JPS6173879A - Plating method by vacuum deposition - Google Patents

Plating method by vacuum deposition

Info

Publication number
JPS6173879A
JPS6173879A JP59192573A JP19257384A JPS6173879A JP S6173879 A JPS6173879 A JP S6173879A JP 59192573 A JP59192573 A JP 59192573A JP 19257384 A JP19257384 A JP 19257384A JP S6173879 A JPS6173879 A JP S6173879A
Authority
JP
Japan
Prior art keywords
vacuum
gas
chamber
inert gas
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59192573A
Other languages
Japanese (ja)
Other versions
JPH0225989B2 (en
Inventor
Heizaburo Furukawa
古川 平三郎
Kanji Wake
和気 完治
Yoshio Shimozato
下里 省夫
Kenichi Yanagi
謙一 柳
Mitsuo Kato
光雄 加藤
Tetsuyoshi Wada
哲義 和田
Norio Tsukiji
築地 憲夫
Takuya Aiko
愛甲 琢哉
Toshiharu Kikko
橘高 敏晴
Koji Nakanishi
康二 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59192573A priority Critical patent/JPS6173879A/en
Priority to US06/774,818 priority patent/US4676999A/en
Priority to AU47373/85A priority patent/AU585531B2/en
Priority to EP85730123A priority patent/EP0175640B1/en
Priority to DE8585730123T priority patent/DE3577997D1/en
Priority to KR1019850006764A priority patent/KR890004618B1/en
Priority to CA000490764A priority patent/CA1239060A/en
Publication of JPS6173879A publication Critical patent/JPS6173879A/en
Priority to US06/855,793 priority patent/US4674443A/en
Publication of JPH0225989B2 publication Critical patent/JPH0225989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/565Sealing arrangements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce considerably the cost of plating by refining an inert gas and reutilizing the same without discarding the inert gas to the outside of a system. CONSTITUTION:A steel strip 1 is annealed and reduced by gaseous H2 in an annealing furnace 2 and enters an inlet side nitrogen replacing chamber 3 where the strip passes through a vacuum sealing device 5 constituted of sealing rolls 4 and is subjected to the pressure reduction during this time. The strip passes through turn-down rolls 6 and is plated in a vacuum deposition chamber 7. The strip passes again through the device 5 and is led out into the atm. air through an outlet side nitrogen replacing chamber 8. The device 5 has plural vacuum chambers 9 from which the gas is evacuated through discharge lines 11 consisting of vacuum pumps 10. The discharged gaseous N2 is fed to a nitrogen refining line 12. The gas is thereupon refined to <=60ppm oxygen concn., 0.2-2% hydrogen concn. and <=-50 deg.C dew point. The refined gaseous N2 is fed to the chamber 26 under the atm. pressure of the device 5. The gaseous N2 is thus cyclically used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は帯鋼の真空蒸着メッキ方法に関し、特に焼鈍炉
を経て送られて来る帯鋼の真空蒸着メッキ方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for vacuum evaporation plating of steel strips, and more particularly to an improvement in the method for vacuum evaporation plating of steel strips sent through an annealing furnace.

(従来の技術) 従来、真空蒸着メッキにおいて帯鋼を焼鈍炉で水素ガス
(T3m3mガス5ルフ)を用いた還元性雰囲気中で焼
鈍すると同時にメッキできる活性な帯鋼面を得る処理が
なされたあと、真空排気し、蒸着メッキ室を真空にする
ことで溶融金属を蒸発させてメッキさせていた。この場
合、為ガスを真空排気すると万一真空が破れて酸素ガス
(ヘガス)が排気系の中に侵入し、爆発する危険があっ
た。そこで焼鈍炉と真空室の間に窒素置換室を設け、窒
素ガス(島ガス)を入れ為ガスをN、ガスに置換え、馬
ガスを真空排気することで爆発の危険を避けるようにし
ていた。
(Prior art) Conventionally, in vacuum evaporation plating, a steel strip is annealed in an annealing furnace in a reducing atmosphere using hydrogen gas (T3m3m gas 5 refs) to obtain an active steel strip surface that can be plated at the same time. The molten metal was evaporated and plated by evacuating the chamber and creating a vacuum in the evaporation plating chamber. In this case, when the gas was evacuated, there was a risk that the vacuum would break and oxygen gas (haegas) would enter the exhaust system, causing an explosion. Therefore, a nitrogen substitution chamber was installed between the annealing furnace and the vacuum chamber, and nitrogen gas (island gas) was introduced to replace the gas with N gas, and the horse gas was evacuated to avoid the risk of explosion.

