through a small gap between the seal rolls.
また同様に窒素ガスが焼鈍炉へ拡散することによるガス
の移動がある。Similarly, there is gas movement due to nitrogen gas diffusing into the annealing furnace.
焼鈍炉で焼鈍還元された帯鋼は、真空蒸着メッキが可能
な活性な表面性状をしているが、窒素置換室内で帯鋼の
活性が損われると因るので、拡散によシ水素ガスが窒素
置換室へ移動するのは好ましく、また焼鈍炉の圧力を若
干高めにして水素ガスが窒素置換室へ若干洩れ込み窒素
置換室の水素量が20%以下、好ましくは12〜2.0
%の弱還元性の雰囲気(したのも本発明の゛特徴である
。また窒素置換室の水素量が2%を超え爆発の危険が心
配される値に達すると、窒素置換室に窒素ガスを投入希
釈し、窒素置換室の圧力が上昇すると、放出弁から窒素
ガスと水素ガスの雰囲気ガスを放出し、窒素置換室の水
素ガス量を弱還元性の雰囲気すなわち馬≦λ05、好ま
しくは%−CL2〜λO%に制御することを特徴として
いる。The steel strip annealed and reduced in an annealing furnace has an active surface that allows vacuum evaporation plating, but since the activity of the steel strip is lost in the nitrogen purge chamber, hydrogen gas is released due to diffusion. It is preferable to move to the nitrogen substitution chamber, and the pressure in the annealing furnace is raised slightly so that some hydrogen gas leaks into the nitrogen substitution chamber, so that the amount of hydrogen in the nitrogen substitution chamber is 20% or less, preferably 12 to 2.0%.
Another feature of the present invention is that the hydrogen content in the nitrogen replacement chamber exceeds 2% and reaches a value that poses a danger of explosion, in which case nitrogen gas is introduced into the nitrogen replacement chamber. When the pressure in the nitrogen replacement chamber rises due to dilution, the atmospheric gas of nitrogen gas and hydrogen gas is released from the release valve, and the amount of hydrogen gas in the nitrogen replacement chamber is reduced to a weakly reducing atmosphere, that is, H≦λ05, preferably %- It is characterized in that it is controlled to CL2 to λO%.
以上のことから明らかなように、本発明の真空蒸着メッ
キ方法において、焼鈍炉内の圧力P1を大気圧以上とす
るのは、焼鈍炉内の雰囲気ガスが4諺5〜75%、島腫
95〜25うで、酸素(空気)侵入時爆発の危険性があ
るため、焼鈍炉の圧力は常に大気圧以上の条件に管理し
なければならないからである。一般にはPi−大気圧+
5 WAqに管理するのが好ましい(例えば、焼鈍炉入
口を直火形バーナで加熱するNO? (無酸化炉)があ
シ、燃焼排ガスによる圧力が得られる。すなわち、焼鈍
炉全体の圧力は、雰囲気ガスを常時FK供給しているた
め、大気圧以上、好ましくは大気圧、+ 5 mAqを
得ることができる)。As is clear from the above, in the vacuum evaporation plating method of the present invention, the reason why the pressure P1 in the annealing furnace is set to above atmospheric pressure is because the atmospheric gas in the annealing furnace is This is because there is a risk of explosion when oxygen (air) enters the annealing furnace, so the pressure in the annealing furnace must always be controlled to be above atmospheric pressure. In general, Pi - atmospheric pressure +
It is preferable to control the annealing furnace to 5 WAq (for example, the inlet of the annealing furnace is heated with a direct burner (non-oxidizing furnace), and the pressure from the combustion exhaust gas is obtained. In other words, the pressure of the entire annealing furnace is Since the atmospheric gas is constantly supplied with FK, it is possible to obtain a pressure higher than atmospheric pressure, preferably atmospheric pressure, +5 mAq).
また、入口側不活性ガス置換室内の圧力P、を大気圧以
上とするのは、空気の侵入を防ぐためであシ、好ましく
は焼鈍炉圧力P1w−大気圧+5mAqに対し、入ロ側
不活性ガス置換室圧力P!糟大気圧+5〜41111I
Aqとする。すなわち、該置換室への焼鈍炉側の雰凹気
ガス烏誼5〜75%、N、5w95〜25%の流入t−
図り、該置換室の雰囲気ガスを4≦zO%、好ましくは
馬−α2〜λ0%、N8Il1199.8〜98%に制
御するためである。Also, the reason why the pressure P in the inert gas exchange chamber on the inlet side is set to be higher than atmospheric pressure is to prevent air from entering. Gas replacement chamber pressure P! Atmospheric pressure +5 ~ 41111I
Let it be Aq. That is, an inflow of 5 to 75% of the atmosphere gas on the annealing furnace side into the exchange chamber, and 95 to 25% of N, 5W, t-
This is to control the atmospheric gas in the replacement chamber to 4≦zO%, preferably to α2 to λ0%, and N8Il1199.8 to 98%.
