JPS6172314A - Controller for average flow rate liquid level - Google Patents

Controller for average flow rate liquid level

Info

Publication number
JPS6172314A
JPS6172314A JP19440684A JP19440684A JPS6172314A JP S6172314 A JPS6172314 A JP S6172314A JP 19440684 A JP19440684 A JP 19440684A JP 19440684 A JP19440684 A JP 19440684A JP S6172314 A JPS6172314 A JP S6172314A
Authority
JP
Japan
Prior art keywords
signal
deviation
control
liquid level
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19440684A
Other languages
Japanese (ja)
Inventor
Kazuo Hiroi
広井 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19440684A priority Critical patent/JPS6172314A/en
Publication of JPS6172314A publication Critical patent/JPS6172314A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To avoid the over-correction of a flow rate due to an integrating action by delivering an adverse hysteresis signal when a control deviation signal exceeds a range of deviation corresponding to a blind sector area and using the adverse hysteresis signal to control the application of a control signal to an operating terminal. CONSTITUTION:A control deviation signal B is sent to an adverse hysteresis signal producing part 19 as well as to a blind sector area forming part 143. The signals of low levels are delivered as long as the signal B is kept within a range of deviation corresponding to a blind sector area and then set at high levels when the signal B exceeds said range of deviation and is set at >=H1 to show the adverse hysteresis characteristics. This signal of a high level serves as an ON control signal of an adverse hysteresis adding circuit 16. As a result, a flow rate control valve is controlled. Then the flow rate is controlled by a control signal D produced at a PI control arithmetic part 15. Thus the level of the signal B is lowered gradually. When the signal B is set at <=H2, an adverse hysteresis signal F is delivered. Thus the circuit 16 is turned off.

Description

【発明の詳細な説明】 〔発明の技術分野〕 Δ 本発明は1例えばタンクや槽等(以下、タンクと総称す
る)の流木蓄積効果を利用して、タングへの加入流量ま
之はタンクからの流出流量の/I動を平滑化する均流液
面制御装置の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] ∆ The present invention utilizes the driftwood accumulation effect of, for example, a tank or tank (hereinafter collectively referred to as a tank) to reduce the flow rate from the tank to the tongue. The present invention relates to an improvement in an equalizing liquid level control device for smoothing the /I movement of the outflow flow rate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に1石油精製・石油化学プロセスのような連続プロ
セスは、770熱・蒸留・圧縮・反応・冷却・吸収・分
離・精製などの諸工程が直列あるいは並列に結合されて
いるが、これらの工程間には光量の4動を吸収するため
にバッファ用タンクが設(すられでいる。ところで、連
続プロセス運転の安定性は、前記タンクを利用した拘泥
液面セ1j御の良否にかかっていると言っても過言では
ない。つまり、拘泥制御が適切に行なわれないと流量度
動が発生し、下流側に位置する各工程の制御が連鎖的に
影響を受は一運転は乱れて不安定となる。この結果、製
品の品質が低下し、また電力消費量が増大するなどの不
具合がある。特に1石油精製・石油化学のような連続プ
ロセスでは、タンク類金用いた均冗戚面制御の限界を制
することが出来れば、プロセスの安定運転を制すること
ができるとも言われている。このように拘泥液面制御は
非常に重要な制御であるが、従来の技術では瘍〜全なも
のであり、拘泥の限界をきわめていない。
In general, continuous processes such as petroleum refining and petrochemical processes have various steps such as heat, distillation, compression, reaction, cooling, absorption, separation, and refining connected in series or parallel. A buffer tank is installed to absorb the four changes in the amount of light. By the way, the stability of continuous process operation depends on the quality of the control of the liquid level control using the tank. It is no exaggeration to say that.In other words, if the restraint control is not performed properly, flow rate fluctuations will occur, and the control of each downstream process will be affected in a chain reaction, resulting in disrupted and unstable operation. As a result, there are problems such as a decline in product quality and an increase in power consumption.In particular, in continuous processes such as oil refining and petrochemicals, it is difficult to control the balance surface using metal tanks. It is said that if you can control the limits, you can control the stable operation of the process.In this way, the retained liquid level control is a very important control, but with conventional technology, it is possible to control the stable operation of the process. However, the limits of restraint have not been reached.

