JPS6173727A - Novel epoxy resin composition - Google Patents

Novel epoxy resin composition

Info

Publication number
JPS6173727A
JPS6173727A JP19721484A JP19721484A JPS6173727A JP S6173727 A JPS6173727 A JP S6173727A JP 19721484 A JP19721484 A JP 19721484A JP 19721484 A JP19721484 A JP 19721484A JP S6173727 A JPS6173727 A JP S6173727A
Authority
JP
Japan
Prior art keywords
epoxy resin
acid anhydride
anhydride
tetrabasic
curing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19721484A
Other languages
Japanese (ja)
Inventor
Mototoshi Yamato
大和 元亨
Masayoshi Oshima
正義 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP19721484A priority Critical patent/JPS6173727A/en
Publication of JPS6173727A publication Critical patent/JPS6173727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PURPOSE:A thermosetting epoxy resin composition which is excellent in workability and can give a cured product excellent in heat resistance, moisture resistance and mechanical properties, comprising an epoxy resin and an acid anhydride curing agent formed by mixing two tetrabasic acid anhydrides with each other. CONSTITUTION:A normally solid acid anhydride curing agent (B) is obtained by mixing 10-90wt% tetrabasic acid anhydride of formula I (wherein R1 is H or CH3, and R2 is H or a lower alkyl), obtained by an addition reaction between 1mol of a styrene monomer and 2mol of maleic anhydride with 90-10wt% tetrabasic acid anhydride of formula II (wherein R is R2), obtained by an addition reaction between 1 mol of tetrahydrophthalic anhydride compound and 1mol of maleic anhydride. An epoxy resin (A) (e.g., glycidyl ether- derived epoxy resin) having at least one epoxy group in the molecule is mixed with component B in an amount to provide 0.5-1.5 acid anhydride groups per epoxy group of component A.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は特定の四塩基酸無水物混合物を硬化剤成分とし
て含有する熱硬化型エポキシ樹脂組成物に関し、さらに
詳しくは、作業性にすぐれ、かつ硬化物の耐熱性、耐湿
性及び機械的性質に優れた熱硬化型エポキシ樹脂組成物
に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a thermosetting epoxy resin composition containing a specific tetrabasic acid anhydride mixture as a curing agent component, and more particularly, to a thermosetting epoxy resin composition that has excellent workability, The present invention also relates to a thermosetting epoxy resin composition whose cured product has excellent heat resistance, moisture resistance, and mechanical properties.

(従来の技術) 従来、エポキシ樹脂硬化物は電気的、機械的性質が良好
なことから、電気・電子製品の注型物、含浸物、塗装物
、積層板、接着剤などの分野において広く使用されてい
る。
(Prior art) Cured epoxy resins have been widely used in fields such as cast products, impregnated products, painted products, laminates, and adhesives for electrical and electronic products because of their good electrical and mechanical properties. has been done.

近年、電子・電気機器及び輸送機器などの技術の高度化
に伴い、耐熱性でしかも機械的性質にもすぐれ、かつ高
耐湿性を有する材料に対する要求が年々強まっている。
BACKGROUND ART In recent years, as the technology of electronic and electrical equipment and transportation equipment has become more sophisticated, the demand for materials that are heat resistant, have excellent mechanical properties, and have high moisture resistance is increasing year by year.

これらの要求性能のうち耐熱性を高める手段としては、
硬化物の架橋密度を高くすることが知られている。この
ため工Iキシ樹脂の硬化剤として四塩基酸無水物が使用
されるが、四塩基酸無水物は概して高融点であるため加
熱溶融中にエポキシ樹脂の部分的硬化が始ま9均−な硬
化物が得られないという欠点があシ、この面に関して比
較的良好な性能を示す前記一般式〔I〕で表わされる化
合物(例えば特公昭44−2986号、同54−300
26号、特開昭57−188581号など)及び前記一
般式(IF)で表わされる化合物(例えば特公昭57−
9740号、米国特許第4.371.688号)といえ
ども未だ充分なものとは言えなかった。
Among these required performances, the means to increase heat resistance are as follows:
It is known to increase the crosslink density of cured products. For this reason, a tetrabasic acid anhydride is used as a curing agent for the epoxy resin, but since the tetrabasic acid anhydride generally has a high melting point, the epoxy resin begins to partially cure during heating and melting, resulting in uniform curing. However, the compound represented by the general formula [I] which shows relatively good performance in this respect (for example, Japanese Patent Publication Nos. 44-2986 and 54-300)
No. 26, JP-A-57-188581, etc.) and compounds represented by the above general formula (IF) (e.g., JP-A-57-188581, etc.)
No. 9740, U.S. Pat. No. 4,371,688), it was still not sufficient.