更に、出口側不活性ガス置換室内の圧力P1を大気圧以
上、好ましくは大気圧+5mAqとするのけ、一般には
空気の流入と防ぐためであるが、本発明では次のような
作用、効果を得るためである。一つは、不活性ガスnm
系への空気の侵入を防止し、二つは、片面メッキ時に出
口側不活性ガス置換室中に空気(酸素)がちると非メッ
キ面が酸化(ブルーイング)するため、これを防止する
ためである(なお、出口側不活性ガス置換室は帯鋼の冷
却を兼ねている)。Furthermore, the pressure P1 in the inert gas exchange chamber on the outlet side is set to above atmospheric pressure, preferably atmospheric pressure + 5 mAq, generally to prevent air from flowing in, but the present invention has the following functions and effects. It's to get it. One is inert gas nm
The second is to prevent air from entering the system, and the second is to prevent oxidation (blueing) of the non-plated surface if air (oxygen) accumulates in the inert gas exchange chamber on the outlet side during single-sided plating. (Note that the inert gas exchange chamber on the outlet side also serves to cool the steel strip.)
また、上記乃−烏≧OmAqとするのは、烏及びP!は
大気圧以上であり、P宜≧大気圧で、烏≧烏であれば良
いが、Plは好ましくは大気圧+5四ムqであるので、
P!≧大気圧とするために、P8− P、≧0鱈Aqと
した。なお、焼鈍炉から入口側不活性ガス[換宣へ為が
2.0%を超えて流入した場合、該置換室へN、を投入
し稀釈するが、この時、R−Pg < Oで放出弁を開
放し、乃−Pよ≧0を維持させる制御が働く。In addition, the above-mentioned No-Crow≧OmAq is defined as Crow and P! is above atmospheric pressure, P≧atmospheric pressure, and ≧≧, but Pl is preferably atmospheric pressure + 54 muq, so
P! In order to achieve ≧atmospheric pressure, P8-P and ≧0 cod Aq were set. In addition, if more than 2.0% of inert gas flows into the inert gas exchange chamber from the annealing furnace, N is introduced into the exchange chamber to dilute it, but at this time, it is released when R-Pg < O. Control operates to open the valve and maintain 义-P≧0.
以下、第1図及び第2図に基づいて本発明の詳細な説明
する。第1図は本発明の真空蒸着メッキ装置を説明する
ための一例を示す図であり、第2図は本発明の上記装置
をよシ詳細に説明するための図である。Hereinafter, the present invention will be explained in detail based on FIGS. 1 and 2. FIG. 1 is a diagram illustrating an example of a vacuum evaporation plating apparatus according to the present invention, and FIG. 2 is a diagram illustrating the apparatus according to the present invention in more detail.
第1図において、帯鋼1は焼鈍炉2で焼鈍され、雰囲気
ガス(4m5〜75%、N!鱈95〜25%)で還元さ
れ、シールロール4を前後に持つ不活性ガス(以下、窒
素)置換室5に入)。In Fig. 1, a steel strip 1 is annealed in an annealing furnace 2, reduced with an atmospheric gas (4m5~75%, N! cod 95~25%), and with sealing rolls 4 on the front and back. ) into replacement room 5).
窒素置換室3は水素ガス(馬≦20%好ましくはHl−
(L 2〜2.0%)の弱還元性の雰囲気ガスに管理さ
れている。次、に、 複数のシールロール4、複数の真
空室9及び大気圧の室26から成る真空シール装置5に
入り、ター/ダウ7 a −ル6を経て、真空蒸着室7
で溶融金rA(図示し々い)が帯鋼にメッキされ、再び
真空シール装置5を経て出側窒素置換室8を通シ大気圧
の蒸着装置系の系外に導き出される。The nitrogen substitution chamber 3 is filled with hydrogen gas (H≦20%, preferably Hl-
(L 2 to 2.0%) controlled by a weakly reducing atmospheric gas. Next, it enters a vacuum sealing device 5 consisting of a plurality of seal rolls 4, a plurality of vacuum chambers 9 and an atmospheric pressure chamber 26, passes through a tar/dow 7a-roll 6, and then enters a vacuum deposition chamber 7.
