JPH04210430A - Continuous annealing apparatus for berylium copper alloy - Google Patents
Continuous annealing apparatus for berylium copper alloyInfo
- Publication number
- JPH04210430A JPH04210430A JP2404675A JP40467590A JPH04210430A JP H04210430 A JPH04210430 A JP H04210430A JP 2404675 A JP2404675 A JP 2404675A JP 40467590 A JP40467590 A JP 40467590A JP H04210430 A JPH04210430 A JP H04210430A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- alloy material
- water
- cooling chamber
- copper alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000137 annealing Methods 0.000 title claims abstract description 39
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 18
- 238000001816 cooling Methods 0.000 claims abstract description 57
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 55
- 239000000956 alloy Substances 0.000 claims abstract description 48
- 239000000498 cooling water Substances 0.000 claims abstract description 20
- 239000007921 spray Substances 0.000 claims abstract description 14
- 238000005192 partition Methods 0.000 claims abstract description 7
- 238000007599 discharging Methods 0.000 claims abstract description 3
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000011084 recovery Methods 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims 1
- 238000012856 packing Methods 0.000 abstract description 8
- 238000007789 sealing Methods 0.000 abstract description 7
- 239000012298 atmosphere Substances 0.000 abstract description 4
- 238000012423 maintenance Methods 0.000 abstract description 4
- 230000006866 deterioration Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 25
- 239000007769 metal material Substances 0.000 description 15
- 229910000851 Alloy steel Inorganic materials 0.000 description 10
- 229910052790 beryllium Inorganic materials 0.000 description 9
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000002845 discoloration Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Abstract
Description
[00011 [00011
【産業上の利用分野]本発明は、板状、条状等のベリリ
ウム鋼合金材料を連続的に焼鈍するための装置に関する
ものである。
[0002]
【従来の技術】板状、条状の金属材料を連続的に焼鈍す
る装置としては、熱処理後の金属材料を水槽内の冷却水
中に連続的に通過させて金属材料を冷却するものが知ら
れている。しかし、この冷却法では、高温の金属材料を
冷却する際に発生した水蒸気の一部が焼鈍炉本体内へと
侵入し、この炉内の雰囲気を乱し、金属材料の表面に強
固な酸化被膜を形成し、不都合であった。
(0003]この問題を解決するため、本出願人は、特
開昭63−303013号公報において、第2図に示す
ような新たな焼鈍炉を提案した。この焼鈍炉においては
、板形状または条形状の熱処理すべき金属材料1を炉本
体2内で熱処理した後、冷却室3内で冷却してさらに外
部へ搬送するよう構成している。炉本体2と冷却室3と
の間には、金属材料1が通過する部分のみ開いている仕
切り壁4を設けている。冷却室3内に搬送されてきた金
属材料1は、冷却室3の上部に設けた冷却用スプレーノ
ズル5から噴出する冷却水により冷却される。
[00041冷却室3の下流側上部には水蒸気排出ロア
を設け、この水蒸気排出ロアから冷却時に発生する水蒸
気を冷却室3の外に排出している。冷却後の冷却水は冷
却室3の下流側下部に設けた冷却水回収口8から回収さ
れ、冷却廃水槽9内に溜められる。冷却室3の下流側端
部のガスシール6では、パツキンやフェルトで板を挟む
ようにしてガスシールを行う。この冷却方法によれば、
焼鈍炉本体2への水蒸気の侵入を有効に防止できる。
[0005]Lかし、本発明者が更に検討を加えてみる
と、未だ問題が残っていることが判明した。即ち、ガス
シールにおいて、パツキンやフェル1〜で板を挟むよう
にしてガスシールを行うため、通板材料の条や線に傷が
つく。また、長時間、金属材料1をガスシール6に通す
ことにより、このパツキンやフェルトが摩耗して隙間が
生じ、シール効果がなくなり、焼鈍炉中に大気中の酸素