しかも一般式CI)で示される化合物は、比較的耐湿性
及び機械的性質にすぐれた硬化物が得られる反面、耐熱
性の一つの尺度である熱変形温度がやや低いという難点
があ)、また一般式(IT)で示される化合物は、耐熱
性にすぐれる硬化物が得られる反面、耐湿性及び機械的
性質に劣るという欠点を有していた。
Moreover, although the compound represented by the general formula CI) can provide a cured product with relatively excellent moisture resistance and mechanical properties, it has the disadvantage that the heat distortion temperature, which is one measure of heat resistance, is rather low. Although the compound represented by the general formula (IT) provides a cured product with excellent heat resistance, it has the drawback of poor moisture resistance and mechanical properties.

(発明が解消しようとする問題点) そこで本発明者らは従来技術のかかる欠点を改良すべく
鋭童検討を進めた結果、前記二種類の四塩基酸無水物を
混合することによって低融点で作業性の良い固型のエポ
キシ樹脂硬化剤が得られ、その硬化剤を用いた硬化物は
耐熱性、耐湿性及び機械的性質にすぐれることを見い出
し、発明を完成するに致った。
(Problems to be Solved by the Invention) Therefore, the present inventors conducted extensive studies to improve this drawback of the prior art, and found that by mixing the two types of tetrabasic acid anhydrides, a low melting point solution was obtained. It was discovered that a solid epoxy resin curing agent with good workability was obtained, and that cured products using the curing agent had excellent heat resistance, moisture resistance, and mechanical properties, and the invention was completed.

(問題点を解決するための手段) かくして本発明によれば、(4)エポキシ樹脂及び(B
)下記一般式CDで示される四塩基酸無水物10〜90
M量チと下記一般式(IDで示される四塩基酸無水物1
0〜90重量%からなる常温で固体の酸無水物混合物を
含有することを特徴とするエポキシ樹脂組成物が提供さ
れる。
(Means for Solving the Problems) Thus, according to the present invention, (4) an epoxy resin and (B)
) Tetrabasic acid anhydrides 10 to 90 represented by the following general formula CD
M amount Q and the following general formula (tetrabasic acid anhydride 1 shown by ID
There is provided an epoxy resin composition characterized in that it contains an acid anhydride mixture that is solid at room temperature in an amount of 0 to 90% by weight.

本発明における硬化剤成分は前記一般式〔I〕で表わさ
れる四塩基酸無水物と前記一般式(If)で表わされる
四塩基酸無水物とから構成される◎第一の成分である一
般式〔I〕で表わされる四塩基酸無水物ハスチレン、α
−メチルスチレン、ビニルトルエン、イソゾロベニルト
ルエン、p−ターシャリ−ブチルスチレンなどのごとき
スチレン系モノマー1モルに無水マレイン酸2モルを付
加したものであシ、かかる四塩基酸無水物は公知の方法
に従って重合禁止剤や不活性溶剤の存在または不存在下
にスチレン糸上ツマ−と無水マレイン酸を反応させるこ
とによって容易に得ることができる(例えば特公昭44
−2986号、同54−30026号などを参照)。な
かでもα−メチルスチレンの付加体が吸湿性の点で優れ
てお多、とくに賞月される。
The curing agent component in the present invention is composed of the tetrabasic acid anhydride represented by the above general formula [I] and the tetrabasic acid anhydride represented by the above general formula (If) ◎The first component is the general formula Tetrabasic acid anhydride hastyrene represented by [I], α
- 2 moles of maleic anhydride added to 1 mole of a styrenic monomer such as methylstyrene, vinyltoluene, isozolobenyltoluene, p-tert-butylstyrene, etc., and such tetrabasic acid anhydrides are known in the art. It can be easily obtained by reacting a styrene yarn with maleic anhydride in the presence or absence of a polymerization inhibitor or an inert solvent according to the method (for example, Japanese Patent Publication No. 44
-2986, 54-30026, etc.). Among these, adducts of α-methylstyrene are particularly prized for their excellent hygroscopicity.