The molten gold rA (not shown) is plated on the steel strip, and is led out of the vapor deposition system at atmospheric pressure through the vacuum sealing device 5 and the outlet nitrogen purge chamber 8.
真空シール装置の各真空室に接伏された複数の真空ポン
プ10から成る真空排気系11で排気された窒素ガスは
、窒素fiflJ系12に送られ、排気ガス中に含まれ
る水分、酸素へガス、油分が除去され、また該精製ガス
を弱還元性雰囲気ガスとするため、系内に水素ガスをB
*5 z 0%、好ましくはHt−12〜20%の濃度
となるよう混入させて、真空シール装置の大気圧の室2
6に再び送る循環回路を作って真空を作っている・@2
図において、焼鈍炉2の圧力を圧力計13で検出し、そ
の時の圧力を烏とし、窒素e真室5の圧力を圧力計14
で検出し、その時の圧力を21とする。初期に真空シー
ル装gL5及び真空蒸着室(図示しない)に充滴してい
た窒素ガスは真空ポンプ10からなる真空排気系11で
排気され、窒素精製系12でBIAされ、配管27を通
って真空シール装置5の大気圧の室26に再び帰シ、再
度真空排気される。この時、窒素置換室3の圧力P、と
焼鈍デの圧力P1の差圧(P。Nitrogen gas exhausted by a vacuum exhaust system 11 consisting of a plurality of vacuum pumps 10 connected to each vacuum chamber of the vacuum sealing device is sent to a nitrogen fiflJ system 12, where the gas is converted to moisture and oxygen contained in the exhaust gas. , to remove oil and to make the purified gas a weakly reducing atmosphere gas, hydrogen gas is introduced into the system.
*5 Mix it to a concentration of z 0%, preferably Ht-12 to 20%, and place it in the atmospheric pressure chamber 2 of the vacuum sealing device.
Creating a vacuum by creating a circulation circuit that sends it back to 6・@2
In the figure, the pressure in the annealing furnace 2 is detected by the pressure gauge 13, the pressure at that time is defined as 0, and the pressure in the nitrogen e-true chamber 5 is detected by the pressure gauge 14.
The pressure at that time is 21. Nitrogen gas that initially filled the vacuum sealing device gL5 and the vacuum deposition chamber (not shown) is evacuated by the vacuum evacuation system 11 consisting of the vacuum pump 10, subjected to BIA in the nitrogen purification system 12, and passed through the piping 27 to the vacuum. It is returned to the atmospheric pressure chamber 26 of the sealing device 5 and evacuated again. At this time, the pressure difference (P) between the pressure P in the nitrogen substitution chamber 3 and the pressure P1 in the annealing chamber.
−P1≦OgAq)の条件で、放出弁32よシ余分の窒
素ガスを大気中に放出することで圧力が制御され、真空
シール装置内の真空が維持される。-P1≦OgAq), the pressure is controlled by releasing excess nitrogen gas from the release valve 32 into the atmosphere, and the vacuum inside the vacuum sealing device is maintained.
焼鈍炉2@シールロール4の近辺に焼鈍炉雰囲気ガス(
鳥目5〜75%、N1■95〜25%)の供給ライン(
図示しない)が設けてあり、焼鈍炉2の圧力が乃≧大気
圧、好ましくは乃−大気圧+5fiムqになるよう(炉
圧制御がなされている。Annealing furnace atmosphere gas (
(Bird's eye 5-75%, N1's 95-25%) supply line (
(not shown), and the furnace pressure is controlled so that the pressure in the annealing furnace 2 is ≧atmospheric pressure, preferably -atmospheric pressure + 5fimq.
窒素置換室3の圧力は烏≧大気圧、好ましくはP8=l
I大気圧+4〜511+11AqKなるように圧力計1
4の1号が制御弁16を介して窒素ガス17が窒素置換
室3に送られ制御されている。The pressure in the nitrogen substitution chamber 3 is P8≧atmospheric pressure, preferably P8=l
I Pressure gauge 1 so that atmospheric pressure +4~511+11AqK
Nitrogen gas 17 is sent to the nitrogen substitution chamber 3 via the control valve 16 and is controlled.
一方、焼鈍炉2から洩れ込んだ水素ガスが4=2.0%
を超えると爆発の危険があるので、水素濃度検出器19
が作動し、自動弁18が働き、窒素ガス17が窒素置換
室3に投入され希釈される。この場合、水素濃度がH!