しかしながら従来法では、為ガスを排気し系外に棄てて
いたため、原単位がちがシコスト的に不利であった。
However, in the conventional method, the gas was exhausted and disposed of outside the system, which resulted in a disadvantage in terms of cost due to the difference in unit consumption.

(発明が解決しようとする問題点) 本発明は従来技術の有する欠点を解消し、馬のような不
活性ガスを系外に廃棄することなく、精製し再利用しう
る真空蒸着メッキ方法を提供せんとするものである。
(Problems to be Solved by the Invention) The present invention solves the drawbacks of the prior art and provides a vacuum evaporation plating method that can purify and reuse inert gas without disposing of it outside the system. This is what I am trying to do.

(問題点を解決するだめの手段) 本発明は、真空蒸着メッキ室の前の入口側真空シール装
置と焼鈍炉との間に入口側不活性ガス置換室を、真空蒸
着メッキ室の後の出口側真空シール装置と大気との間に
出口側不活性ガス置換室を設けるとともに、前記両真空
シール装置と該両真空シール装置の大気圧の室との間に
1両真空シール装置から大気圧の室へ不活性ガスを循環
させ、かつ該不活性ガス中の水、油及び酸素を除去する
不活性ガス循環精製装置を設けた真空蒸着メッキ装置の
不活性ガス循環精製装置にお込て、精製後の不活性ガス
中の酸素濃度f 60 ppm以下、水素濃度をcL2
〜2.0%、露点を一50℃以下に制御することを特徴
とする真空蒸着メッキ方法である。
(Means for Solving the Problems) The present invention provides an inert gas exchange chamber between an inlet side vacuum sealing device in front of a vacuum evaporation plating chamber and an annealing furnace, and an inert gas exchange chamber at an inlet side after the vacuum evaporation plating chamber. An outlet side inert gas exchange chamber is provided between the side vacuum sealing device and the atmosphere, and an atmospheric pressure exchange chamber is provided from the two vacuum sealing devices between the two vacuum sealing devices and the atmospheric pressure chambers of the two vacuum sealing devices. Purification is carried out in an inert gas circulation purification device of a vacuum evaporation plating equipment equipped with an inert gas circulation purification device that circulates inert gas into the chamber and removes water, oil, and oxygen from the inert gas. Oxygen concentration f in the inert gas after 60 ppm or less, hydrogen concentration cL2
~2.0%, and is a vacuum evaporation plating method characterized by controlling the dew point to -50°C or less.

以下、本発明の一実施態様を示す第1図に従つて本発明
を詳述する。
Hereinafter, the present invention will be explained in detail with reference to FIG. 1 showing one embodiment of the present invention.

第1図において、帯鋼1が焼鈍炉2で焼鈍及び水素ガス
(%+5〜75%)により還元されて活性な面を保持し
たまま入口側の窒素置換室3に入り、シールロール4で
構成された真空シール装置5を経ながら漸時減圧されて
高真空の雰囲気中を通過し、ターンダウンロール6を通
り、真空蒸着室7中で溶融金属(図示しない)が蒸発し
帯鋼にめっきされる。その後、再び真空シール装置5を
通過し出口側の窒素置換室8を経て大気中に導き出され
る。
In FIG. 1, a steel strip 1 is annealed in an annealing furnace 2 and reduced by hydrogen gas (% + 5 to 75%), enters a nitrogen purge chamber 3 on the inlet side while retaining its active surface, and is made up of a seal roll 4. The molten metal (not shown) is evaporated in a vacuum deposition chamber 7 and plated onto a steel strip. Ru. Thereafter, it passes through the vacuum sealing device 5 again and is led out into the atmosphere via the nitrogen substitution chamber 8 on the exit side.