一方、第二の成分である一般式(IF)で表わされる四
塩基酸無水物は、3−メチル−△−7)7ヒドロ無水7
タル酸、4−メチル−Δ−Tトフヒドロ無水フタル酸、
△−アトフヒドロ無水7タル酸などのごときテトラヒド
ロ無水フタル酸化合物1モルに無水マレイン酸1モルを
付加したものであシ、かかる四塩基酸無水物は公知の方
法に従ってテトラハイドロ無水7タル酸化合物と無水マ
レイン酸を反応させることによシ容易に得ることが出来
る(例えば特公昭57−9740号参照)。
On the other hand, the second component, the tetrabasic acid anhydride represented by the general formula (IF), is 3-methyl-△-7)7hydroanhydride7
Talic acid, 4-methyl-Δ-T tophhydrophthalic anhydride,
△ - 1 mole of maleic anhydride is added to 1 mole of a tetrahydrophthalic anhydride compound such as △-atophthalic anhydride, and such tetrabasic acid anhydride can be converted into a tetrahydrophthalic anhydride compound according to a known method. It can be easily obtained by reacting maleic anhydride (see, for example, Japanese Patent Publication No. 57-9740).

またこれらのほかに本発明の目的を損わない限シにおい
て、無水トリメリット酸の如き三塩基酸無水物、メチル
テトラヒドロ無水フタル酸の如き二塩基酸無水物などの
公知の硬化剤を加えてもよい。
In addition to these, known curing agents such as tribasic acid anhydrides such as trimellitic anhydride and dibasic acid anhydrides such as methyltetrahydrophthalic anhydride may be added as long as the purpose of the present invention is not impaired. Good too.

本発明においては、かかる第一の成分と第二の成分とを
前者10〜90重量%、好ましくは20〜80重量%と
後者10〜90重i−チ、好ましくは20〜80重量%
の割合で混合して使用される。
In the present invention, the first component and the second component are comprised of 10 to 90% by weight, preferably 20 to 80% by weight, and 10 to 90% by weight, preferably 20 to 80% by weight of the latter.
used in a mixture of

この混合比率内であれば、低融点で作業性が良くエポキ
シ樹脂硬化物に充分な耐熱性を与え、かつ耐湿性及び機
械的性質において相乗的改良効果が得られる。
Within this mixing ratio, the epoxy resin has a low melting point, good workability, provides a cured epoxy resin with sufficient heat resistance, and provides a synergistic improvement effect in moisture resistance and mechanical properties.

これらの両成分の混合法は適宜選択すればよく、トライ
ブレンド法、溶融混合法のいずれであってもよい。
The method for mixing these two components may be selected as appropriate, and may be either a tri-blend method or a melt-mixing method.

本発明において用いられる工Iキシ樹脂は1分子当シ1
個よシ多いエポキシ基、好ましくは1.5個以上のエポ
キシ基を有するものであシ、その具体例としてはビスフ
ェノールAとエビ/′−ロヒドリンとから合成されるグ
リシジ、ルエーテル型エポキシ樹脂、フタル酸とエビノ
・ロヒドリンとから合成されるグリシジルエステル型エ
デヤシ樹脂、シクロペンタジェンやシクロヘキサジエン
などの脂環式ジエンをエポキシ化して得られる脂環式エ
ポキシ樹脂、Iリプタジエン、ポリイソプレンなどの不
飽和重合体のエポキシ化物、グリシジルメタクリレート
やアリルグリシジルエーテルなどの不飽和モノエIキシ
ドの重合体または共重合体などが挙げられる。もちろん
、これらは−具体例であってビスフェノールAの代シに
種々の多価フェノールを使用したり、フタル酸の代シに
他の多塩基酸を用いることもできる。
One molecule of the resin used in the present invention is
It has more than one epoxy group, preferably 1.5 or more epoxy groups. Specific examples thereof include glycidi synthesized from bisphenol A and shrimp/'-rohydrin, ether-type epoxy resin, and phthalate. Glycidyl ester-type eddyalium resin synthesized from acid and evino-rohydrin, alicyclic epoxy resin obtained by epoxidizing alicyclic dienes such as cyclopentadiene and cyclohexadiene, unsaturated polymers such as I-liptadiene, and polyisoprene. Examples thereof include epoxidized products of polymers, and polymers or copolymers of unsaturated monooxides such as glycidyl methacrylate and allyl glycidyl ether. Of course, these are specific examples, and various polyhydric phenols can be used in place of bisphenol A, and other polybasic acids can be used in place of phthalic acid.