以下、従来装置について具体的に設明する。The conventional device will be explained in detail below.

第3図は単一ループ制御方式の均流液面制御装置であり
て、具体的には原料あるいは中間製品などの流体が例え
ば前工程より流入管1全通ってタング2に供給され、こ
こでのタンク2円の液面は液面検出器3によって検出さ
れる。この液面検出器3で検出され次液面検出信号はP
I(P:比14LI:積分)コントローラ4に導入され
、ここで設定値Svと比較されて不感帝領域付PI演算
を行って操作出力信号を得、この信号で流量調節弁5の
開度を調整してタング2より次工程へ送出する流体のI
titを制御している。6は流出管である。
FIG. 3 shows a single-loop control type equalizing liquid level control device, in which fluid such as raw materials or intermediate products is supplied from a previous process, for example, through the entire inflow pipe 1 to the tongue 2. The liquid level in tank 2 is detected by liquid level detector 3. The next liquid level detection signal detected by this liquid level detector 3 is P
I (P: ratio 14 LI: integral) is introduced into the controller 4, where it is compared with the set value Sv and PI calculation with insensitive area is performed to obtain an operation output signal, and this signal controls the opening degree of the flow rate control valve 5. I of the fluid to be adjusted and sent from tongue 2 to the next process
It controls tit. 6 is an outflow pipe.

次に、第4図は液面制御と流量制御を行なうカスケード
制御方式を有する均流液面制御装置である。この装置は
、液面コン)o−ラ4で得られ比出力信号全流量コント
ローラ7に流量設゛足値信号として与えるとともに、流
出管σの流量を流量検出器8で検出してこの検出信号1
c開平演算部9によりリニアライズした後、流量コン)
o−ラ7ヘブaセス信号として導入する。
Next, FIG. 4 shows an equal flow liquid level control device having a cascade control system for controlling the liquid level and the flow rate. In this device, a specific output signal obtained from a liquid level controller (o-ra) 4 is given to a total flow rate controller 7 as a flow rate set value signal, and a flow rate of an outflow pipe σ is detected by a flow rate detector 8 to generate a detection signal. 1
c After linearization by the square root calculation unit 9, the flow rate controller)
Introduced as an o-ra 7 heb a access signal.

そして、この流量コントローラ7において開平演算部9
からのプロセス信号と液面コントローラ4からの設定値
信号と全比較し、その偏差全不感帯領域付PI調節演算
を行って操作出力信号を得、この信号で流を調節弁50
関度を調整して次工程へ送出するKKのaitを制御し
ている。
In this flow rate controller 7, a square root calculating section 9
The process signal from the liquid level controller 4 is compared with the set value signal from the liquid level controller 4, and a PI adjustment calculation with a total dead band area is performed to obtain an operation output signal.
It controls the ait of KK which adjusts the relationship and sends it to the next process.

ところで、連続プロセスの単位操作の中間に介在される
バッファタンクはfLt4動を吸収して拘泥化すること
にある。しかし、上記装置の不感帯領域付PI演算のコ
ントローラ4.7は流入流量が竜勤したとき、不感帯領
域では胸先制御となり、不感帯領域以外ではPI切動作
して機能するが、特に工動作にあってはプロセスと設定
値の偏差が不感帯領域以外に出たときから不感帯領域に
入るまでの開動作を継続するために流量の過修正が生じ
、このため再び不感帯領域を通り過ぎて逆の不感帯領域
外へ入り込むとともに、これらの一連の動作を繰返し行
なう。
By the way, the purpose of a buffer tank interposed between unit operations in a continuous process is to absorb and concentrate the fLt4 movement. However, when the inflow flow rate increases, the controller 4.7 of the PI calculation with a dead zone area of the above device functions by controlling the chest tip in the dead zone area and turning off the PI outside the dead zone area, but it is particularly difficult to operate during construction work. In this case, an overcorrection of the flow rate occurs because the opening operation continues from the time when the deviation between the process and the set value goes outside the dead band area until it enters the dead band area. As you move into the area, repeat this series of actions.

