JPH02252977A - Water level adjustor - Google Patents

Water level adjustor

Info

Publication number
JPH02252977A
JPH02252977A JP1071838A JP7183889A JPH02252977A JP H02252977 A JPH02252977 A JP H02252977A JP 1071838 A JP1071838 A JP 1071838A JP 7183889 A JP7183889 A JP 7183889A JP H02252977 A JPH02252977 A JP H02252977A
Authority
JP
Japan
Prior art keywords
water level
fuzzy
water
control
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1071838A
Other languages
Japanese (ja)
Other versions
JP2564001B2 (en
Inventor
Takahide Niimura
新村 隆英
Kenichiro Fukui
福井 健一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1071838A priority Critical patent/JP2564001B2/en
Publication of JPH02252977A publication Critical patent/JPH02252977A/en
Application granted granted Critical
Publication of JP2564001B2 publication Critical patent/JP2564001B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)

Abstract

PURPOSE:To smoothly adjust the water level by the manual operation by a skilled operator by converting the analogue quantity of water level and the power generator output to each fuzzy value and determining the water level adjustment quantity on the basis of the condition of the fuzzy value. CONSTITUTION:A water level adjustor 30 is constituted of a control rule setting part 32 and a fuzzy supposition part 34. The upper water layer water level 20 supplied from a water level detector is inputted into the water level adjustor 30, and the adjustment quantity for the guide vane of a load limitter 22 due to the result of the fuzzy supposition is outputted. Further, the output of the load limitter 22 is utilized for controlling the degree of guide vane opening degree 24, and feedback-operated into the fuzzy supposition part 34 of the water level adjustor 30. Further, the flow-out water quantity 26 is varied by adjusting the guide vane opening degree 24. While, the upper water tank water level 20 which varies according to the flow-out water quality 26, accompanied with the delay time, is detected by the water level detector of the upper water tank.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、水力発電における上水槽の水位変動に対し
て、安定な発電機出力の調整制御を実現できるファジィ
推論機能を有する水位調整装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a water level adjustment device having a fuzzy inference function that can realize stable adjustment control of generator output in response to water level fluctuations in a water tank in hydroelectric power generation. .

〔従来の技術〕[Conventional technology]

一般に、水位調整装置は、上水槽水位を一定に保つよう
に上水槽に流入する自然水量に応じてガイドベーン開度
を加減して、発電機の出力を調整する装置であり、この
種の水位tAN装置としては、第3図に示すものが知ら
れている。第3図において、参照符号10は水位調整装
置であり、水位調整装置10は水位設定器12、PI演
算部14、水位調定率演算部16等から構成される。2
0は水位検出器からの上水槽水位、22は調速機の負荷
制限器、24はガイドベーン開度、26は流出水量であ
る。
In general, a water level adjustment device is a device that adjusts the output of a generator by adjusting the opening degree of the guide vane according to the amount of natural water flowing into the water tank in order to keep the water level of the water tank constant. As a tAN device, one shown in FIG. 3 is known. In FIG. 3, reference numeral 10 is a water level adjustment device, and the water level adjustment device 10 is comprised of a water level setter 12, a PI calculation section 14, a water level adjustment rate calculation section 16, and the like. 2
0 is the water tank water level from the water level detector, 22 is the load limiter of the speed governor, 24 is the guide vane opening degree, and 26 is the outflow water amount.

このように構成される従来の水位調整装置による水位の
調整は、次のように行われる。
Adjustment of the water level by the conventional water level adjustment device configured as described above is performed as follows.

水位調整装置10は、水位検出器により実際に得られた
検出値である上水槽水位20を入力とし、この検出値と
水位設定器12に予め設定された上水槽の水位設定値と
の比較を行って水位偏差を求め、水位偏差の大きさに応
じた比例−積分(PI)演算をPI演算部14にて行い
、水位偏差が零になるように負荷制限器22に対する調
整量を出力する。負荷制限器22は、この調整量に従っ
てガイドベーン開度24を制御する。ガイドベーン開度
24の加減により、流出水量26が変化する。遅れ時間
を伴いながら流出水量26に従って変動する上水槽水位
20は、上水槽の水位検出器(図示されない)にて検出
される。
The water level adjustment device 10 inputs the upper water tank water level 20, which is the detected value actually obtained by the water level detector, and compares this detected value with the upper water tank water level setting value set in advance in the water level setting device 12. The water level deviation is determined by the water level deviation, and the PI calculation unit 14 performs a proportional-integral (PI) calculation according to the magnitude of the water level deviation, and outputs an adjustment amount to the load limiter 22 so that the water level deviation becomes zero. The load limiter 22 controls the guide vane opening 24 according to this adjustment amount. The outflow water amount 26 changes depending on the guide vane opening degree 24. The upper water tank water level 20, which fluctuates according to the outflow water amount 26 with a delay time, is detected by a water level detector (not shown) of the upper water tank.

なお、ガイドベーン開度24が加減制御されて、上水槽
水位20の変動が生じるまでには時間遅れが存在し、こ
の水位変動の遅れによる負荷制限器22の調整量の行き
過ぎを防止するため、水位調整装置10内の水位調定率
演算部16において水位調定率を求め、負荷制限器22
の位置の変更による見掛上の水位変化分を補正信号とし
て上水槽水位20の検出値に加算している。
Note that there is a time delay between the adjustment of the guide vane opening 24 and the fluctuation of the water tank water level 20, and in order to prevent the amount of adjustment of the load limiter 22 from going too far due to the delay in water level fluctuation, The water level adjustment rate is calculated in the water level adjustment rate calculating section 16 in the water level adjustment device 10, and the load limiter 22
The apparent water level change due to the change in position is added to the detected value of the water tank water level 20 as a correction signal.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述した水位調整装置によれば、水位変
動の調整は、上水槽の実際の水位と水位設定器における
設定水位との差である水位偏差の大きさに応じたPI演
算を行って負荷制限器の調整量を決定しているため、発
電機運転台数の変更など、非線形な要素を含む水位変動
に対する調整は困難であった。
However, according to the water level adjustment device described above, the water level fluctuation is adjusted by performing a PI calculation according to the size of the water level deviation, which is the difference between the actual water level in the water tank and the set water level in the water level setting device, to limit the load. Since the adjustment amount of the generator is determined, it was difficult to adjust to water level fluctuations that include nonlinear factors, such as changing the number of generators in operation.

また、従来の水位調整装置には、負荷調整器の位置を変
更した際、見掛上の水位が変化する補正信号を水位調停
率演算部により演算して上水槽水位検出値に加えている
が、補正信号を得るためのこの水位調定率が適切でない
と、発電機出力が周期的に変動するという問題点があっ
た。
In addition, in conventional water level adjustment devices, when the position of the load regulator is changed, a correction signal that changes the apparent water level is calculated by a water level adjustment rate calculation section and added to the detected water tank water level value. If this water level adjustment rate for obtaining a correction signal is not appropriate, there is a problem in that the generator output fluctuates periodically.

そこで、本発明の目的は、非線形性を持つ水位変動に対
して安定な調整制御を実現すると共に、開塾演算に必要
な各種パラメータの決定を簡略化できる水位側M装置を
提供するにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a water level side M device that can realize stable adjustment control against nonlinear water level fluctuations and simplify the determination of various parameters necessary for school opening calculations.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る水位調整装置は、マイクロプロセッサを使
用し上水槽の水位に応じて水力発電の発電機出力を制御
するディジタル形シーケンス制御装置からなる水位調整
装置において、 水位および発電機出力のアナログ量をあいまいな値に変
換するファジィ推論部と、このファジィ推論部で変換さ
れた前記あいまいな値の条件を基に調整量を決定する論
理制御部とを備えることを特徴とする。
The water level adjustment device according to the present invention is a water level adjustment device comprising a digital sequence control device that uses a microprocessor to control the generator output of hydroelectric power generation according to the water level of the water tank. The present invention is characterized by comprising a fuzzy inference unit that converts the value into an ambiguous value, and a logic control unit that determines an adjustment amount based on the conditions of the ambiguous value converted by the fuzzy inference unit.

〔作 用〕[For production]

本発明に係る水位調整装置によれば、ファジィ推論部は
、水位や発電機出力などのアナログ量を、ファジィ・ル
ールで扱う命題毎に定義される確率関数であるメンバシ
ップ関数により「半分くらい」、「大きい」、「小さい
」などのあいまいな値に変換し、論理制御部は変換され
た各あいまいな値をもとに、ファジィ制御に使用する制
御ルールに従い、メンバシップ関数を参照して入力量が
ルールを満足する度合いを計算した結果を合成した後、
各ルールの後件部を比べてその最大値を取り新しいメン
バシップ関数を作る演算、すなわちmax演算を行い、
そして、このメンバシップ関数の重心計算を行って推論
結果(重心値)を得、この推論結果による水位調整制御
を行う、これにより、水位調整制御が本来有している調
整量の「あいまいさ」を水位調整装置に取り込むことが
でき、スムーズな制御を実現することが可能となる。
According to the water level adjustment device according to the present invention, the fuzzy inference unit calculates analog quantities such as water level and generator output by using a membership function that is a probability function defined for each proposition handled by a fuzzy rule. , into ambiguous values such as "larger" and "smaller", and the logic control unit inputs them based on each ambiguous value, referring to the membership function according to the control rules used for fuzzy control. After combining the results of calculating the degree to which the quantity satisfies the rules,
Compare the consequents of each rule and take the maximum value to create a new membership function, that is, perform the max operation,
Then, the center of gravity of this membership function is calculated to obtain an inference result (center of gravity value), and water level adjustment control is performed based on this inference result. can be incorporated into the water level adjustment device, making it possible to achieve smooth control.

〔実施例〕〔Example〕

次に、本発明に係る水位調整装置の実施例につき、添付
図面を参照しながら以下詳細に説明する。
Next, embodiments of the water level adjusting device according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は、本発明の一実施例を示す水位調整装置の制御
ブロック図である。なお、説明の便宜上、第3図に示す
従来例と同一の構成部分には同一の参照符号を付して説
明する。
FIG. 1 is a control block diagram of a water level adjusting device showing one embodiment of the present invention. For convenience of explanation, the same reference numerals are given to the same components as those of the conventional example shown in FIG. 3.

すなわち、第1図において、参照符号30は水位調整装
置を示し、水位調整装置30は制御規則各種設定値部3
2とファジィ推論部34とから構成される。水位調整装
置30には、水位検出器からの上水槽水位20が入力さ
れ、ファジィ推論結果による負荷制限器22のガイドベ
ーンに対する調整量が出力される。負荷制限器22の出
力は、ガイドベーン開度24の加減を制御すると共に水
位調整装置30のファジィ推論部にフィードバックされ
る。ガイドベーン開度24の加減により流出水量26が
変化する。遅れ時間を伴いながら流出水量26に従って
変動する上水槽水位20は、上水槽の水位検出器にて検
出される。
That is, in FIG. 1, reference numeral 30 indicates a water level adjustment device, and the water level adjustment device 30 is a control rule various setting value section 3.
2 and a fuzzy inference section 34. The water tank water level 20 from the water level detector is input to the water level adjustment device 30, and the adjustment amount for the guide vane of the load limiter 22 based on the fuzzy inference result is output. The output of the load limiter 22 controls the adjustment of the guide vane opening 24 and is fed back to the fuzzy inference section of the water level adjustment device 30. The outflow water amount 26 changes depending on the guide vane opening degree 24. The upper water tank water level 20, which fluctuates according to the outflow water amount 26 with a delay time, is detected by the water level detector of the upper water tank.

ここで、本発明に係るファジィ推論機能を備える水位調
整装置30について説明する。
Here, the water level adjustment device 30 equipped with a fuzzy inference function according to the present invention will be explained.

大きく別けて、次の2つの機能を有する。Broadly speaking, it has the following two functions.

■ 水位や発電機出力などのアナログ量を、ファジィ・
ルールで扱う命題毎に定義される確率関数であるメンバ
シップ関数により「半分くらい」、「大きい」、「小さ
い」などのあいまいな値に変換するファジィ推論機能。
■ Analog quantities such as water level and generator output can be converted into fuzzy
A fuzzy inference function that converts into ambiguous values such as "about half", "large", "small", etc. using the membership function, which is a probability function defined for each proposition handled by the rule.

■ ■で変換したあいまいな値の条件をもとに、ファジ
ィ制御に使用する制御ルールに従い、メンバシップ関数
を参照して入力量がルールを満足する度合いを計算した
結果を合成した後、各ルールの後件部を比べてその最大
値を取り新しいメンバシップ関数を作る演算、すなわち
max演算を行い、そして、このメンバシップ関数の重
心計算を行って推論結果(重心値)を得、この推論結果
により負荷制限器のガイドベーンに対する調整量を決定
する論理制御機能。
■ Based on the condition of the ambiguous value converted in ■, according to the control rule used for fuzzy control, the results of calculating the degree to which the input amount satisfies the rule by referring to the membership function are synthesized, and then each rule is The consequent part is compared and the maximum value is taken to create a new membership function, that is, the max operation is performed, and the center of gravity of this membership function is calculated to obtain the inference result (center of gravity value), and this inference result is A logical control function that determines the amount of adjustment to the load limiter guide vanes.

上記■のファジィ推論機能では、従来のような、例えば
、「水位が現在7.53mで、これは設定値7.20m
よりも33cm高い」といった数値計算を行うかわりに
、「水位は設定値よりもかなり高い」といった大づかみ
の概念をとらえることができる。
In the fuzzy inference function (■) above, for example, "The water level is currently 7.53 m, which is the set value of 7.20 m."
Instead of doing numerical calculations such as ``The water level is 33 cm higher than the set point,'' you can grasp the general concept of ``The water level is considerably higher than the set value.''

また、上記■の論理制御機能により、例えば、「水位が
設定値よりも高ければ、発電機出力を増加する。」とい
う制御ルールをソフトウェア化することが可能になる。
Moreover, the logical control function (2) above makes it possible, for example, to create a control rule such as "If the water level is higher than a set value, increase the generator output" in software.

このようなファジィ推論と論理制御とを組み合わせて、
水位調整のための発電機出力手順を第2図に示す本発明
に係る装置のハードウェア構成例のように、シーケンス
制御装置のプログラムとしてファジィ演算装置に取り込
んでおく。
By combining such fuzzy reasoning and logical control,
The generator output procedure for adjusting the water level is loaded into the fuzzy arithmetic unit as a program of the sequence control device, as shown in the hardware configuration example of the device according to the present invention shown in FIG.

なお、シーケンス制御装置の能力にゆとりがある場合は
、ファジィ演算装置をシーケンス制御装置の一部として
ソフトウェアに組み込むことができる。この水位調整装
置はファジィ推論を使用する制御であるなめ、従来の2
値的な制御あるいは決定を行っていたシステムに比べて
、中間的なあいまいな状態を使用でき、このことからフ
レキシブルでダイナミックな制御が可能になり、過去に
経験したことがない状況に遭遇しても、妥当な結論を推
定して制御することも可能である。
Note that if the sequence control device has sufficient capacity, the fuzzy arithmetic device can be incorporated into the software as a part of the sequence control device. This water level adjustment device uses fuzzy reasoning to control the water level;
Compared to systems that use value-based control or decisions, intermediate, ambiguous states can be used, which allows for flexible and dynamic control, allowing for the ability to encounter situations that have never been experienced before. However, it is also possible to extrapolate and control reasonable conclusions.

本実施例におけるファジィ制御に使用する制御ルールは
、次のようになる。
The control rules used for fuzzy control in this embodiment are as follows.

(1)水位が設定値にほぼ等しく、水位の変動が少ない
ならば、負荷制限器22の調節は必要がない、そうでな
ければ、次のように負荷制限器22を制御する。
(1) If the water level is approximately equal to the set value and the fluctuation of the water level is small, there is no need to adjust the load limiter 22; otherwise, the load limiter 22 is controlled as follows.

(2)水位が水位設定値より小さければ、負荷制限器2
2の設定を下げる。
(2) If the water level is lower than the water level setting, load limiter 2
Lower the setting of 2.

(3)水位が水位設定値より大きければ、負荷制限器2
2の設定を上げる。
(3) If the water level is higher than the water level set value, load limiter 2
Increase the setting of 2.

(4)水位が水位設定値からかなり離れているときは、
負荷制限器22の設定を連続的に変化させる。
(4) When the water level is far from the set water level,
The settings of the load limiter 22 are changed continuously.

(5)水位が水位設定値にある程度近づいたときは、負
荷制限器22の設定を少しずつ断続的に変化させる。
(5) When the water level approaches the set water level to some extent, the settings of the load limiter 22 are changed intermittently little by little.

(6)複数の発電機により運転を切換えるときは、水位
が一時的に大きく変動しても、調整制御を追随させない
(6) When switching operations between multiple generators, the adjustment control will not follow even if the water level fluctuates significantly temporarily.

(7)制御信号を与えなにもかかわらず、水位の変化が
いつまでも得られない場合は、負荷制限器22あるいは
水位検出器21の故障と判断して、制御出力をロックす
ると共に、運転員に異常を知らせる。
(7) If no change in water level is obtained even though no control signal is applied, it is determined that the load limiter 22 or water level detector 21 has failed, the control output is locked, and the operator Notify of abnormality.

従って、変換したあいまいな値を、ファジィ制御に使用
する上記制御ルールに従い、メンバシップ関数を参照し
て入力量がルールを満足する度合いを計算後、その結果
を合成し、各ルールの後件部を比べてその最大値を取り
新しいメンバシップ関数を作る演算、すなわちmax演
算を行った後、このメンバシップ関数の重心計算を行っ
て推論結果(重心値)を得、この推論結果により負荷制
限器のガイドベーンに対する調整量を決定すればよい。
Therefore, after calculating the degree to which the input amount satisfies the rules by referring to the membership function, the converted ambiguous values are calculated according to the control rules used for fuzzy control, and the results are combined to calculate the consequent part of each rule. After performing an operation to create a new membership function by comparing them and taking the maximum value, that is, the max operation, the center of gravity of this membership function is calculated to obtain the inference result (center of gravity value). What is necessary is to determine the adjustment amount for the guide vane.

なお、第2図は、ファジィ推論を使用した水位調整装置
30のハードウェア構成例を示す図であり、参照符号3
1はアナログ/ディジタル変換器(A/D)、33はデ
ィジタル・シーケンス制御装置、35はファジィ演算装
置、37は離散的出力インターフェース(Do)、21
は上水槽水位を検出する水位検出器、23は水車の調速
装置(GOV)、40はCRTデイスプレィ、キーボー
ド、ブリンクなどからなるマン・マシンインターフェー
スである。
Note that FIG. 2 is a diagram showing an example of the hardware configuration of the water level adjustment device 30 using fuzzy inference, and is designated by reference numeral 3.
1 is an analog/digital converter (A/D), 33 is a digital sequence controller, 35 is a fuzzy arithmetic unit, 37 is a discrete output interface (Do), 21
23 is a water turbine governor (GOV), and 40 is a man-machine interface consisting of a CRT display, keyboard, blink, etc.

〔発明の効果〕〔Effect of the invention〕

前述した実施例から明らがなように、本発明の水位調整
装置によれば、ファジィ推論を応用したことにより、水
位調整制御が本来持っている調整量の「あいまいさ」を
、そのままソフトウェアとして取り込むことができるた
め、熟練した運転員が手動で行っているようなスムーズ
な制御を実現することができ、水力発電所において流入
する水を有効に利用することができる。
As is clear from the embodiments described above, according to the water level adjustment device of the present invention, by applying fuzzy reasoning, the "ambiguity" of the adjustment amount that water level adjustment control originally has can be directly applied to the software. Since it can be taken in, it is possible to realize smooth control similar to that performed manually by a skilled operator, and it is possible to effectively utilize inflow water at a hydroelectric power plant.

また、不感帯や調定率などの整定値を従来のように厳密
に決める必要がなく、調整演算に必要な各種パラメータ
の決定を簡略化できる利点をも有する。
Further, it is not necessary to strictly determine setting values such as a dead zone and an adjustment rate as in the conventional method, and there is an advantage that the determination of various parameters necessary for adjustment calculations can be simplified.

以上、本発明の好適な実施例について説明したが、本発
明は前記実施例に限定されることなく、本発明の精神を
逸脱しない範囲内において種々の設計変更をなし得るこ
とは勿論4 。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and it goes without saying that various design changes can be made without departing from the spirit of the present invention.

である。It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るファジィ推論を使用する水位調整
装置の一実施例を示すブロック図、第2図は本発明に係
るファジィ推論を使用した水位調整装置のハードウェア
構成例を示すブロック図、第3図は従来の水位調整装置
を示すブロック図である。 1o・・・水位調整装置 12・・・水位設定値 14・・・PI演算部 16・・・水位調定率演算部 20・・・上水槽水位 21・・・水位検出器 22・・・負荷制限器 23・・・水車の調速装置 24・・・ガイドベーン開度 26・・・流出水量 30・・・水位調整装置 31・・・アナログ/ディジタル変換器32・・・制御
規則各種設定値部 33・・・ディジタル・シーケンス制御装置34・・・
ファジィ推論部 35・・・ファジィ演算装置 37・・・離散的出力インターフェース40・・・マン
・マシンインターフェースIG .30
FIG. 1 is a block diagram showing an embodiment of a water level adjustment device using fuzzy reasoning according to the present invention, and FIG. 2 is a block diagram showing an example of the hardware configuration of a water level adjustment device using fuzzy reasoning according to the present invention. , FIG. 3 is a block diagram showing a conventional water level adjustment device. 1o...Water level adjustment device 12...Water level set value 14...PI calculation unit 16...Water level adjustment rate calculation unit 20...Tap water tank water level 21...Water level detector 22...Load limit Container 23... Water turbine speed governor 24... Guide vane opening degree 26... Outflow water amount 30... Water level adjustment device 31... Analog/digital converter 32... Control rule various set value section 33... Digital sequence control device 34...
Fuzzy inference unit 35...fuzzy arithmetic unit 37...discrete output interface 40...man-machine interface IG. 30

Claims (1)

【特許請求の範囲】[Claims] (1)マイクロプロセッサを使用し上水槽の水位に応じ
て水力発電の発電機出力を制御するディジタル形シーケ
ンス制御装置からなる水位調整装置において、 水位および発電機出力のアナログ量をあい まいな値に変換するファジィ推論部と、このファジィ推
論部で変換された前記あいまいな値の条件を基に調整量
を決定する論理制御部とを備えることを特徴とする水位
調整装置。
(1) In a water level adjustment device consisting of a digital sequence control device that uses a microprocessor to control the generator output for hydroelectric power generation according to the water level in the water tank, analog quantities of the water level and generator output are converted into ambiguous values. A water level adjustment device comprising: a fuzzy inference section that performs the adjustment; and a logic control section that determines the amount of adjustment based on the condition of the ambiguous value converted by the fuzzy inference section.
JP1071838A 1989-03-27 1989-03-27 Water level adjustment device Expired - Lifetime JP2564001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071838A JP2564001B2 (en) 1989-03-27 1989-03-27 Water level adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071838A JP2564001B2 (en) 1989-03-27 1989-03-27 Water level adjustment device

Publications (2)

Publication Number Publication Date
JPH02252977A true JPH02252977A (en) 1990-10-11
JP2564001B2 JP2564001B2 (en) 1996-12-18

Family

ID=13472083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071838A Expired - Lifetime JP2564001B2 (en) 1989-03-27 1989-03-27 Water level adjustment device

Country Status (1)

Country Link
JP (1) JP2564001B2 (en)

Also Published As

Publication number Publication date
JP2564001B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US6041320A (en) Multi-region fuzzy logic control system with auxiliary variables
CN112859586A (en) Diaphragm pump system safe operation guaranteeing method based on fuzzy PID control
CN108457709B (en) Control method and system for steam feed pump generator set
JPH02252977A (en) Water level adjustor
CN113110034A (en) DCS-based fuzzy PID control system for induced draft fan
JP3141641B2 (en) Operating device of turbine generator with different capacity
JPS6030403A (en) Turbine control device
JP2583861B2 (en) Hot water mixing control device
JPS5947331B2 (en) flow control device
Zhao et al. Design of Double Tank Liquid Level Control System Based on Fuzzy PID
JP3488886B2 (en) Load adjustment control method for dam type power plant
JPH01193531A (en) Hot and cold water mixing control device
JPS6313005B2 (en)
JPH0351615A (en) Oxygen enriched combustion control device in combustion furnace
Verma et al. Fuzzy Logic based Load Frequency Control for Multi Area System
JPH055404A (en) Steam controlling method for steam using plant and device therefor
JPH11324932A (en) Water-distribution pressure control device
JPH0464801A (en) Recirculating flow rate controller for feed water pump
JPS6063602A (en) Controller
RU1774431C (en) Method of automatic control of power transfer
JPH06146807A (en) Turbine control device
JP2509676B2 (en) Mixed pressure turbine controller
JP4622063B2 (en) Generator control device and generator control method
JPS6172315A (en) Average flow rate controller
JPS5919371B2 (en) How to control pond water level by computer