本発明における酸無水物系硬化剤とエポキシ樹脂の混合
比率は、エポキシ基1個に対し酸無水物基が0.5〜1
,5個、好ましくは0.6〜1.2個となるような範囲
であり、この使用比率が少なすぎる場合や多すぎる場合
には、硬化物の熱変形温度が低下する傾向にある。
In the present invention, the mixing ratio of the acid anhydride curing agent and the epoxy resin is 0.5 to 1 acid anhydride group per epoxy group.
, 5 pieces, preferably 0.6 to 1.2 pieces, and if this usage ratio is too small or too large, the heat distortion temperature of the cured product tends to decrease.

本発明の組成物を硬化するに際しては、常法に従って処
理すればよく、例えば50〜250℃、好ましくは10
0〜200℃に加熱することによって硬化物が得られる
。この場合、第三級アミン、フェノール類、イミダゾー
ル類などの反応促進剤を用いることができる。
When curing the composition of the present invention, it may be treated according to a conventional method, for example, at 50 to 250°C, preferably at 10°C.
A cured product is obtained by heating to 0 to 200°C. In this case, reaction accelerators such as tertiary amines, phenols, and imidazoles can be used.

かかるエポキシ樹脂組成物は、電気絶縁材料、構造材料
及び接着剤などの分野で主に使用されるが、その際常法
に従って反応性稀釈剤、可塑剤、タルク、セラコラ、ア
ルミナ、アスベストの如き無機充填剤、顔料、難燃剤、
離型剤、消泡剤などを配合することができる。
Such epoxy resin compositions are mainly used in fields such as electrical insulation materials, structural materials, and adhesives, and in this case, reactive diluents, plasticizers, and inorganic substances such as talc, ceracola, alumina, and asbestos are added in accordance with conventional methods. fillers, pigments, flame retardants,
A mold release agent, an antifoaming agent, etc. can be added.

以下に実施例を挙げて本発明をさらに具体的に説明する
。なお、実施例及び参考例中の部及びチはすべて重量基
準である。
The present invention will be explained in more detail with reference to Examples below. Note that all parts and parts in Examples and Reference Examples are based on weight.

参考例1 攪拌機付セ・ぐラゾルフラスコに無水マレイン酸196
部(2モル)、トルエン300部及びフェノチアジン1
0部を仕込み、窒素雰囲気下で60℃に昇温し均一に溶
解させたのち、α−メチルスチレン118部(1モル)
を1時間かけて添加した。次いで115℃に加熱後、3
時間にわたり窒素雰囲気下で反応を行ったのち、析出し
た生成物をν別した。得られた生成物をメチルエチルケ
トンで再結晶し、白色の固体生成物260部を得た。
Reference Example 1 Maleic anhydride 196 in a Se-Gurasol flask with a stirrer
part (2 mol), 300 parts of toluene and 1 part of phenothiazine
After charging 0 part of α-methylstyrene and heating it to 60°C under a nitrogen atmosphere to uniformly dissolve it, add 118 parts (1 mol) of α-methylstyrene.
was added over 1 hour. Then, after heating to 115°C,
After the reaction was carried out for a period of time under a nitrogen atmosphere, the precipitated product was separated. The obtained product was recrystallized from methyl ethyl ketone to obtain 260 parts of a white solid product.

得られた生成物について性状を測定した結果、分子量3
14、酸無水物当量157、融点197℃であり、c1
3−mによシ構造解析を行った結果、前記の一般式〔■
〕中のR1がメチル基、R2が水素に相当する四塩基酸
無水物(以下、AMS−MA)(と称す)であることが
判明した口 参考例2 3−メチル−Δ−アトフヒドロ無水フタル酸166部(
1モル)及び無水マレイン酸196部(2モル)を攪拌
機付上ノfラブルフラスコに仕込み、窒素雰囲気下20
0℃で4時間反応させる。
As a result of measuring the properties of the obtained product, the molecular weight was 3.
14, acid anhydride equivalent: 157, melting point: 197°C, c1
As a result of structural analysis based on 3-m, the above general formula [■
] Reference Example 2 3-Methyl-Δ-atophhydrophthalic anhydride was found to be a tetrabasic acid anhydride (hereinafter referred to as AMS-MA) in which R1 corresponds to a methyl group and R2 corresponds to hydrogen. 166 copies (
1 mol) and 196 parts (2 mol) of maleic anhydride were placed in a top-bottomed rubble flask equipped with a stirrer, and heated for 20 minutes under a nitrogen atmosphere.
React at 0°C for 4 hours.