が入って金属材料1が酸化、変色する。更に、摩耗した
パツキンやフェル1へを交換する手間がかかる上、パツ
キンやフェルトが水蒸気によって侵され易い。また、線
、条の熱処理条件(温度、通板速度)が急に変更さねた
ときに、スプレーノズル5による冷却が一時的に不充分
となり、このためフェルトやパツキンを破損してしまう
こともあった。
[0006][Industrial Field of Application] The present invention relates to an apparatus for continuously annealing beryllium steel alloy materials such as plates and strips. [0002] [Prior Art] An apparatus for continuously annealing plate-shaped or strip-shaped metal materials is one that cools the metal material by continuously passing the heat-treated metal material through cooling water in a water tank. It has been known. However, with this cooling method, some of the water vapor generated when cooling the high-temperature metal material enters the annealing furnace, disturbing the atmosphere inside the furnace, and forming a strong oxide film on the surface of the metal material. , which was inconvenient. (0003) In order to solve this problem, the present applicant proposed a new annealing furnace as shown in FIG. After the metal material 1 to be heat-treated in the shape is heat-treated in the furnace body 2, it is cooled in the cooling chamber 3 and further transported to the outside. Between the furnace body 2 and the cooling chamber 3, A partition wall 4 is provided that is open only in the part through which the metal material 1 passes.The metal material 1 transported into the cooling chamber 3 is cooled by spraying from a cooling spray nozzle 5 provided at the upper part of the cooling chamber 3. Cooled by water. [00041 A steam discharge lower is provided at the upper part of the downstream side of the cooling chamber 3, and the steam generated during cooling is discharged from the steam discharge lower to the outside of the cooling chamber 3. Cooling water after cooling is collected from the cooling water recovery port 8 provided at the lower downstream side of the cooling chamber 3 and stored in the cooling waste water tank 9. At the gas seal 6 at the downstream end of the cooling chamber 3, a plate is sandwiched between packing or felt. A gas seal is performed in such a way that the
Intrusion of water vapor into the annealing furnace main body 2 can be effectively prevented. [0005] However, when the present inventor conducted further investigation, it became clear that problems still remained. That is, in gas sealing, the gas sealing is performed by sandwiching the plate between the gaskets and the felts 1 to 3, which causes damage to the stripes and lines of the plate-passing material. In addition, by passing the metal material 1 through the gas seal 6 for a long time, the packing and felt wear out and create gaps, which loses the sealing effect and allows atmospheric oxygen to enter the annealing furnace, causing the metal material 1 to oxidize. , change color. Furthermore, it is time-consuming to replace worn packings and felts 1, and the packings and felts are easily eroded by water vapor. Additionally, if the heat treatment conditions (temperature, threading speed) of the wire or strip suddenly change, cooling by the spray nozzle 5 may become temporarily insufficient, which may damage the felt or packing. there were. [0006]