この結果、均流時間が短かくなり、かつ前の拘泥流量と
後の均R,流量の差が大きくなって抑流効果が半減して
しまう。
As a result, the flow equalization time is shortened, and the difference between the previous restricted flow rate and the subsequent equalized R and flow rate becomes large, and the flow suppression effect is halved.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような点に着目してなされたものであっ
て、積分動作による流量の過修正を防止して抑流効果を
最大限に生かし、よってプラントに不必要な外乱を与え
ずに安定運転を実現する均流液面制御装置全提供するこ
とにある。
The present invention has been made with attention to the above-mentioned points, and it is possible to prevent over-correction of the flow rate due to integral operation and make the most of the flow suppression effect, thereby eliminating unnecessary disturbances to the plant. Our goal is to provide a complete equalization liquid level control device that achieves stable operation.

〔発明の概要〕[Summary of the invention]

本発明は、不感帯領域付PI演算手段のほかに、液面検
出信号と)皮面設定II信号の1差が不感帯領域外に出
九ところで逆ヒステリ7スのオ/  ン・オフ信号を発
生する逆ヒステリシス信号作底手段と、この逆ヒステリ
7ス信号作成手段からオン信号が出力されたとき調節動
作を実行し。
In addition to the PI calculation means with a dead band area, the present invention generates a reverse hysteresis on/off signal when a difference of 1 between the liquid level detection signal and skin level setting II signal goes outside the dead band area. A reverse hysteresis signal generating means and an adjusting operation are executed when an ON signal is output from the reverse hysteresis signal generating means.

オフ信号が出力されたとき操作出力信号全強制的に保持
する出力制御手段とを有し、積分動作時に流量の過修正
r阻止する均りΦ液面制御装置である。
This liquid level control device has output control means for forcibly holding all the operation output signals when an off signal is output, and prevents over-correction of the flow rate during integral operation.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例rこつぃて第1図を参照して説
明する。同図において11はバッファ機能を有する槽を
含むタンクであって、このタンク11には前工程より流
入管12を介して原料または中間製品のi本が導入され
る。このタンク11には液面検出器13が設けられ、こ
こでタンク11円の液面が検出される。この液面検出器
13としては、劉えは差圧検出器が使用畜れ、あるいは
流体自体に特有のdi率がある場合には静電容量形レベ
ル計が使用ちれ、また従来一般に使用嘔れている浮子式
液位検出器を用いて液面全検出してもよい。この液面検
出器13VCよって検出された液面検出信号イは不感帯
領域形双手段14に送らルる。
An embodiment of the present invention will be described below with reference to FIG. In the figure, 11 is a tank including a tank having a buffer function, and i pieces of raw materials or intermediate products are introduced into this tank 11 from the previous process via an inlet pipe 12. This tank 11 is provided with a liquid level detector 13, which detects the liquid level of the tank 11. As the liquid level detector 13, a differential pressure detector may be used, or a capacitance type level meter may be used if the fluid itself has a di ratio specific to it. The entire liquid level may be detected using a float-type liquid level detector. The liquid level detection signal A detected by the liquid level detector 13VC is sent to the dead zone type means 14.

この不感帯領域形成手段14は、液面検出器13からの
液面に比例した液面検出信号イと固足形または可変形の
液面設定部14ノで設定された液面検出信号とを比較し
て制御偏差信号o2求める偏差演算要素142と、この
偏差演算要素142から出力された制御偏差信号口が零
を中心として正・負の所定月差範囲までは不感帯領域外
示し、その偏差範囲を越えるとそこからのずれ址に比例
した実効閥差信号ハを出力する不感帯領域形成部143
とを有するものである。
This dead zone area forming means 14 compares a liquid level detection signal proportional to the liquid level from the liquid level detector 13 with a liquid level detection signal set by a fixed foot type or variable type liquid level setting unit 14. A deviation calculation element 142 that calculates a control deviation signal o2, and a control deviation signal output from this deviation calculation element 142 are outside the dead zone region up to a predetermined positive and negative monthly difference range centered on zero, and exceed the deviation range. and a dead band region forming unit 143 that outputs an effective difference signal C proportional to the deviation from there.
It has the following.

15は速度形PI調節演算部であって、実効@差信号ハ
を取り込んで速度形PI調節演算を行って速度形調節信
号二’を得るとともに、この信号二を逆ヒステリシス信
号付服回路16’i介して速度形−位置影信号変換部1
7へ導入する。
Reference numeral 15 denotes a speed-type PI adjustment calculation section which takes in the effective@difference signal C and performs speed-type PI adjustment calculation to obtain a speed-type adjustment signal 2'. i via velocity type-position shadow signal converter 1
7.