次いで、単蒸留によシ未反応の3−メチル−△4−テト
ラヒドロ無水フタル酸及び無水マレイン酸を回収する。
Then, unreacted 3-methyl-Δ4-tetrahydrophthalic anhydride and maleic anhydride are recovered by simple distillation.

この際、蒸留条件としては最終的に10 瓢Hgの圧力
で、かつ釜温か200℃になるまで行う。
At this time, the distillation conditions are a final pressure of 10 Hg and a temperature of 200° C. in the pot.

しかる後、反応容器に残った粗生成物77.8部にメチ
ルイソブチルケトン217部を加え、110℃で溶解し
室温まで冷却して白色固体生成物44.5部を得た。
Thereafter, 217 parts of methyl isobutyl ketone was added to 77.8 parts of the crude product remaining in the reaction vessel, dissolved at 110°C, and cooled to room temperature to obtain 44.5 parts of a white solid product.

得られた生成物について性状を測定した結果、分子量2
64、酸無水物当量157、融点168℃であシ、C1
3−NMRによシ構造解析を行った結果、前記一般式(
It)中のR3がメチル基に相当する四塩基酸無水物(
以下、MCTCと称す)であることが判明した。
As a result of measuring the properties of the obtained product, the molecular weight was 2.
64, acid anhydride equivalent 157, melting point 168°C, C1
As a result of structural analysis by 3-NMR, the general formula (
Tetrabasic acid anhydride (It) in which R3 corresponds to a methyl group (
It turned out to be MCTC (hereinafter referred to as MCTC).

実施例1 AMS −MARとMCTCとを第1表に示す割合でメ
ルトブレンドし、キャピラリ法によシ融点を測定した。
Example 1 AMS-MAR and MCTC were melt-blended in the proportions shown in Table 1, and the melting point was measured by the capillary method.

このようにして得た酸無水物混合物にエビコー) −1
004(シェル社製、エポキシ当量=925)を酸無水
物当量/エポキシ当量−〇、85の割合で混合し、更に
硬化促進剤としてキーアゾール2PZ−CNS (四国
化成社製)をエピコート−1004100部に対し1部
の割合でトライブレンドした。この混合物を150℃で
4時間硬化せしめ、2■厚、50mmφの硬化物を得、
この硬化物の外観から硬化物の均一性を判定した。また
この硬化物のガラス転移温度及び製水中における吸水率
を調べた。その結果を第1表に示す。
The acid anhydride mixture thus obtained was added to Ebico) -1
004 (manufactured by Shell Co., Ltd., epoxy equivalent = 925) was mixed in a ratio of acid anhydride equivalent/epoxy equivalent -〇, 85, and then 100 parts of Epicoat-1004 was added with Keyazol 2PZ-CNS (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator. Tri-blend was carried out at a ratio of 1 part to 1 part. This mixture was cured at 150°C for 4 hours to obtain a cured product with a thickness of 2 cm and a diameter of 50 mm.
The uniformity of the cured product was determined from the appearance of the cured product. In addition, the glass transition temperature and water absorption rate of this cured product in water production were investigated. The results are shown in Table 1.

この結果から、本発明の酸無水物混合物は低融点で作業
性にすぐれ、この硬化剤を用いたエポキシ樹脂硬化物は
均一で、かつ耐熱性、耐水性に優れたものとなるととが
わかる。
This result shows that the acid anhydride mixture of the present invention has a low melting point and excellent workability, and that the epoxy resin cured product using this curing agent is uniform and has excellent heat resistance and water resistance.

第  1  表 実施例2 実施例1で得られた酸無水物混合物にエビコー)−82
8(シェル社製、ビスフェノールA型工Iキシ樹脂、エ
ポキシ当量=190 )を酸無水物当量/エポキシ当量
−0,9の割合で混合し、更に硬化促進剤として2−エ
チル−4−メチル−イミダゾールをエピコー) −s 
2 B  100部に対し0.1部の割合で添加し、こ
の配合物を150℃で5時間、さらに200℃で10時
間硬化し、硬化物の曲げ強さを25℃及び150℃で測
定した。
Table 1 Example 2 Addition of Ebico-82 to the acid anhydride mixture obtained in Example 1
8 (manufactured by Shell Co., bisphenol A type I resin, epoxy equivalent = 190) in a ratio of acid anhydride equivalent/epoxy equivalent - 0.9, and 2-ethyl-4-methyl- as a curing accelerator. imidazole (epicor) -s
2B was added at a ratio of 0.1 part to 100 parts, and the mixture was cured at 150°C for 5 hours and then at 200°C for 10 hours, and the bending strength of the cured product was measured at 25°C and 150°C. .