複数のシールロールから成る真空シール装置5は複数の
真空室9をもっており、それぞれ複数の真空ポンプ10
から成る真空排気系11で排気されている。
A vacuum sealing device 5 consisting of a plurality of seal rolls has a plurality of vacuum chambers 9, each of which has a plurality of vacuum pumps 10.
It is evacuated by a vacuum evacuation system 11 consisting of.

窒素置換室3、真空シール装置5、真空蒸着室7及び出
口側窒素置換室8は窒素ガスで充満されている。
The nitrogen substitution chamber 3, the vacuum sealing device 5, the vacuum deposition chamber 7, and the outlet side nitrogen substitution chamber 8 are filled with nitrogen gas.

真空排気された窒素ガスは真空排気系11から窒素精製
系12に送られる。窒素精製系に入つた窒素ガスはバク
ファタンク13、ルーツブロア14を経て熱交換器15
に送られ冷却され、冷凍機16で作られた冷媒を用いた
冷却器17で更に冷却され、窒素ガス中の水分を除去し
たあと油分除去器18で油分が除去され、再び熱交換器
15を経て加熱され、脱酸塔19に送られる。
The evacuated nitrogen gas is sent from the vacuum evacuation system 11 to the nitrogen purification system 12. Nitrogen gas that has entered the nitrogen purification system passes through the vacuum tank 13 and Roots blower 14 before being transferred to the heat exchanger 15.
It is further cooled in a cooler 17 using the refrigerant produced by the refrigerator 16, and after water in the nitrogen gas is removed, oil is removed in an oil remover 18. It is then heated and sent to the deoxidizing tower 19.

窒素ガス中の酵素分除去するため水素ガス20が混合器
21に投入され、窒素ガス中に水素ガスが混合し、脱酸
塔19の中に入れである触媒の働きにより酸素が除去さ
れ、ドライヤ22に送られる。ドライヤで更に水分が除
去され、窒素ガス中の露点が下げられ精製された窒素ガ
スが得られる。
Hydrogen gas 20 is put into the mixer 21 to remove the enzyme component from the nitrogen gas, the hydrogen gas is mixed with the nitrogen gas, oxygen is removed by the action of the catalyst placed in the deoxidizer tower 19, and the dryer Sent to 22nd. Moisture is further removed by a dryer, the dew point of the nitrogen gas is lowered, and purified nitrogen gas is obtained.

ドライヤは2基設けることもあシ、1基は作動して露点
を下げ、残シ1基は休止しておシ、休止中にドライヤ内
の水分を除去する再生作業を行う。この再生作業は、脱
酸塔19の出口ガスの1部を再生用ガスとして用い、該
作業で得られる水分を含んだ窒素ガスは、冷却器25で
水分が除去され、ルーツブロア23で圧送され、加熱器
24で乾燥され、休止中のドライヤの水分が除去される
。これ等の再生用各機器の再生循環回路中を連続的に循
環させることにより休止中のドライヤは再生され、交互
に切替えることが可能となり、窒素精製系の連続運転が
なされる。また、冷却器25に溜った水分はドレン(チ
ンキ弁封)32から系外へ排出される。
Two dryers may be installed; one operates to lower the dew point, and the remaining dryer is inactive, and performs regeneration work to remove moisture inside the dryer during the downtime. In this regeneration operation, a part of the outlet gas of the deoxidizing tower 19 is used as a regeneration gas, and the moisture-containing nitrogen gas obtained in this operation has its moisture removed in a cooler 25, and is sent under pressure by a Roots blower 23. The dryer is dried by the heater 24, and moisture in the dryer is removed while the dryer is inactive. By continuously circulating the nitrogen in the regeneration circulation circuits of these regeneration devices, idle dryers are regenerated and can be alternately switched, allowing continuous operation of the nitrogen purification system. Further, the moisture accumulated in the cooler 25 is discharged from the system through a drain (tincture valve seal) 32.