−1,0%以下となると自動弁18は閉となシ、さらに
三カP、と圧カミの差圧P、 + PI≦OgAqにな
る場合に放出弁32から余分の窒素置換室3の雰囲気ガ
スは大気に放出される。On the other hand, hydrogen gas leaking from the annealing furnace 2 is 4=2.0%
There is a danger of explosion if the hydrogen concentration detector 19 is exceeded.
is activated, the automatic valve 18 is activated, and the nitrogen gas 17 is introduced into the nitrogen substitution chamber 3 and diluted. In this case, the hydrogen concentration is H!
-1.0% or less, the automatic valve 18 will not close, and if the differential pressure P, + PI≦OgAq, the excess atmosphere in the nitrogen replacement chamber 3 will be released from the release valve 32. The gas is released into the atmosphere.
また、出口側に設けである出側窒素置換室8の圧力Pm
l1圧力計22で検出され、)≧大気圧、好ましくはP
、−大気圧+5HAqになるように自動弁25から窒素
ガス17を供給する形で制御されている。In addition, the pressure Pm of the outlet nitrogen substitution chamber 8 provided on the outlet side
11 pressure gauge 22, )≧atmospheric pressure, preferably P
, - Atmospheric pressure +5 HAq is controlled by supplying nitrogen gas 17 from an automatic valve 25.
また、窒素置換室3の圧力PRと窒素置換室8の圧力P
sの圧力がP、<大気圧、例えばP、≦大気圧−5mA
q、 P3(大気圧、例えば烏≦大気圧−5圏AqiC
万−真空シール装置偶の不具合でなった場合、自動弁2
0が開き、エマ−ジエンシイ窒素タンク21から窒素ガ
スを真空シール装置に供給し、大気圧の室26の圧力を
大気圧に復帰させ、循環系に濃度の高い水素ガスが炉2
から流入するのを防止すると同時に、出側窒素;R換室
8の中に酸素ガスが大気から流入し、さらに循環系に酸
素ガスが流入することを防止し、i置全体の爆発を未然
に防ぎ、安全が確保されている。In addition, the pressure PR in the nitrogen substitution chamber 3 and the pressure P in the nitrogen substitution chamber 8
If the pressure of s is P, < atmospheric pressure, e.g. P, ≦ atmospheric pressure - 5 mA
q, P3 (atmospheric pressure, e.g. Karasu≦atmospheric pressure - 5 area AqiC
- If the vacuum seal device malfunctions, the automatic valve 2
0 opens, nitrogen gas is supplied from the emergency nitrogen tank 21 to the vacuum sealing device, the pressure in the atmospheric pressure chamber 26 is returned to atmospheric pressure, and highly concentrated hydrogen gas enters the circulation system into the furnace 2.
At the same time, it prevents oxygen gas from flowing into the outlet nitrogen/R exchange chamber 8 from the atmosphere, and further prevents oxygen gas from flowing into the circulation system, thereby preventing an explosion of the entire station. prevention and safety is ensured.
窒素置換室3及び8が安全上離係されてかつ目的の圧力
にそれぞれ制御できるのは、ガスタイトのシールロール
4が設けられて始めて成り立つものである。The nitrogen substitution chambers 3 and 8 can be separated from each other for safety and each can be controlled to a desired pressure only when a gas-tight seal roll 4 is provided.
以上本発明の詳細な説明したが、さらに本発明の具体例
をあげて、本発明をよシ詳細に説明する。Although the present invention has been described in detail above, the present invention will be explained in more detail by giving specific examples of the present invention.
次の条件下での真空蒸着メッキ法で、亜鉛を帯鋼上にメ
ッキした。Zinc was plated onto the steel strip using a vacuum evaporation plating method under the following conditions.
″ff鋼:板厚寥16問
板@富3001
通板速度: 20 g/mi!!
焼鈍炉:炉圧;大気圧+5 wa Aq雰囲気ガス;馬
嵩75%、N、!25%N、置換室:圧力;大気圧+4
g Aq島置換室での帯鋼温度:約350〜400℃
真空蓋着室での¥r@温度:255℃
をお、この時の循環精製ガスのガス性状は偽濃度 :3
ppm
水分量 二 N点−62℃
水素! : α7%
油努量 :Oppm
の条件で行い、真空シール装置内での帯鋼の活性化を維
持した状態で真着メッキを施した。"ff Steel: Thickness 16 question board @ Tomi 3001 Threading speed: 20 g/mi!! Annealing furnace: Furnace pressure; Atmospheric pressure + 5 wa Aq Atmosphere gas: Horse bulk 75%, N, ! 25% N, substitution Chamber: Pressure; Atmospheric pressure +4
g Steel strip temperature in the Aq island replacement chamber: approximately 350 to 400°C
The temperature in the vacuum lidding chamber is 255℃, and the gas properties of the circulating purified gas at this time are false concentration: 3
ppm Water content 2 N point -62℃ Hydrogen! : α7% Oil weight: Oppm The plating was carried out under the conditions of: α7% Oil weight: Oppm, and the plating was applied while the activation of the steel strip was maintained in the vacuum sealing device.