結果を第2表に示す。The results are shown in Table 2.

この結果から、本発明の酸無水物混合物を用いたエポキ
シ樹脂硬化物は、曲げ強さが常温のみならず150℃と
いう高温においてもすぐれていることがわかる。
This result shows that the cured epoxy resin using the acid anhydride mixture of the present invention has excellent bending strength not only at room temperature but also at a high temperature of 150°C.

第  2  表Table 2

Claims (1)

【特許請求の範囲】 1、(A)エポキシ樹脂及び(B)下記の一般式〔 I
〕で表わされる四塩基酸無水物10〜90重量%と一般
式〔II〕で表わされる四塩基酸無水物10〜90重量%
とからなる常温で固体の酸無水物硬化剤を含有すること
を特徴とする熱硬化型エポキシ樹脂組成物。 ▲数式、化学式、表等があります▼〔 I 〕 ▲数式、化学式、表等があります▼〔II〕 式中、R_1は水素又はメチル基を表わし、R_2は水
素または低級アルキル基を表わし、R_3は水素または
低級アルキル基を表わす。
[Claims] 1. (A) an epoxy resin and (B) the following general formula [I
] and 10 to 90% by weight of a tetrabasic acid anhydride represented by general formula [II].
A thermosetting epoxy resin composition comprising an acid anhydride curing agent that is solid at room temperature. ▲There are mathematical formulas, chemical formulas, tables, etc.▼[I] ▲There are mathematical formulas, chemical formulas, tables, etc.▼[II] In the formula, R_1 represents hydrogen or a methyl group, R_2 represents hydrogen or a lower alkyl group, and R_3 represents Represents hydrogen or a lower alkyl group.
JP19721484A 1984-09-20 1984-09-20 Novel epoxy resin composition Pending JPS6173727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19721484A JPS6173727A (en) 1984-09-20 1984-09-20 Novel epoxy resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19721484A JPS6173727A (en) 1984-09-20 1984-09-20 Novel epoxy resin composition

Publications (1)

Publication Number Publication Date
JPS6173727A true JPS6173727A (en) 1986-04-15

Family

ID=16370724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19721484A Pending JPS6173727A (en) 1984-09-20 1984-09-20 Novel epoxy resin composition

Country Status (1)

Country Link
JP (1) JPS6173727A (en)

Similar Documents

Publication Publication Date Title
EP0009645B1 (en) 5-(2,5-diketotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylicanhydride, its use as curing agent for epoxy resins and as raw material for the production of polyimides, epoxy resins containing it, and their use in the preparation of various articles, and powder coating compositions
US3773856A (en) Process for the preparation of unsaturated epoxy ester compositions
JP3215106B2 (en) Epoxy compound polymerization method
JPS61285208A (en) Bismaleimide composition
JPS6138732B2 (en)
US4451637A (en) Epoxy resin composition
JPS6173727A (en) Novel epoxy resin composition
US4761460A (en) Polymaleimide compound and composition containing the same
JPS6032819A (en) Heat-resistant epoxy resin composition
JPS6051714A (en) Epoxy resin composition
JPS62116623A (en) Epoxy resin composition
JPS63225619A (en) Resin composition and reaction molding utilizing same
JPS5853644B2 (en) Photocurable heat-resistant resin composition
JPH075707B2 (en) Novel thermosetting resin composition
JPS6138730B2 (en)
JPS62161819A (en) Epoxy resin composition
JPS6028418A (en) Resin composition for electrical insulation
JPH01268712A (en) Epoxy resin composition
JPS59155428A (en) Thermosetting resin composition
JPS62108843A (en) Epoxy ester compound and resin composition thereof
JPH01268714A (en) Novel epoxy resin composition
JP2001146546A (en) Epoxy resin composition
JPS5841290B2 (en) Curable resin composition
JPH01268715A (en) Novel epoxy resin composition
JPH04153212A (en) Epoxy resin composition