この信号変換f!iJ、17は、速度形調節信号二七位
置形信号に変換して操作出力信号ホ七得、これ′をを流
部調節弁181してこの流量調節弁18の開度を調整し
1次工程への流量を調整するものである。
This signal conversion f! iJ, 17 converts the speed type control signal 27 into a position type signal and obtains the operation output signal HO7, which is sent to the flow control valve 181 to adjust the opening degree of this flow rate control valve 18, and is used in the primary process. This is to adjust the flow rate to.

さらに、この装置にあっては、逆7ステリ7ス信号作成
部19を有し、これには偏差演算要素142から制御偏
差信号口が入力されるようになっている。この逆ヒステ
リシス信号作取部19は、零を中心として正・負偏差が
不感帯領域を越えた部分で所定幅の逆ヒステリクス特性
を有し、かつスイッチをオン・オフ制御するに必要な所
定の2値レベルをもった逆ヒステリ7ス信号へを発生し
、前記逆辷ステリアス付卯回路16へ送出する。この逆
ヒステリシス付卯回路16は、逆ヒステリシス信号へが
オンのとき。
Furthermore, this device has an inverse 7 sterility signal generator 19 to which a control deviation signal port from the deviation calculation element 142 is input. This reverse hysteresis signal generator 19 has a reverse hysteresis characteristic of a predetermined width in a portion where the positive and negative deviations exceed the dead zone region around zero, and has a predetermined two-way signal necessary for on/off control of the switch. A reverse hysteresis signal 7 having a value level is generated and sent to the reverse hysteresis circuit 16. This circuit 16 with reverse hysteresis is turned on when the reverse hysteresis signal is turned on.

速度形調節信号二全信号変換部17に:、送り込んで調
節演算を実行させ、オフのときには速度形調節信号二を
信号変換部12に送り込まずに信号変換部17において
操作出力信号ホを強制的に保持させる機能をもっている
The speed type adjustment signal 2 is sent to the signal converter 17 to execute the adjustment calculation, and when it is off, the speed type adjustment signal 2 is not sent to the signal converter 12, but the operation output signal H is forced in the signal converter 17. It has the function of holding the

次に1以上のように構成された装置の作用について第1
図および8g2図を参照して′説明するOなお、第2図
(alは不感帯領域形成手段14から出力される実効偏
差信号ハの変化をボし、同図(b)は逆ヒステリシス信
号作W、部19の出力である逆ヒステリシス信号への変
化、同図(clは従来の制御方式に逆上1フリクス機能
を付那したときの等価制御偏差信号の変化の様子を示し
ている0 先ず、(ii差演算要素142では液面検出信号イと液
面設定傭信号とを比較してこれら両信号の(2)歪であ
る制御偏差信号口を求めて不感帯領域形成部143に供
給する。この不感帯領域形fJx、部143は、第2図
(alに示すように制御偏差信号口が徐々に大きくなっ
ても4全中心として予め定められた正・負の所定の偏差
範囲までは出力零の不感帯領域形示し、所定の月差範囲
を越えてH1以上になると、ここで初めてHlからの偏
歪ivc比列した実効偏差信号ハを得ることになる。そ
して、この実効偏差信号ハは速度形PI、J箇演IE邪
15に送られ、ここで速度形I    PI調節演算を
行つて速度形調節信号二を求め。
Next, we will discuss the operation of the device configured as described above.
The explanation will be made with reference to FIG. 2 and FIG. 8g2. In addition, FIG. , the change to the inverse hysteresis signal which is the output of the section 19, (cl shows the change in the equivalent control deviation signal when the inverse 1-flix function is added to the conventional control method.0 First, (ii) The difference calculation element 142 compares the liquid level detection signal A and the liquid level setting signal to obtain a control deviation signal which is the (2) distortion of these two signals and supplies it to the dead band region forming section 143. As shown in FIG. 2 (al), the dead zone area form fJx, section 143 is such that even if the control deviation signal port gradually increases, the output remains zero until a predetermined positive/negative deviation range predetermined as the center of 4. When the dead zone area is expressed as a dead zone area, and when it exceeds a predetermined monthly difference range and becomes H1 or higher, an effective deviation signal C is obtained which is a ratio of partial strain IVC from Hl.Then, this effective deviation signal C is expressed as a speed type. The PI is sent to the J section IE 15, where the speed type I PI adjustment calculation is performed to obtain the speed type adjustment signal 2.