上記の条件下で亜鉛メッキした結果、密着性の良い亜鉛
の真空蒸着メッキが得られた。その結果を第゛3図、第
4図及び第5図に示す。As a result of zinc plating under the above conditions, vacuum evaporated zinc plating with good adhesion was obtained. The results are shown in FIGS. 3, 4, and 5.
すなわち、第5図は255℃の真空蒸着前の帯鋼温度の
時の亜鉛の真空蒸着メッキ皮膜の塩水噴霧による耐食性
試験結果を示し、第4図は第S図で示した255℃′帯
鋼温度の真空蒸着メッキ法で得られた亜鉛メッキ成品と
他のメッキ法で得られた亜鉛メッキ成品の塩水噴霧によ
る耐食性試験結果の比較を示すもので、蒸着メッキ法で
得られた成品の耐食性が良好なことを示している。なお
、第4図中、zvn(図中、○印)は本発明による真空
蒸着メッキ(第3図のΔと同一成品)、l’G(図中、
×印)は電気メッキ、II)G (図中、Δ印)は溶融
メッキ、HD()ム (図中、◇印)は溶融メッキの合
金化処理による各成品を示している。That is, Fig. 5 shows the corrosion resistance test results of the vacuum evaporated zinc plating film by salt spray at the temperature of the strip steel before vacuum evaporation of 255°C, and Fig. 4 shows the results of the corrosion resistance test of the 255°C' strip steel shown in Fig. S. This shows a comparison of the salt spray corrosion resistance test results of galvanized products obtained by high-temperature vacuum evaporation plating method and galvanized products obtained by other plating methods. It shows that it is good. In addition, in FIG. 4, zvn (marked with ○ in the figure) is vacuum evaporation plating according to the present invention (same product as Δ in FIG. 3), l'G (marked with ○ in the figure),
×) indicates electroplating, II)G (in the figure, Δ) indicates hot-dip plating, and HD()mu (in the figure, ◇) indicates each product by alloying treatment of hot-dip plating.
第5図は第5図で示した255℃帯鋼温度の真空蒸着メ
ッキ法で得られた亜鉛メッキ成品と他のメッキ法で得ら
れた亜鉛メッキ成品の表面の顕微鏡写真と、180’o
t曲げ加工試験の顕微鏡写真であシ曲げ部クラック等が
全く見られない皮膜の密着強度を示している。第5図(
4)は本発明による真空蒸着メッキ(帯鋼温度255℃
LD ZVD )成品(メッキ量542/yes”)、
第5図(5)はKG成品(メッキ量18 f7.2 )
、第5図fclはHDG成品(メッキ[65f/mW
)、第5図qはHDGA 成品(メッキ1a4P/m
”)で、各図の[alが表面の亜鉛メッキの結晶構造の
状況を、Cb)が01曲げ加工試験の第6図中矢印で示
す部分の状況をそれぞれ示している。Figure 5 shows microphotographs of the surface of the galvanized product obtained by the vacuum evaporation plating method at a strip steel temperature of 255°C and the galvanized product obtained by other plating methods, as shown in Fig. 5, and 180'o
The micrograph of the T-bending test shows the adhesion strength of the film, with no cracks observed at the bending part. Figure 5 (
4) Vacuum evaporation plating according to the present invention (strip temperature 255°C
LD ZVD) finished product (plating amount 542/yes”),
Figure 5 (5) is a KG product (plating amount 18 f7.2)
, Fig. 5 fcl is HDG product (plated [65f/mW
), Figure 5 q shows HDGA product (plated 1a4P/m
'') in each figure, [al] indicates the state of the crystal structure of the zinc plating on the surface, and Cb) indicates the state of the part indicated by the arrow in Fig. 6 of the 01 bending test.