窒素精製系で精製された窒素ガス27は真空シール装置
の大気圧の室26に送られ、再び真空シール装置5の各
段を経て真空排気系11で排気されるという閉サイクル
の循環がなされる。
The nitrogen gas 27 purified by the nitrogen purification system is sent to the atmospheric pressure chamber 26 of the vacuum sealing device, passes through each stage of the vacuum sealing device 5 again, and is exhausted by the vacuum exhaust system 11, forming a closed cycle. .

窒素精製系で精製された窒素ガス中の水分は水分計28
、酸素濃度は偽メータ29、温度は温度計30で管理さ
れておシ、偽が約111 ppm以下、露点が約−50
℃以下になるよう自動制御されている。
Moisture in the nitrogen gas purified by the nitrogen purification system is measured using a moisture meter 28.
, the oxygen concentration is controlled by a fake meter 29, and the temperature is controlled by a thermometer 30. The fake is about 111 ppm or less, and the dew point is about -50.
It is automatically controlled to keep the temperature below ℃.

精製された窒素ガスは真空シール装置の中を通る時、帯
鋼と接触する。
The purified nitrogen gas contacts the steel strip as it passes through the vacuum sealing device.

焼鈍炉中の水素ガス(4;5〜75%)で還元、活性化
されてメッキできるようになった表面性状を維持して真
空蒸着室に帯鋼を導くには、精製された窒素ガスの状態
では十分でなく、弱還元性にする必要がある。そのため
混合器21で投入される水素ガスを余分に投入し、水素
ガス濃度をα2〜2.0%の範囲に管理する必要があシ
、水素メータ31で水素量を制御している。
In order to introduce the steel strip into the vacuum deposition chamber while maintaining the surface quality that has been reduced and activated with hydrogen gas (4; 5 to 75%) in the annealing furnace and ready for plating, purified nitrogen gas must be used. This is not sufficient in this state, and it is necessary to make it weakly reducing. Therefore, it is necessary to inject extra hydrogen gas into the mixer 21 and manage the hydrogen gas concentration within the range of α2 to 2.0%, and the hydrogen meter 31 controls the amount of hydrogen.

(作用及び効果) (1)真空排気された窒素ガスをそのまま大気中に棄て
ず、窒素精製系に導き精製した窒素ガスを再び真空排気
装置の入口にもどす閉サイクルの循環回路を作るという
作用により、窒素ガスの消費量が殆んど0になることか
ら、真空蒸着メッキのメッキコストが大幅に低減できる
効果がある。
(Functions and effects) (1) By creating a closed cycle circulation circuit in which the evacuated nitrogen gas is not directly discarded into the atmosphere, but is guided to the nitrogen purification system and the purified nitrogen gas is returned to the inlet of the vacuum evacuation device. Since the amount of nitrogen gas consumed is almost zero, the plating cost of vacuum evaporation plating can be significantly reduced.

(2)精製窒素ガス中に余分の水素ガスを投入し水素ガ
ス量を[lL2〜2−0%に制御する作用によシ、真空
シール装置申分通過する帯鋼が窒素ガスと水素ガスの混
合ガスの持つ弱還元性雰囲気中を通過し、これによシ焼
鈍炉で還元、活性化された表面性状をその1ま維持する
ことができ、この結果、真空蒸着メッキが行われるので
、メッキされた金属と帯鋼のメッキ密着強度が確保され
るとbう効果がある。
(2) By adding extra hydrogen gas into the purified nitrogen gas and controlling the amount of hydrogen gas to [1L2~2-0%], the steel strip passing through the vacuum sealing device is able to absorb nitrogen gas and hydrogen gas. It passes through the weakly reducing atmosphere of the mixed gas, thereby maintaining the surface quality that was reduced and activated in the annealing furnace.As a result, vacuum evaporation plating is performed, so the plating It is effective to ensure the plating adhesion strength between the metal and the steel strip.