【発明が解決しようとする課題】本発明の課題は、焼鈍
炉内の酸素濃度を低濃度、例えば5 PPM以下に常に
抑えることができ、ガスシール部の維持、保守を容易に
でき、またガスシール部で材料に傷がつくのを防止でき
、更に熱処理条件の急速な変化にも対応でき、しかも特
にベリリウム銅合金の連続焼鈍に適した装置を提供する
ことである。
[0007][Problems to be Solved by the Invention] It is an object of the present invention to constantly suppress the oxygen concentration in the annealing furnace to a low concentration, for example, 5 PPM or less, to facilitate the maintenance and maintenance of the gas seal part, and to It is an object of the present invention to provide an apparatus that can prevent materials from being damaged at a sealing part, can also cope with rapid changes in heat treatment conditions, and is especially suitable for continuous annealing of beryllium-copper alloys. [0007]
【課題を解決するための手段】本発明は、焼鈍炉本体;
この焼鈍炉本体のベリリウム鋼合金材料の搬出側に設け
られた冷却室であって、熱処理後のベリリウム鋼合金材
料を冷却するための冷却水を噴出するスプレーノズルと
、前記冷却の際に発生する水蒸気を排出するための水蒸
気排出口と、前記冷却水を回収するための冷却水回収口
とを有する冷却室; この冷却室のベリリウム銅合金材
料の搬出側に設けられた水槽であって、ベリリウム鋼合
金材料が搬入される貯留水を貯留する水槽;及び この
貯留水から搬出されたベリリウム銅合金材料の水切りを
行うための水切り手段を有し、 前記貯留水によって前
記冷却室のガスシールを行う、ベリリウム銅合金の連続
焼鈍装置に係るものである。
[00081[Means for Solving the Problems] The present invention provides an annealing furnace body;
A cooling chamber provided on the delivery side of the beryllium steel alloy material of the annealing furnace main body, which includes a spray nozzle for spouting cooling water for cooling the beryllium steel alloy material after heat treatment, and a spray nozzle for spouting cooling water to cool the beryllium steel alloy material after heat treatment. A cooling room having a water vapor outlet for discharging water vapor and a cooling water recovery port for recovering the cooling water; A water tank provided on the side of the cooling room where the beryllium copper alloy material is taken out; a water tank for storing stored water into which the steel alloy material is carried; and a water draining means for draining the beryllium copper alloy material carried out from the stored water, and gas-sealing the cooling chamber with the stored water. , which relates to a continuous annealing device for beryllium copper alloy. [00081
【実施例]図1−は、本発明の一実施例に係る連続焼鈍
装置を示す模式図である。連続焼鈍炉本体22には、炉
内雰囲気ガスを供給するためのガス供給口32を設け、
炉本体22のベリリウム銅合金材料21の搬送方向(下
流側)には冷却室23を設け、冷却室23と炉本体22
との間を仕切り壁34によって隔離する。この仕切り壁
に、ベリリウム銅合金材料21が通過しつる通過口37
を設け、この通過口37を中心に、下流側へと向って次
第に径が小さくなる覆い24を、仕切り壁34に取り付
ける。また、覆い24の下流にスプレーノズル25を配
設し、このスプレーノズル25から合金材料211\と
冷却水を噴出させて熱処理後の合金材料21を冷却する
。冷却に使用した後の冷却水は、冷却水回収口35から
回収し、冷却廃水槽29内に貯留する。また、スプレー
ノズル25の下流側に、合金材料21の搬送方向へと向
ってすぼまる覆い30を取り付ける。合金材料21を冷
却する際に発生する水蒸気は、水蒸気排出口27から排
出させ、その排出機をバルブ31で制御する。
[0009] 冷却室23の下流側には、ガスシール