本\発明は、以上詳記したように、真空蒸着メッキを施
す装置において、帯鋼を焼鈍還元する焼鈍炉と真空を作
る真空シール装置の間に窒素R換呈を設け、さらに、窒
素置換室の入口と出口にシールロールを設けることKよ
シ、焼鈍デと真空シール装置から独立した室を作シ、そ
の圧力を焼鈍炉と等圧か、若干低めの圧力に制御された
窒素置換室を設けることによシ焼鈍炉と真空シール装置
を接続することができ、真空蒸着メッキが可能とな−る
効果が生ずるものである。As described in detail above, the present invention provides an apparatus for performing vacuum evaporation plating, in which a nitrogen exchanger is provided between an annealing furnace for annealing and reducing a strip steel and a vacuum sealing device for creating a vacuum, and a nitrogen substitution chamber is further provided. Seal rolls should be provided at the inlet and outlet of the annealing furnace, and a chamber separate from the annealing furnace and vacuum sealing device should be created, and a nitrogen substitution chamber whose pressure should be controlled to be equal to or slightly lower than that of the annealing furnace. By providing this, it is possible to connect the annealing furnace and the vacuum sealing device, and the effect that vacuum evaporation plating becomes possible is produced.
また、本発明では窒素置換室の圧力を焼鈍炉の圧力よシ
若干低めに(例えば差圧を1+mAq程度)することで
、焼鈍デの雰囲気ガス(為−5〜75%、馬−95〜2
5%)を窒素置換室へ洩れ込ませ、窒素置換室の雰囲気
ガス中の水素濃度を12〜zO%の弱環元性雰囲気にす
ることができ、焼鈍デで活性化された帯鋼の表■性状を
推持したt′!、蒸着室で真蒸着メッキができ、メッキ
金隅の皮膜強度の良好なメッキ成品を得ることができる
効果が生ずるものである。In addition, in the present invention, by making the pressure in the nitrogen substitution chamber slightly lower than the pressure in the annealing furnace (for example, the differential pressure is about 1 + mAq), the atmospheric gas in the annealing furnace (-5 to 75%, horse-95 to 2
5%) into the nitrogen purge chamber, the hydrogen concentration in the atmospheric gas in the nitrogen purge chamber can be made into a weakly cyclic atmosphere of 12 to zO%, and the surface of the strip steel activated by the annealing process can be ■T' that maintains its properties! This has the effect that true vapor deposition plating can be performed in a vapor deposition chamber, and a plated product with good film strength at the corners of the plated gold can be obtained.
第1図は本発明の真空蒸着メッキ装置を説明するための
一例を示す図でちシ、第2図は本発明の上記装置をよシ
詳細に説明するための図である。第3図は帯鋼温度を変
えた真空蒸着亜鉛メッキ成品の塩水噴霧による耐食試験
結果を示し、第4図は各種メッキ法による亜鉛メッキ成
品の塩水wXiによる耐食性試験結果を示し、第5図は
各種メッキ法による亜鉛メッキ成品の表面結晶構造と0
1曲げ試験結果の表面結晶構造を示し、第6図は第5図
のot曲げ試験要領を示す図である。
1−帯鋼 15,14.22−圧力計2−焼鈍
炉 16−制御弁
5−窒素置換室 17−窒素ガス4−シールロー
ル 18*20,25−自動弁5−真空シール
装置 19−水素濃度検出器6−ターンダウンロー
ル 21−窒素タンク7−真空蒸着室 26
−大気圧の室8−出側窒素宣 27−配管
101−真空ポンプ 32−放出弁11−真空排
気系
12−窒素rlI整系
復代理人 内 1) 明
復代理人 萩 原 亮 −
第1図
腐蝕;蔵置 (g、/ITL2)
腐fi)減量(9/−ジ
p針 6 III CA)(o−ン、15m(A
)(釣
才5図B) C幻
オ6図(B)CbJ
才 9 図(C) (b)
牙5図(D)(久)
へJ〜1FIG. 1 is a diagram illustrating an example of a vacuum evaporation plating apparatus of the present invention, and FIG. 2 is a diagram illustrating the apparatus of the present invention in more detail. Figure 3 shows the results of corrosion resistance tests using salt water spray on vacuum-deposited galvanized products at different strip steel temperatures, Figure 4 shows the results of corrosion resistance tests using salt water wXi on galvanized products obtained by various plating methods, and Figure 5 Surface crystal structure of galvanized products by various plating methods and 0
1 shows the surface crystal structure of the bending test results, and FIG. 6 is a diagram showing the OT bending test procedure of FIG. 5. 1-Strip steel 15,14.22-Pressure gauge 2-Annealing furnace 16-Control valve 5-Nitrogen substitution chamber 17-Nitrogen gas 4-Seal roll 18*20,25-Automatic valve 5-Vacuum sealing device 19-Hydrogen concentration Detector 6 - Turndown roll 21 - Nitrogen tank 7 - Vacuum deposition chamber 26
-Atmospheric pressure chamber 8-Nitrogen outlet 27-Piping 101-Vacuum pump 32-Discharge valve 11-Evacuation system 12-Nitrogen rlI system distribution agent 1) Clearance agent Ryo Hagihara - Figure 1 Corrosion; Storage (g, /ITL2) Corrosion fi) Weight loss (9/-zip needle 6 III CA) (o-on, 15m (A
) (Tsurai 5 diagram B) C illusion O 6 diagram (B) CbJ Sai 9 diagram (C) (b) Fang 5 diagram (D) (ku) to J~1
Claims (2)