逆ヒステリシス信号付圓回路16を介して速度形−位置
影信号変換部17に送らnるものであるが、ここで逆ヒ
ステリシス信号付圓回路1σが逆ヒステリシス信号作成
部19から出方される逆ヒステリシス信号へを受けて前
記速度形調節信号二の信号変換部17への導入が制御さ
れる。
It is sent to the velocity type/position shadow signal converting section 17 via the inverse hysteresis signal attached circuit 16, where the inverse hysteresis signal outputted from the inverse hysteresis signal generating section 19 is In response to the hysteresis signal, the introduction of the speed type adjustment signal 2 to the signal converting section 17 is controlled.

即ち、制御偏差信号口は不感帯領域形成部143のほか
、逆ヒ、ステリシス信号作成部19にも送られており、
ここでの信号作底部19では制御IJi差信号口が前述
した不感帯領域に相応する所定の偏差範囲までは例えば
a−レベルを出力し、該所定の偏差範囲を越えてH,J
d上になると、第2図(b)のように逆ヒステリシス特
性を示してハイレベルとなり、このハイレベル信号が逆
ヒステリンス付亦回路16ヘオン制御信号として与えら
れる。この結果、速度形PI調節演算部15の調節信号
二が信号変換部17に導入され、流量調節弁18の調節
動作が実効される。この調節動作は制御偏差信号口がH
t k越え、更VcH,を越えても逆ヒステリ7ス信号
のハイレベルによって継続実効されることになる。その
後、PIyU@演算部15による調節信号二によって流
量調整が行なわれて制御偏差信号口が徐々に減少してく
ると、逆ヒステリシス信号作底g19は該制御偏差信号
口の上昇時と異なってH!以下になったときにローレベ
ルとなる逆ヒステリクス信号へを出力するので、逆ヒス
テリシス信号付加回路16はオフとなる。
That is, the control deviation signal port is sent not only to the dead band region forming section 143 but also to the reverse error signal generating section 19,
Here, in the signal output section 19, the control IJi difference signal port outputs, for example, a-level up to a predetermined deviation range corresponding to the above-mentioned dead zone region, and when the predetermined deviation range is exceeded, H, J
d, it exhibits a reverse hysteresis characteristic and becomes high level as shown in FIG. As a result, the adjustment signal 2 from the speed type PI adjustment calculation section 15 is introduced into the signal conversion section 17, and the adjustment operation of the flow rate adjustment valve 18 is effected. This adjustment operation is performed when the control deviation signal port is H.
Even if tk is exceeded or VcH is exceeded, the reverse hysteresis will continue to be effective due to the high level of the reverse hysteresis signal. After that, when the flow rate is adjusted by the adjustment signal 2 from the PIyU @ calculation unit 15 and the control deviation signal port gradually decreases, the bottom g19 of the reverse hysteresis signal is different from when the control deviation signal port rises and is ! The reverse hysteresis signal adding circuit 16 is turned off because it outputs the reverse hysteresis signal which becomes low level when the voltage is below.

従って、速度形PI調節演算部15の調節信号二は信号
変換部17にm見られなくなり、ここで操作出力信号は
保持されて第2図(clのように抑流制御に移行するも
のである。
Therefore, the adjustment signal 2 of the speed type PI adjustment calculation unit 15 is no longer seen in the signal conversion unit 17, and the operation output signal is held here and the control is shifted to the suppression control as shown in FIG. 2 (cl). .

以上の説明は正側偏差について述べたが、第2図に示す
ように負側偏差であっても、負側のり、、L、vc達し
たときの逆ヒステリシス動作は正側偏差の動作と同様で
ある。
The above explanation was about the positive side deviation, but as shown in Figure 2, even for the negative side deviation, the reverse hysteresis operation when the negative side slope, L, vc is reached is the same as the operation for the positive side deviation. It is.