用水槽26を設置し、この中に貯留水36を貯留する。
そして、冷却室内で冷却された合金材料21は、貯留水
36中へと一旦搬入された後、この貯留水36の外へと
巻き出され、次いで水切りブロアー28で水切りされ、
コイル33に巻き取られる。
[0010] 本実施例の焼鈍装置においては、まず
ガスシール法が重要である。即ち、焼鈍炉において、酸
化を受は易いベリリウム鋼合金の酸化を防止するため、
ガス供給口32から炉内へと窒素、水素、二酸化炭素、
アルゴン等の雰囲気ガスを流し、材料の酸化を防いでい
る。
このとき、外気中の酸素の炉内への流入を防止するため
、炉内の圧力を外気の圧力よりも高くしている。このた
め、外気とのシール方法が重要である。
[0011] この点、本実施例においては、合金材
料に一層ガスシール用水槽26内の貯留水36中を通過
させることによって、炉内と外気との間の通気を遮断し
ている。従って、第2図に示したような、パツキンやフ
ェルトで金属材料を押える方式ではないので、ガスシー
ル部の摩耗、劣化による酸素の炉内への侵入は生じず、
従って炉内の酸素濃度を常時低濃度に、例えば5 PP
M以下に保つことができる。これにより、合金材料の酸
化による変色を防止でき、更には、この合金材料の変色
によって焼鈍炉内の合金材料の熱吸収が上昇してその温
度が上がりすぎ、材料特性が変化するという事態も生じ
なくなる。また、合金材料表面に生じた酸化被膜を除去
するには酸による洗浄を行う必要があるが、その際の酸
洗性が向上するので、酸による洗浄に要する時間も短縮
できる。
[0012] むろん、合金材料21を貯留水36中
に潜らせているので、ガスシール部の維持、保守が容易
であり、またガスシール部で合金材料21の表面に傷が
つくこともない。
[0013] 更に、仮に熱処理条件が変更され、熱
処理温度やラインの速度が上がったことから、スプレー
ノズル25による合金材料21の冷却が追いつかなくな
ったときでも、冷却室23を通過した合金材料21が貯
留水36中へと入るため、材料の冷却が完全になされ、
焼鈍装置外へと熱いままの材料がでることはない。
[0014] また、ガスシール用水槽26から搬出
された金属材料を、水切りブロアー28によって即座に
水切りするので、水槽26外での水、大気による酸化、
変色を防止できる。
[0015) なお、ガスシール用水槽26内の貯留
水36は常に循環させて新しい水と順次交換し、この貯
留水36によって合金材料21が汚れるのを防止する。
なお、前述したように、ガス供給口32から雰囲気ガ
スを供給し、例えば、5〜15N+n3/時間の窒素ガ
スを流している。そして、冷却室23の水蒸気排出口2
7に取り付けであるバルブ31の開閉によって冷却室2
3内の圧力を調節し、これにより焼鈍炉本体22内の気
圧を常に外気の気圧よりも高く保ち、水蒸気の炉本体2
2内への逆流を防止する。
[0016]また、金属材料を焼鈍するには、一定の冷
却速度以上で急冷しなければならない。この点、本実施
例では、スプレーノズル25から噴出する冷却水によっ
て急冷を行う。ここで、冷却水が蒸発して生じた蒸気が
焼鈍炉本体22内へと逆流すると、前記のように合金材
料21が変色するため、仕切り壁34に覆い24を設け
て炉本体22内から冷却室23内へと流入するガスの流
れを加速し、これにより一層完全に水蒸気の逆流を防止
する。なお、ここで発生した水蒸気は、前述のように水
蒸気排出口27から排出するが、この排出口から外気が
流入しないように、排出口27の径を小さくし排出管の
長さを長くして炉内と外気との圧力差を利用して自然に
水蒸気を排出するか、または排出口27から水蒸気を強
制的に吸引する。
[00171また、本実施例では、冷却室23内におい
て冷却すべき合金材料21が搬送方向に向かって下がる
ように構成し、冷却水が炉本体22内に逆流するのを防
止している。 スプレーノズル25の数は、冷却能力、
冷却方法に応じて変更できる。
[0018]
【発明の効果】本発明によれば、冷却室のベリリウム鋼
合金材料の搬出側に設けた水槽に貯留した貯留水によっ
て冷却室のガスシールを行うので、パツキンやフェルト
で金属材料を押えるガスシール方式とは異なり、ガスシ
ール部の摩耗、劣化による酸素の炉内への侵入は生じず
、従って焼鈍炉内の酸素濃度を常時低濃度に保つことが
できる。これにより、焼鈍炉内の合金材料の酸化による
変色、この変色に伴なう合金材料の熱吸収率の増大によ
る材料温度の上昇、酸化被膜の生成を防止できる。と同
時に、ガスシール部の維持、保守が容易であり、合金材
料の表面に傷がつくこともない。
[0019]また、貯留水中にベリリウム銅合金材料を
一旦搬入するので、例えば焼鈍炉本体内における熱処理
温度やラインの速度が急に一層がったときでも、貯留水
によって更に材料の冷却が完全になされるため、焼鈍装
置外へと熱いままの合金材料が出ることはない。
[00201また、貯留水から搬出されたベリリウム鋼
合金材料の水切りを行うので、水槽外での水、大気によ
る合金材料の酸化、変色も防止できる。また、スプレー
ノズルから噴出する冷却水によってベリリウム鋼合金材
料を冷却するので、ベリリウム銅合金材料の仕トがり形
状を均一にできる。[Embodiment] FIG. 1 is a schematic diagram showing a continuous annealing apparatus according to an embodiment of the present invention. The continuous annealing furnace main body 22 is provided with a gas supply port 32 for supplying the furnace atmosphere gas,
A cooling chamber 23 is provided in the conveying direction (downstream side) of the beryllium copper alloy material 21 in the furnace body 22, and the cooling chamber 23 and the furnace body 22
and is separated by a partition wall 34. This partition wall has a passage hole 37 through which the beryllium copper alloy material 21 passes.