焼鈍炉との間に入口側不活性ガス置換室を、真空蒸着メ
ッキ室の後の出口側真空シール装置と大気との間に出口
側不活性ガス置換室をそれぞれ設けるとともに、前記両
真空シール装置と該両真空シール装置の大気圧の室との
間に、両真空シール装置から該大気圧の室へ不活性ガス
を循環させ、かつ該不活性ガス中の水、油及び酸素を除
去する不活性ガス循環精製装置を設けた真空蒸着メッキ
装置において、焼鈍炉内の圧力P_1を大気圧以上、入
口側不活性ガス置換室内の圧力P_2を大気圧以上、出
口側不活性ガス置換室内の圧力P_3を大気圧以上、P
_1−P_2≧0mmAq、入口側不活性ガス置換室内
の水素濃度を2.0%以下に制御することを特徴とする
真空蒸着メッキ方法。(1) An inert gas replacement chamber is provided between the inlet side vacuum sealing device in front of the vacuum evaporation plating chamber and the annealing furnace, and an outlet is provided between the outlet side vacuum sealing device after the vacuum evaporation plating chamber and the atmosphere. providing side inert gas replacement chambers, and circulating inert gas from both vacuum sealing devices to the atmospheric pressure chambers between the two vacuum sealing devices and the atmospheric pressure chambers of the two vacuum sealing devices; In a vacuum evaporation plating apparatus equipped with an inert gas circulation purification device that removes water, oil, and oxygen from the inert gas, the pressure P_1 in the annealing furnace is set to above atmospheric pressure and the pressure in the inert gas exchange chamber on the inlet side. P_2 is above atmospheric pressure, pressure P_3 inside the inert gas exchange chamber on the outlet side is above atmospheric pressure, P
_1-P_2≧0mmAq, a vacuum evaporation plating method characterized by controlling the hydrogen concentration in the inert gas replacement chamber on the inlet side to 2.0% or less.
焼鈍炉との間に入口側不活性ガス置換室を、真空蒸着メ
ッキ室の後の出口側真空シール装置と大気との間に出口
側不活性ガス置換室をそれぞれ設けるとともに、前記両
真空シール装置と該両真空シール装置の大気圧の室との
間に、両真空シール装置から該大気圧の室へ不活性ガス
を循環させ、かつ該不活性ガス中の水、油及び酸素を除
去する不活性ガス循環精製装置を設けた真空蒸着メッキ
装置において、前記焼鈍炉に圧力計を、入口側不活性ガ
ス置換室に圧力計、制御弁、自動弁、水素濃度検知器及
び放出弁を、出口側不活性ガス置換室に圧力計及び自動
弁を、両真空シール装置の大気圧の室に非常用の不活性
ガスタンクへ連通した自動弁を各々設けたことを特徴と
する真空蒸着メッキ装置。(2) An inert gas replacement chamber is provided between the inlet side vacuum sealing device in front of the vacuum evaporation plating chamber and the annealing furnace, and an outlet is provided between the outlet side vacuum sealing device after the vacuum evaporation plating chamber and the atmosphere. providing side inert gas replacement chambers, and circulating inert gas from both vacuum sealing devices to the atmospheric pressure chambers between the two vacuum sealing devices and the atmospheric pressure chambers of the two vacuum sealing devices; and a vacuum evaporation plating apparatus equipped with an inert gas circulation purification device for removing water, oil, and oxygen from the inert gas, a pressure gauge in the annealing furnace, a pressure gauge in the inert gas exchange chamber on the inlet side, and a control device. A valve, an automatic valve, a hydrogen concentration detector and a release valve, a pressure gauge and an automatic valve in the inert gas replacement chamber on the outlet side, and an automatic valve that communicates with the atmospheric pressure chamber of both vacuum sealing devices and an emergency inert gas tank. A vacuum evaporation plating apparatus characterized in that each of the following is provided.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192574A JPS6173880A (en) | 1984-09-17 | 1984-09-17 | Method and device for plating by vacuum deposition |
US06/774,818 US4676999A (en) | 1984-09-17 | 1985-09-11 | Method for vacuum deposition plating steel strip |
AU47373/85A AU585531B2 (en) | 1984-09-17 | 1985-09-11 | Method and apparatus for vacuum deposition plating |
DE8585730123T DE3577997D1 (en) | 1984-09-17 | 1985-09-16 | METHOD AND DEVICE FOR COVERING THROUGH VACUUM COATING. |
KR1019850006764A KR890004618B1 (en) | 1984-09-17 | 1985-09-16 | Method for vacuum deposition plating steel strip and apparatus therefor |
EP85730123A EP0175640B1 (en) | 1984-09-17 | 1985-09-16 | Method and apparatus for vacuum deposition plating |
CA000490764A CA1239060A (en) | 1984-09-17 | 1985-09-16 | Method and apparatus for vacuum deposition plating |