従って1以上述べた実施例装置では、第2図(C)に示
す制御1Jii差信号の動作に等価置換した列から明ら
かなように、制御偏差信号口がH8以上またはり、以下
となった後に収束方向に回ってくるときに逆上1フリク
ス機能により、早目に調節rM作をロックさせて抑流制
御に移し、積分動作の行き過ぎt防いでいる。
Therefore, in the embodiment device described above, as is clear from the column equivalently replaced with the operation of the control 1Jii difference signal shown in FIG. 2(C), after the control deviation signal port becomes H8 or higher or When turning in the convergence direction, the reverse upward 1 flick function locks the adjustment rM operation early and shifts to suppression control to prevent the integral operation from going too far.

なお、T−発明装置は上記英i列に限定されるものでは
ない。即ち、上記実施列ではハード構成を用いて説明し
たが、各構成要素141〜143%15.17.19等
はマイクロコンビエータを用いてソフトフェア的に処理
できる。
Note that the T-invention device is not limited to the above-mentioned I column. That is, although the above embodiment has been explained using a hardware configuration, each component 141 to 143% 15, 17, 19, etc. can be processed in a software manner using a micro combinator.

また、PI調節演゛痺部15は速度形PI調節演itを
行ない、後続の信号変換部11VfCより位置影信号に
変換したが1位置形信号のみの演算処理でも同様ic達
底できるものである。さらに。
In addition, the PI adjustment/control unit 15 performs a speed-type PI adjustment operation and converts it into a position shadow signal by the subsequent signal conversion unit 11VfC, but it is possible to reach the IC bottom in the same way by processing only one position-type signal. . moreover.

上記実権−Jはタンク1ノからの流体の6n出流産の制
御に適用したが、流体のに入訛址の制御についても同様
VC適用できる。また、制御(6[信号口を用いて逆ヒ
ステリシス信号を作成したが。
Although the above-mentioned Actual Control-J was applied to the control of the miscarriage of 6n of fluid from the tank 1, VC can be similarly applied to the control of the inflow of fluid. In addition, a reverse hysteresis signal was created using the control (6) signal port.

不感帯領域形1’l!!r143の出力で作成してもよ
い。その他1本発明はその要旨を逸脱しない範囲で種々
変形して実施できる。
Dead band region form 1'l! ! It may also be created using the output of r143. Other 1 The present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、制御偏差信号を受
けてその偏差が4七中心として所定の偏差範囲まで出力
零の不感帯領域とし、所定調節信号全項めて流量調節制
御を行うものにおいて、前記制御偏差信号または実効偏
差信号を用いて前記所定の偏差範囲を逸脱したとき逆ヒ
ステリシス信号を詐取してこの信号を用いて前記調節信
号の操作端側導入全制御するようにしたので、前記逆ヒ
ステリシス信号を用いて制御偏差信号が所定の偏差範囲
へ戻る以前に調節信号の操作端側導入を停止させること
ができ、積X動作による流量の過修正を完全に防止でき
る。
As detailed above, according to the present invention, upon receiving a control deviation signal, the deviation is set as a dead band region of zero output up to a predetermined deviation range with the center of 47, and flow rate adjustment control is performed using all terms of the predetermined adjustment signal. In this case, when the control deviation signal or the effective deviation signal is used to deviate from the predetermined deviation range, a reverse hysteresis signal is stolen and this signal is used to fully control the introduction of the adjustment signal to the operating end side. Using the reverse hysteresis signal, it is possible to stop the introduction of the adjustment signal to the operating end before the control deviation signal returns to the predetermined deviation range, and it is possible to completely prevent over-correction of the flow rate due to the product X operation.