A cover 24 whose diameter gradually decreases toward the downstream side around this passage port 37 is attached to the partition wall 34. Further, a spray nozzle 25 is disposed downstream of the cover 24, and the alloy material 211\ and cooling water are jetted from the spray nozzle 25 to cool the alloy material 21 after the heat treatment. The cooling water used for cooling is collected from the cooling water recovery port 35 and stored in the cooling waste water tank 29. Furthermore, a cover 30 that narrows toward the conveying direction of the alloy material 21 is attached to the downstream side of the spray nozzle 25. The water vapor generated when cooling the alloy material 21 is discharged from a water vapor outlet 27, and the discharger is controlled by a valve 31. [0009] A gas seal water tank 26 is installed downstream of the cooling chamber 23, and stored water 36 is stored therein. Then, the alloy material 21 cooled in the cooling chamber is once carried into the stored water 36, and then rolled out of the stored water 36, and then drained by the draining blower 28,
It is wound around a coil 33. [0010] First of all, the gas seal method is important in the annealing apparatus of this embodiment. That is, in order to prevent oxidation of beryllium steel alloy, which is easily susceptible to oxidation, in an annealing furnace,
Nitrogen, hydrogen, carbon dioxide,
Atmosphere gas such as argon is passed through to prevent oxidation of the material. At this time, in order to prevent oxygen in the outside air from flowing into the furnace, the pressure inside the furnace is made higher than the pressure of the outside air. For this reason, the method of sealing with the outside air is important. [0011] In this regard, in this embodiment, the alloy material is further passed through the stored water 36 in the gas seal water tank 26, thereby blocking ventilation between the inside of the furnace and the outside air. Therefore, since the metal material is not held down by packing or felt as shown in Figure 2, oxygen will not enter the furnace due to abrasion or deterioration of the gas seal.
Therefore, the oxygen concentration in the furnace must be kept low at all times, such as 5 PP.
It can be kept below M. This prevents discoloration of the alloy material due to oxidation, and furthermore, this discoloration of the alloy material increases the heat absorption of the alloy material in the annealing furnace, causing its temperature to rise too much and changing the material properties. It disappears. Furthermore, although it is necessary to perform cleaning with acid to remove the oxide film formed on the surface of the alloy material, the time required for cleaning with acid can also be shortened since the pickling performance at that time is improved. [0012] Of course, since the alloy material 21 is submerged in the stored water 36, maintenance of the gas seal part is easy, and the surface of the alloy material 21 is not damaged by the gas seal part. [0013] Furthermore, even if the heat treatment conditions are changed and the heat treatment temperature or line speed is increased and the spray nozzle 25 cannot keep up with the cooling of the alloy material 21, the alloy material 21 that has passed through the cooling chamber 23 will Because it enters the stored water 36, the material is completely cooled;
No hot material exits the annealing equipment. [0014] Furthermore, since the metal material carried out from the gas seal water tank 26 is immediately drained by the water draining blower 28, there is no possibility of oxidation due to water or air outside the water tank 26.