(具体例) 帯鋼の板厚  Q、8四 帯鋼の板@   saa■ 通板速度   2o鴨/mi n 真空シール装置の真空段数 200 )’  A=/70j−−1に/10 ト−L
/1 ト−L/at  ト−z/a、a 1 トール真
空排気量  78ONm”/h 窒素精製系入口ガス性状 へ量   270 ppm 油分量   1007hr 水分量  205ゆ/hr の条件で循環精製した結果、次の性状の出口ガスが得ら
れた。
(Specific example) Plate thickness of steel strip Q, Plate of 84 strip steel @ saa ■ Threading speed 2 o / min Number of vacuum stages of vacuum sealing device 200)' A = /70 j--1 /10 to-L
/1 To-L/at To-z/a, a 1 Toll vacuum displacement 78ONm"/h Nitrogen purification system inlet gas property amount 270 ppm Oil content 1007 hr Water content 205 Yu/hr As a result of circulating purification under the following conditions, An outlet gas with the following properties was obtained.

窒素精製系出口ガス性状 偽量   IIL 7 ppm〜60 ppm油分量 
  O(測定できないほど微量)水分量  露点−50
℃〜−70℃ 水素量  Q、2〜1.5% 以上の精製窒素ガスと水素ガスの混合した弱還元性雰囲
気中の真空シール装置中を帯鋼を通過させ、真空蒸着メ
ッキした。
Nitrogen purification system exit gas property false amount IIL 7 ppm ~ 60 ppm oil amount
O (too small to be measured) moisture content Dew point -50
°C to -70 °C Hydrogen content Q: 2 to 1.5% The steel strip was passed through a vacuum sealing device in a weakly reducing atmosphere containing a mixture of purified nitrogen gas and hydrogen gas, and vacuum evaporation plating was performed.

上記において、精製窒素ガス中の酸素濃度と帯鋼の温度
を変化させた時のメッキ金属(亜鉛)の密着強度の関係
を第2図に示す。なお、第2図は酸素濃度のみの影響を
検討するために、水素濃度は0として行った結果であり
、また露点は一50℃とした。図中、○印は180’o
t曲げ部にスコッチテープを貼った剥離試験の結果めっ
き面の剥離が全く生じない密着強度良好、X印は同試験
で剥離を示した密着不良である。
In the above, FIG. 2 shows the relationship between the adhesion strength of the plated metal (zinc) when the oxygen concentration in the purified nitrogen gas and the temperature of the steel strip are changed. In addition, in order to examine the influence of only oxygen concentration, FIG. 2 shows the results obtained by setting the hydrogen concentration to 0, and the dew point was set to -50°C. In the diagram, the ○ mark is 180'o
A peel test in which Scotch tape was pasted on the t-bent portion resulted in good adhesion strength with no peeling of the plated surface at all, and the mark X indicates poor adhesion that caused peeling in the same test.

第2図よシ、循環窒素ガス中に水素ガス・を混合せず、
酸素濃度を変化させて、各帯鋼温度毎の真空蒸着メッキ
された亜鉛の皮膜と帯鋼の密着強度は、帯鋼温度160
℃〜250’Cにおいて、偽濃度を約j Oppm以下
に管理すれば、良好であることが判る。
As shown in Figure 2, without mixing hydrogen gas into the circulating nitrogen gas,
By changing the oxygen concentration, the adhesion strength between the vacuum-deposited zinc film and the steel strip at each strip temperature was determined as follows:
It can be seen that good results are obtained if the false concentration is controlled to be about j Oppm or less at temperatures between 250'C and 250'C.