US06/855,793 US4674443A (en) | 1984-09-17 | 1986-04-24 | Method and apparatus for vacuum deposition plating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59192574A JPS6173880A (en) | 1984-09-17 | 1984-09-17 | Method and device for plating by vacuum deposition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6173880A true JPS6173880A (en) | 1986-04-16 |
JPH032232B2 JPH032232B2 (en) | 1991-01-14 |
Family
ID=16293544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59192574A Granted JPS6173880A (en) | 1984-09-17 | 1984-09-17 | Method and device for plating by vacuum deposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6173880A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63238275A (en) * | 1987-03-27 | 1988-10-04 | Nisshin Steel Co Ltd | Method for preventing negative pressure in continuous vapor deposition plate device |
US20150013846A1 (en) * | 2012-03-08 | 2015-01-15 | Baoshan Iron & Steel Co., Ltd. | Method for Producing Silicon Steel Normalizing Substrate |
-
1984
- 1984-09-17 JP JP59192574A patent/JPS6173880A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63238275A (en) * | 1987-03-27 | 1988-10-04 | Nisshin Steel Co Ltd | Method for preventing negative pressure in continuous vapor deposition plate device |
US20150013846A1 (en) * | 2012-03-08 | 2015-01-15 | Baoshan Iron & Steel Co., Ltd. | Method for Producing Silicon Steel Normalizing Substrate |
US9738946B2 (en) * | 2012-03-08 | 2017-08-22 | Baoshan Iron & Steel, Co., Ltd. | Method for producing silicon steel normalizing substrate |
Also Published As
Publication number | Publication date |
---|---|
JPH032232B2 (en) | 1991-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11193181B2 (en) | Method and apparatus for continuous thermal treatment of a steel strip | |
US4676999A (en) | Method for vacuum deposition plating steel strip | |
KR101011897B1 (en) | Method of continous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping | |
WO2008084875A1 (en) | Process for producing high-strength cold rolled steel sheet excelling in chemical treatability and relevant production equipment | |
WO2004009863A1 (en) | Zinc-base hot dip galvanized steel sheet excellent in retention of gloss | |
CN113106220B (en) | Passivation method of corrosion-resistant steel for high-purity pipe | |
KR102631030B1 (en) | Method of producing metal-coated steel strip | |
JPS6173880A (en) | Method and device for plating by vacuum deposition | |
US4052235A (en) | Method of preventing oxidation during water quenching of steel strip | |
JPS6311623A (en) | Production of steel sheet having excellent chemical convertibility and continuous annealing equipment thereof | |
JPS6328857A (en) | Alloyed zinc plated steel sheet and its production | |
JP2002275546A (en) | Facility used for both continuous annealing and hot dipping | |
JPS5832219B2 (en) | Cooling method of steel strip in continuous annealing line | |
JP2505518B2 (en) | Continuous vacuum vapor deposition plating method for strip steel | |
JPS5819728B2 (en) | Kouhan no Koukireikiyakuhouhou | |
CA2107560C (en) | Al-si-cr-plated steel sheet excellent in corrosion resistance and production thereof | |
JP2820359B2 (en) | Atmosphere adjustment method for continuous annealing furnace | |
JP3233043B2 (en) | Manufacturing method of hot-dip galvanized steel sheet | |
US20220213574A1 (en) | Processing line for the continuous processing of metal strips having a dual purpose of producing strips that are annealed and dip-coated or not coated, and corresponding cooling tower and method for switching from one configuration to the other | |
JP2922333B2 (en) | Hot-dip plating pretreatment method for steel sheet | |
JPH04210430A (en) | Continuous annealing apparatus for berylium copper alloy | |
JPS6173879A (en) | Plating method by vacuum deposition | |
JP2954340B2 (en) | Continuous carburizing / nitriding furnace and carburizing / nitriding method | |
JPH09256157A (en) | Production of vapor deposition zinc-magnesium plated steel sheet | |
JPS5913058A (en) | Manufacture of galvanized steel plate |