これにより、タンクによる抑流効果を最大限に生かすこ
とが可能となり、プラントに不必要な外乱を与えること
がすくすってプラントの安定運転を確保できる。この結
果、僕数工程処理の/   プラントにあっては連鎖的
な乱れを最小限にとどめることができ、省エネルギー化
および製品の高品質化に寄与する均流液面制御装置を提
供できる。
This makes it possible to make maximum use of the flow suppression effect of the tank, thereby reducing unnecessary disturbances to the plant and ensuring stable operation of the plant. As a result, chain disturbances can be minimized in multi-process plants, and a level-level control device can be provided that contributes to energy savings and higher product quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の一笑施fil?示す構成図。 第2図は本発明装置における逆ヒステリシス機能と制御
偏差との関係を示す図゛、第3図および第4図はそれぞ
れ従来装置を説明する構成図である。 11・・・タンク (流木蓄積容器)、13・・・液面
検出器、14・・・不感帯領域形成手段、142・・・
偏差演算要素、143・・・不感帯領域形g部。 15・・・PI調節演算部、16・・・逆ヒステリシス
信号付卯回路、18・・・T:!1.t14節弁、19
・・・逆ヒステリシス信号作底部。 出願人代理人 弁理士 鈴 圧式 彦 第 3 図 第4図
Fig. 1 shows the device of the present invention. The configuration diagram shown. FIG. 2 is a diagram showing the relationship between the reverse hysteresis function and control deviation in the device of the present invention, and FIGS. 3 and 4 are configuration diagrams illustrating the conventional device, respectively. DESCRIPTION OF SYMBOLS 11... Tank (driftwood accumulation container), 13... Liquid level detector, 14... Dead zone area forming means, 142...
Deviation calculation element, 143... Dead zone area shape g section. 15... PI adjustment calculation unit, 16... Rabbit circuit with reverse hysteresis signal, 18... T:! 1. t14 seasonal valve, 19
...The bottom of the reverse hysteresis signal. Applicant's agent Patent attorney Suzu Ushiki Hiko 3 Figure 4

Claims (7)

【特許請求の範囲】[Claims] (1)流体蓄積容器を用いた均流液面制御装置において
、流体蓄積容器内の流体液面検出信号と液面設定値信号
との偏差である制御偏差信号から不感帯領域をもった実
効偏差信号を求める不感帯領域形成手段と、この手段に
よって得られた実効偏差信号を調節演算によって調節信
号を求める調節演算手段と、前記制御偏差信号または実
効偏差信号を受けて前記不感帯領域に相当する偏差範囲
を越えたとき逆ヒステリシス特性をもった逆ヒステリシ
ス信号を出力する逆ヒステリス信号作成手段と、この逆
ヒステリシス信号作成手段によって得られた逆ヒステリ
シス信号を用いて前記調節信号の操作端側への導入を制
御する調節信号出力制御手段とを備えたことを特徴とす
る均流液面制御装置。
(1) In an equal flow liquid level control device using a fluid storage container, an effective deviation signal with a dead band region is derived from a control deviation signal that is the deviation between the fluid level detection signal in the fluid storage container and the liquid level set value signal. dead band area forming means for calculating the dead band area; adjustment calculation means for calculating an adjustment signal by adjusting the effective deviation signal obtained by this means; a reverse hysteresis signal generating means for outputting a reverse hysteresis signal having a reverse hysteresis characteristic when the voltage exceeds the limit; and controlling introduction of the adjustment signal to the operating end side using the reverse hysteresis signal obtained by the reverse hysteresis signal generating means. An equalizing liquid level control device comprising: an adjustment signal output control means for controlling the level of the liquid.
(2)不感帯領域形成手段は、流体液面検出信号と液面
設定値信号とを比較してこれら両信号の偏差である制御
偏差信号を求める偏差演算要素と、この偏差演算要素に
よって得られた制御偏差信号を受け、この制御偏差信号
が零から所定の偏差範囲では出力零の不感帯領域を形成
しかつ前記所定の偏差範囲を越えるとその偏差範囲を越
えたときからのずれ量に比例した実効偏差信号を出力す
る不感帯領域形成部とを有するものである特許請求の範
囲第1項記載の均流液面制御装置。
(2) The dead zone area forming means includes a deviation calculation element that compares the fluid level detection signal and the liquid level set value signal to obtain a control deviation signal that is the deviation between these two signals, and a control deviation signal obtained by this deviation calculation element. When a control deviation signal is received, this control deviation signal forms a dead band region of zero output within a predetermined deviation range from zero, and when it exceeds the predetermined deviation range, an effective 2. The equalizing liquid level control device according to claim 1, further comprising a dead zone region forming section that outputs a deviation signal.
(3)液面設定値信号は、予め設定されかつ可変形の液
面設定部から出力されるものである特許請求の範囲第1
項または第2項の何れかに記載の均流液面制御装置。
(3) The liquid level setting value signal is set in advance and output from a variable liquid level setting section.
2. The equalizing liquid level control device according to any one of Items 1 and 2.
(4)不感帯領域形成部は、制御偏差信号が零を中心と
して正、負所定の偏差範囲のとき出力零とする不感帯領
域を形成するものである特許請求の範囲第1項記載の均
流液面制御装置。
(4) The dead zone region forming section forms a dead zone region in which the output is zero when the control deviation signal is in a predetermined positive or negative deviation range centered around zero. Surface control device.
(5)逆ヒステリシス信号作成手段によって得られる逆
ヒステリシス信号は、スイッチをオン・オフ制御するに
必要な2値レベルをもったものである特許請求の範囲第
1項記載の均流液面制御装置。
(5) The equalizing liquid level control device according to claim 1, wherein the reverse hysteresis signal obtained by the reverse hysteresis signal generating means has a binary level necessary for controlling on/off of the switch. .
(6)調節演算手段は、実行偏差信号をPI調節演算す
るものである特許請求の範囲第1項記載の均流液面制御
装置。
(6) The equalizing liquid level control device according to claim 1, wherein the adjustment calculation means performs PI adjustment calculation on the execution deviation signal.
(7)調節信号出力制御手段は、逆ヒステリシス信号の
1つのレベルを受けてオンして前記調節信号を操作端側
に与えて流量調節動作を実行させ、また逆ヒステリシス
信号の他の1つのレベルを受けてオフして前記調節信号
を操作端側に与えずにオフ以前の信号を強制的に保持さ
せて操作端側を制御するものである特許請求の範囲第1
項記載の均流液面制御装置。
(7) The adjustment signal output control means is turned on in response to one level of the reverse hysteresis signal, applies the adjustment signal to the operating end side to execute the flow rate adjustment operation, and outputs another level of the reverse hysteresis signal. claim 1, wherein the control signal is turned off in response to the control signal, and the control end is controlled by forcibly holding the signal before turning off without giving the adjustment signal to the operating end.
The equalizing liquid level control device described in .
JP19440684A 1984-09-17 1984-09-17 Controller for average flow rate liquid level Pending JPS6172314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19440684A JPS6172314A (en) 1984-09-17 1984-09-17 Controller for average flow rate liquid level