第3図に示す循環窒素ガス性状の条件下(なお露点は一
50℃)で水素量を0.7%混合させると偽濃度は60
 ppmでも亜鉛皮膜の密着強度は良好であった。すな
わち、偽濃度が多少多くても水素ガスを少量混合させた
弱還元性雰囲気を作れば、真空蒸着による亜鉛メッキは
十分な皮膜の密着強度を得ることを示す。図中のO1X
印は第2図と同義である。
When 0.7% hydrogen is mixed under the conditions of the circulating nitrogen gas properties shown in Figure 3 (the dew point is -50°C), the false concentration is 60%.
Even at ppm, the adhesion strength of the zinc film was good. In other words, even if the false concentration is somewhat high, if a weakly reducing atmosphere is created by mixing a small amount of hydrogen gas, zinc plating by vacuum evaporation can provide a sufficient adhesion strength of the film. O1X in the diagram
The marks have the same meaning as in Figure 2.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施態様例を示す図、第2.5
図は本発明の実施例で得られた結果を示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 手続補正書 昭和60年 6 月)7 a
Fig. 1 is a diagram showing an example of an embodiment of the method of the present invention, Fig. 2.5
The figure is a diagram showing the results obtained in Examples of the present invention. Sub-agents 1) Clearance agent Ryo Hagiwara - Procedural amendment June 1985) 7 a

Claims (1)

【特許請求の範囲】[Claims] 真空蒸着メッキ室の前の入口側真空シール装置と焼鈍炉
との間に入口側不活性ガス置換室を、真空蒸着メッキ室
の後の出口側真空シール装置と大気との間に出口側不活
性ガス置換室を設けるとともに、前記両真空シール装置
と該両真空シール装置の大気圧の室との間に、両真室シ
ール装置から大気圧の室へ不活性ガスを循環させかつ該
不活性ガス中の水、油及び酸素を除去する不活性ガス循
環精製装置を設けた真空蒸着メッキ装置の不活性ガス循
環精製装置において、精製後の不活性ガス中の酸素濃度
を60ppm以下、水素濃度を0.2〜2.0%、露点
を−50℃以下に制御することを特徴とする真空蒸着メ
ッキ方法。
An inert gas exchange chamber is provided between the inlet side vacuum sealing device in front of the vacuum evaporation plating chamber and the annealing furnace, and an inert gas exchange chamber is provided at the inlet side between the outlet side vacuum sealing device after the vacuum evaporation plating chamber and the atmosphere. A gas exchange chamber is provided, and an inert gas is circulated from both vacuum sealing devices to the atmospheric pressure chamber between the two vacuum sealing devices and the atmospheric pressure chamber of the two vacuum sealing devices, and the inert gas is In the inert gas circulation purification device of the vacuum evaporation plating equipment, which is equipped with an inert gas circulation purification device that removes water, oil, and oxygen in the inert gas, the oxygen concentration in the purified inert gas is 60 ppm or less, and the hydrogen concentration is 0. .2 to 2.0%, and a vacuum evaporation plating method characterized by controlling the dew point to -50°C or lower.
JP59192573A 1984-09-17 1984-09-17 Plating method by vacuum deposition Granted JPS6173879A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP59192573A JPS6173879A (en) 1984-09-17 1984-09-17 Plating method by vacuum deposition
US06/774,818 US4676999A (en) 1984-09-17 1985-09-11 Method for vacuum deposition plating steel strip
AU47373/85A AU585531B2 (en) 1984-09-17 1985-09-11 Method and apparatus for vacuum deposition plating
EP85730123A EP0175640B1 (en) 1984-09-17 1985-09-16 Method and apparatus for vacuum deposition plating
DE8585730123T DE3577997D1 (en) 1984-09-17 1985-09-16 METHOD AND DEVICE FOR COVERING THROUGH VACUUM COATING.
KR1019850006764A KR890004618B1 (en) 1984-09-17 1985-09-16 Method for vacuum deposition plating steel strip and apparatus therefor
CA000490764A CA1239060A (en) 1984-09-17 1985-09-16 Method and apparatus for vacuum deposition plating
US06/855,793 US4674443A (en) 1984-09-17 1986-04-24 Method and apparatus for vacuum deposition plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59192573A JPS6173879A (en) 1984-09-17 1984-09-17 Plating method by vacuum deposition