Can prevent discoloration. [0015] Note that the stored water 36 in the gas seal water tank 26 is constantly circulated and replaced with fresh water one after another to prevent the alloy material 21 from being contaminated by this stored water 36. Note that, as described above, the atmospheric gas is supplied from the gas supply port 32, and for example, nitrogen gas of 5 to 15 N+n3/hour is supplied. And the water vapor outlet 2 of the cooling chamber 23
Cooling chamber 2 is opened and closed by opening and closing valve 31 attached to 7.
By adjusting the pressure inside the annealing furnace body 22, the pressure inside the annealing furnace body 22 is always kept higher than the outside air pressure, and the water vapor inside the furnace body 2
Prevent backflow into 2. [0016] Furthermore, in order to anneal a metal material, it must be rapidly cooled at a certain cooling rate or higher. In this regard, in this embodiment, the cooling water jetted from the spray nozzle 25 performs rapid cooling. Here, if the steam generated by the evaporation of the cooling water flows back into the annealing furnace body 22, the alloy material 21 will change color as described above, so a cover 24 is provided on the partition wall 34 to cool the furnace body 22 from inside. The flow of gas into the chamber 23 is accelerated, thereby more completely preventing the backflow of water vapor. The water vapor generated here is discharged from the steam outlet 27 as described above, but the diameter of the outlet 27 is made small and the length of the discharge pipe is made long so that outside air does not flow in from this outlet. The steam is naturally exhausted by utilizing the pressure difference between the inside of the furnace and the outside air, or the steam is forcibly sucked through the exhaust port 27. [00171] Furthermore, in this embodiment, the alloy material 21 to be cooled in the cooling chamber 23 is configured to move downward in the conveying direction, thereby preventing the cooling water from flowing back into the furnace body 22. The number of spray nozzles 25 depends on the cooling capacity,
Can be changed depending on the cooling method. [0018] According to the present invention, the cooling chamber is gas-sealed by the water stored in the water tank provided on the delivery side of the beryllium steel alloy material in the cooling chamber, so the metal material can be sealed with packing or felt. Unlike the pressing gas seal method, oxygen does not enter the furnace due to abrasion or deterioration of the gas seal, and therefore the oxygen concentration within the annealing furnace can be maintained at a low concentration at all times. This can prevent discoloration of the alloy material in the annealing furnace due to oxidation, an increase in material temperature due to an increase in the heat absorption rate of the alloy material accompanying this discoloration, and the formation of an oxide film. At the same time, the gas seal part is easy to maintain and maintain, and the surface of the alloy material is not scratched. [0019] In addition, since the beryllium copper alloy material is once carried into the stored water, even if the heat treatment temperature or line speed in the annealing furnace body suddenly increases, the stored water can further completely cool the material. As a result, hot alloy material does not exit the annealing equipment. [00201] Furthermore, since the beryllium steel alloy material carried out from the stored water is drained, oxidation and discoloration of the alloy material due to water and air outside the water tank can be prevented. Furthermore, since the beryllium steel alloy material is cooled by the cooling water jetted from the spray nozzle, the finished shape of the beryllium copper alloy material can be made uniform.
【図1】図1は本発明の実施例による、ベリリウム鋼合
金の連続焼鈍装置を示す模式図である。FIG. 1 is a schematic diagram showing a continuous annealing apparatus for beryllium steel alloy according to an embodiment of the present invention.
【図21図2は従来例による、金属材料の連続焼鈍炉を
示す模式図である。
【符号の説明】
21 ベリリウム銅合金材料
22 焼鈍炉本体
23 冷却室
24、30 覆い
25 スプレーノズル
26 ガスシール用水槽
27 水蒸気排出口
28 水切りブロアー(水切り手段)29 冷却廃
水槽
31 バルブ
32 ガス供給口
33 コイル
35 冷却水回収口
36 貯留水FIG. 21 FIG. 2 is a schematic diagram showing a conventional continuous annealing furnace for metal materials. [Explanation of symbols] 21 Beryllium copper alloy material 22 Annealing furnace body 23 Cooling chambers 24, 30 Cover 25 Spray nozzle 26 Gas seal water tank 27 Steam outlet 28 Draining blower (water draining means) 29 Cooling waste water tank 31 Valve 32 Gas supply port 33 Coil 35 Cooling water recovery port 36 Reserved water
Claims (3)
銅合金材料の搬出側に設けられた冷却室であって、熱処
理後のベリリウム銅合金材料を冷却するための冷却水を
噴出するスプレーノズルと、前記冷却の際に発生する水
蒸気を排出するための水蒸気排出口と、前記冷却水を回
収するための冷却水回収口とを有する冷却室;の冷却室
のベリリウム銅合金材料の搬出側に設けられた水槽であ
って、ベリリウム銅合金材料が搬入される貯留水を貯留
する水槽;及びこの貯留水から搬出されたベリリウム銅
合金材料の水切りを行うための水切り手段を有し、前記
貯留水によって前記冷却室のガスシールを行う、ベリリ
ウム銅合金の連続焼鈍装置。Claim 1: An annealing furnace body; a cooling chamber provided on the delivery side of the beryllium-copper alloy material of the annealing furnace body, comprising a spray nozzle for spouting cooling water to cool the beryllium-copper alloy material after heat treatment. and a cooling room having a water vapor outlet for discharging water vapor generated during the cooling, and a cooling water recovery port for recovering the cooling water; a water tank provided for storing stored water into which the beryllium copper alloy material is carried; and a water draining means for draining the beryllium copper alloy material carried out from the stored water; A continuous annealing device for beryllium-copper alloy, in which the cooling chamber is gas-sealed by:
気圧よりも高くすることにより、この焼鈍炉本体内から
冷却室内へと気体が流れるように構成した、請求項1記
載のベリリウム銅合金の連続焼鈍装置。2. The beryllium copper according to claim 1, wherein the annealing furnace main body is made to have a higher air pressure than the cooling chamber so that gas flows from the annealing furnace main body into the cooling chamber. Continuous annealing equipment for alloys.
する仕切り壁に、前記焼鈍炉本体内から前記冷却室内へ
の気体の流れを加速するための覆いを設けた、請求項2
記載のベリリウム銅合金の連続焼鈍装置。3. A cover for accelerating the flow of gas from the annealing furnace main body into the cooling chamber is provided on a partition wall separating the annealing furnace main body and the cooling chamber.
Continuous annealing apparatus for the described beryllium copper alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2404675A JPH0765119B2 (en) | 1990-12-05 | 1990-12-05 | Beryllium copper alloy continuous annealing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2404675A JPH0765119B2 (en) | 1990-12-05 | 1990-12-05 | Beryllium copper alloy continuous annealing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04210430A true JPH04210430A (en) | 1992-07-31 |
JPH0765119B2 JPH0765119B2 (en) | 1995-07-12 |
Family
ID=18514332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2404675A Expired - Lifetime JPH0765119B2 (en) | 1990-12-05 | 1990-12-05 | Beryllium copper alloy continuous annealing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0765119B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003286521A (en) * | 2002-03-28 | 2003-10-10 | Nippon Steel Corp | Cooling method and cooling unit for steel strip |
CN105671300A (en) * | 2016-03-07 | 2016-06-15 | 苏州奥然日用品有限公司 | Continuous annealing water-cooling device for copper wires |
CN114058834A (en) * | 2021-10-28 | 2022-02-18 | 青海鑫邦线缆有限公司 | Wire drawing annealing device for power cable processing and use method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105274318A (en) * | 2015-11-13 | 2016-01-27 | 无锡西玛梅达电工有限公司 | Bare-wire annealing dry-steam protection device of high-speed wiredrawing enameling-machine annealing furnace |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5633421A (en) * | 1979-08-22 | 1981-04-03 | Nippon Steel Corp | Continuous annealing treatment for cold rolled steel sheet |
JPS5716133A (en) * | 1980-07-03 | 1982-01-27 | Nippon Steel Corp | Continuous annealer for thin steel strip |
JPS6059970B2 (en) * | 1980-08-28 | 1985-12-27 | 新日本製鐵株式会社 | Sealing device for continuous sintering equipment |
JPS6110020B2 (en) * | 1980-10-09 | 1986-03-27 | Nippon Steel Corp |
-
1990
- 1990-12-05 JP JP2404675A patent/JPH0765119B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5633421A (en) * | 1979-08-22 | 1981-04-03 | Nippon Steel Corp | Continuous annealing treatment for cold rolled steel sheet |
JPS5716133A (en) * | 1980-07-03 | 1982-01-27 | Nippon Steel Corp | Continuous annealer for thin steel strip |
JPS6059970B2 (en) * | 1980-08-28 | 1985-12-27 | 新日本製鐵株式会社 | Sealing device for continuous sintering equipment |
JPS6110020B2 (en) * | 1980-10-09 | 1986-03-27 | Nippon Steel Corp |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003286521A (en) * | 2002-03-28 | 2003-10-10 | Nippon Steel Corp | Cooling method and cooling unit for steel strip |
CN105671300A (en) * | 2016-03-07 | 2016-06-15 | 苏州奥然日用品有限公司 | Continuous annealing water-cooling device for copper wires |
CN114058834A (en) * | 2021-10-28 | 2022-02-18 | 青海鑫邦线缆有限公司 | Wire drawing annealing device for power cable processing and use method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0765119B2 (en) | 1995-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6315829B1 (en) | Apparatus for hot-dip coating a steel strip | |
EP2806043B1 (en) | Continuous annealing furnace and continuous annealing method for steel strips | |
US4183983A (en) | Method for reducing metal oxide formation on a continuous metal sheet in the hot dip coating thereof | |
WO1999050464A1 (en) | Continuous heat treating furnace and atmosphere control method and cooling method in continuous heat treating furnace | |
JPH04210430A (en) | Continuous annealing apparatus for berylium copper alloy | |
EA004413B1 (en) | Method and installation for dip coating of a metal strip, in particular a steel strip | |
JPS5822525B2 (en) | Sealing device in cooling section of steel strip | |
JP2002206117A (en) | Continuous annealing equipment and continuous annealing method | |
JPH0472021A (en) | Continuous bright annealing method for stainless steel strip | |
JP4728494B2 (en) | Facilities for continuous annealing and hot dipping | |
JPH0225989B2 (en) | ||
JP3821093B2 (en) | Continuous molten metal plating method and apparatus | |
JP2820359B2 (en) | Atmosphere adjustment method for continuous annealing furnace | |
CN110793333B (en) | Annealing furnace inclined slideway liquid level control device for improving coating quality | |
JPS63303013A (en) | Continuous annealing furnace providing cooling chamber for metal | |
US20220213574A1 (en) | Processing line for the continuous processing of metal strips having a dual purpose of producing strips that are annealed and dip-coated or not coated, and corresponding cooling tower and method for switching from one configuration to the other | |
JPS60251230A (en) | Method and device for cooling strip with heat treating furnace | |
JPS61183415A (en) | Cooling method of strip in continuous heat treatment furnace | |
JPH11100650A (en) | Continuous plating method for zinc based molten metal and apparatus therefor | |
JPH11343549A (en) | Method and device for continuous plating of molten metal | |
JPH0472020A (en) | Continuous bright annealing method for stainless steel strip | |
JPS6249333B2 (en) | ||
JP5508036B2 (en) | Continuous bright annealing method | |
JPH10237610A (en) | Continuous hot dip metal coating method and device therefor | |
JPS61186464A (en) | Method for changing over one-side plating and both-side plating in metal hot dipping line in common use for one-side and double-side plating of strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080712 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090712 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100712 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100712 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110712 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110712 Year of fee payment: 16 |