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19440684A JPS6172314A (en) 1984-09-17 1984-09-17 Controller for average flow rate liquid level

Publications (1)

Publication Number Publication Date
JPS6172314A true JPS6172314A (en) 1986-04-14

Family

ID=16324070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19440684A Pending JPS6172314A (en) 1984-09-17 1984-09-17 Controller for average flow rate liquid level

Country Status (1)

Country Link
JP (1) JPS6172314A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221611A (en) * 1975-08-13 1977-02-18 Hitachi Ltd Operation control appliance for power station
JPS57141707A (en) * 1981-02-27 1982-09-02 Toshiba Corp Split controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221611A (en) * 1975-08-13 1977-02-18 Hitachi Ltd Operation control appliance for power station
JPS57141707A (en) * 1981-02-27 1982-09-02 Toshiba Corp Split controller

Similar Documents

Publication Publication Date Title
Wahl et al. Understanding and prediction of the dynamic behavior of distillation columns
JPS6172314A (en) Controller for average flow rate liquid level
US3701889A (en) Variable-structure automatic control system
JPH075904A (en) Neural network controller
EP0083569A1 (en) Large angle, gravity compensated, bank-to-turn pursuit controller
JPS5849647B2 (en) Hatsudenshiyo no Uten Seigiyosouchi
JPS6172315A (en) Average flow rate controller
Aravind et al. Auto tuning PID controller for multi-tank process
JPS5847601B2 (en) Boiler steam temperature control method
Zhou Research on the Control Methods Based on Liquid Level System
JP2811041B2 (en) Equilibrium liquid level controller
JPS5947331B2 (en) flow control device
JPS6397347A (en) Control method for molten surface in mold in continuous casting machine
JPS61190602A (en) Regulator
SU944625A1 (en) Apparatus for automatic control of alkaline liquor preparation process
JPS6237721B2 (en)
JP2564001B2 (en) Water level adjustment device
JPS62271906A (en) Control device for turbine
JPH05324005A (en) Command ff/fb controller
JPS59128602A (en) Process control device
JPS62226316A (en) Flow rate control device
JPH05142390A (en) Water supply control device
JPH0368284B2 (en)
JPS5936804A (en) Automatic correcting method of feedforward model
JPH0234044B2 (en)