Publications (2)

Publication Number Publication Date
JPS6173879A true JPS6173879A (en) 1986-04-16
JPH0225989B2 JPH0225989B2 (en) 1990-06-06

Family

ID=16293526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59192573A Granted JPS6173879A (en) 1984-09-17 1984-09-17 Plating method by vacuum deposition

Country Status (1)

Country Link
JP (1) JPS6173879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210103963A (en) * 2020-02-14 2021-08-24 시바우라 메카트로닉스 가부시끼가이샤 Film formation apparatus and moisture removal method for film formation apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4112659B2 (en) * 1997-12-01 2008-07-02 大陽日酸株式会社 Noble gas recovery method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118094U (en) * 1981-01-14 1982-07-22
JPS589597U (en) * 1981-07-14 1983-01-21 三菱重工業株式会社 Sliding plate for piston seal and lifting guide in gas holder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118094U (en) * 1981-01-14 1982-07-22
JPS589597U (en) * 1981-07-14 1983-01-21 三菱重工業株式会社 Sliding plate for piston seal and lifting guide in gas holder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210103963A (en) * 2020-02-14 2021-08-24 시바우라 메카트로닉스 가부시끼가이샤 Film formation apparatus and moisture removal method for film formation apparatus

Also Published As

Publication number Publication date
JPH0225989B2 (en) 1990-06-06

Similar Documents

Publication Publication Date Title
KR890004618B1 (en) Method for vacuum deposition plating steel strip and apparatus therefor
EP2806043B1 (en) Continuous annealing furnace and continuous annealing method for steel strips
EP2857532B1 (en) Steel strip continuous annealing furnace, steel strip continuous annealing method, continuous hot-dip galvanization equipment, and production method for hot-dip galvanized steel strip
JP5834775B2 (en) Manufacturing equipment and manufacturing method for continuous hot-dip galvanized steel sheet
JPS6173879A (en) Plating method by vacuum deposition
US6228321B1 (en) Box annealing furnace method for annealing metal sheet using the same and annealed metal sheet
WO2014087452A1 (en) Facility and method for manufacturing continuous hot-dip zinc-coated steel sheet
JP5478007B2 (en) Heat treatment system
FI102548B (en) Process and apparatus for the manufacture of semi-finished products of stainless steel
JP2003506573A (en) Hot-dip galvanizing method and apparatus for strip steel
JP2002275546A (en) Facility used for both continuous annealing and hot dipping
JP2601378B2 (en) Method and apparatus for recovering atmosphere gas of heat treatment furnace
JPH04210430A (en) Continuous annealing apparatus for berylium copper alloy
JP3575066B2 (en) Vacuum degassing apparatus for molten metal and method of using the same
KR100678353B1 (en) Method and installation for hot dip galvanizing hot rolled steel strip
JPH11106833A (en) Continuous heat treatment furnace
JPH05345912A (en) Method for annealing steel-made annealing material
JPH11124634A (en) Heat treatment apparatus of steel strip in continuous annealing process and its heat treatment method
JPS5832219B2 (en) Cooling method of steel strip in continuous annealing line
JP2841581B2 (en) Chemical vapor deposition equipment
JPH0472020A (en) Continuous bright annealing method for stainless steel strip
CN117228941A (en) Mini LED backboard glass annealing kiln heating system
JPS62182259A (en) Continuous alloy plating device
JPH10204527A (en) Continuous annealing method and continuous annealing equipment
EP1096216A2 (en) A method of drying a furnace and/or performing continuous degassing, and plant for implementing the method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees