JPS6171101A - Hot rolling method of billet prevented from surface cracking - Google Patents

Hot rolling method of billet prevented from surface cracking

Info

Publication number
JPS6171101A
JPS6171101A JP16021284A JP16021284A JPS6171101A JP S6171101 A JPS6171101 A JP S6171101A JP 16021284 A JP16021284 A JP 16021284A JP 16021284 A JP16021284 A JP 16021284A JP S6171101 A JPS6171101 A JP S6171101A
Authority
JP
Japan
Prior art keywords
rolling
hot
billet
steel
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16021284A
Other languages
Japanese (ja)
Inventor
Yutaka Ogawa
裕 小川
Kakuji Yoshihara
吉原 佳久次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16021284A priority Critical patent/JPS6171101A/en
Publication of JPS6171101A publication Critical patent/JPS6171101A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • B21B1/026Rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To prevent effectively and supply a billet from surface cracking by making a billet, containing a specific amount of Mn, contain a specific amount of Ti and rolling it under specific rolling conditions. CONSTITUTION:An ingot or a billet just after continuous casting, containing <0.50% Mn, is rolled by direct-feed rolling or hot-charge rolling. In this case, the billet is made to contain Ti of the amount of 2-25 Ti/N, and is rolled within a temperature range of cooling stage and under the rolling conditions of >=1 rolling shape factor (m) defined by the equation; where R: radius of rolling roll, h1: thickness of material at inlet side of roll, h2: thickness of material at outlet side of roll.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はMn 0.50%未満含有する鋼、特にアルミ
キルド、アルミセミキルドまた はアルミシリコンキル
ド鋼等自動車用鋼板、一般建築用鋼板、造船用鋼板、機
械構造用鋼板等に供される炭素鋼並びにNb、■等を含
有する低合金鋼の熱間圧延時の表面割れを防止した熱間
圧延法に関するものであり、特にそれら鋼の、造塊もし
くは連続鋳造直後の鋼片をただちに熱間圧延する(直送
圧延)か、または造塊、もしくは連続鋳造後そのまま鋼
片を保温炉に装入してから熱間圧延を行う(ホットチャ
ージ圧延)プロセスにおいて、鋼片の表面に割れの発生
するのを防゛止する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is directed to steels containing less than 0.50% Mn, especially steel plates for automobiles such as aluminum killed, aluminum semi-killed or aluminum silicon killed steels, steel plates for general construction, and steel plates for shipbuilding. The present invention relates to a hot rolling method that prevents surface cracking during hot rolling of carbon steel and low alloy steel containing Nb, ■, etc., which are used for industrial steel sheets, mechanical structural steel sheets, etc., and in particular, The steel billet is immediately hot rolled after ingot making or continuous casting (direct rolling), or the billet is charged into a heat retention furnace as it is after ingot making or continuous casting and then hot rolled (hot charge rolling). ) process, it relates to a method for preventing cracks from occurring on the surface of a steel billet.

(従来の技術) 凝固のままの鋳片または鋼塊を途中加熱することなく、
その保有熱を利用してそのまま直接に圧延工程に送って
熱間圧延すること(以下、単に“直送圧延”という)。
(Conventional technology) Without heating the solidified slab or steel ingot midway,
Using the retained heat, the material is sent directly to the rolling process for hot rolling (hereinafter simply referred to as "direct rolling").

あるいは同様に途中加Fキすることなく一旦保温炉に装
入してから熱間圧延すること(以下、単に“ホントチャ
ージ圧延”といい、“直送圧延”および“ホット升ヤー
ジ圧延”を総称して“直接圧延”という)は省エネルギ
ーの観点から最も望ましい操業形態であるが、その実現
に当たっては鋳片表面性状あるいは設備レイアウトなど
に関する問題が種々存在していた。しかしその後、それ
らに対する技術改善が進むにつれ、直接圧延に関する検
討が活発となってきた。
Alternatively, similarly, hot rolling is performed after charging into a heat retention furnace without heating during the process (hereinafter simply referred to as "honto charge rolling", and "direct rolling" and "hot yardage rolling" are collectively referred to as "honto charge rolling"). Although direct rolling (also referred to as "direct rolling") is the most desirable operation form from the perspective of energy conservation, there are various problems in realizing it, such as the surface properties of the slab and the layout of equipment. However, as these technologies have been improved since then, studies on direct rolling have become more active.

その結果直接熱間圧延する方法つまり、直接圧延におい
ては、従来法(一旦変態点以下、室温近くまで冷却後再
加熱して圧延する方法)にみられる冶金学的現象とは異
なった現象が多く見い出された。中でも直接熱間圧延す
る際には材料の熱間加工性が著しく低下すること、つま
り従来法においては何ら問題とならなかったような鋼種
においても直接圧延においては熱間圧延時に鋼片表面に
割れの発生することが判明した。
As a result, the direct hot rolling method, that is, the direct rolling method, has many metallurgical phenomena that are different from those seen in the conventional method (a method in which the method involves cooling once below the transformation point, close to room temperature, and then reheating and rolling). Found out. Among these, when directly hot rolling the material, the hot workability of the material decreases markedly.In other words, direct rolling can cause cracks on the surface of the steel piece during hot rolling, even for steel types that did not cause any problems with conventional methods. It was found that this occurs.

一般に、鋼の熱間加工性はオーステナイト粒径(以下、
1粒径という)と硫化物、炭素化物などの析出状態の影
響を強く受け、一般にγ粒径が微細なほど、またγ粒界
への硫化物、炭窒化物などの析出が少ないほど、熱間加
工性は向上する。
Generally, the hot workability of steel is determined by the austenite grain size (hereinafter referred to as
In general, the finer the γ grain size and the less precipitation of sulfides, carbonitrides, etc. at the γ grain boundaries, the stronger the heat resistance. Machinability is improved.

そして従来法においては、材料に冷却再加熱を繰り返す
ことでT (オーステナイト)−α(フェライト)変態
を経験させて、γ粒を微細化し、かつ析出物の多くを粒
内に固定して1粒界への析出量を少なくすることにより
熱間加工性を向上させていた。
In the conventional method, the material is repeatedly cooled and reheated to undergo T (austenite)-α (ferrite) transformation, thereby refining the γ grains and fixing most of the precipitates within the grains. Hot workability was improved by reducing the amount of precipitation in the interface.

これに対し、直接圧延法の場合には、鋼片のもつ保有熱
を最大限に利用することがらγ−α変態を経ずに圧延す
るので1粒径は非常に大きく、かつγ粒界への析出も多
く、熱間加工性は低下することとなり、したがって、こ
のような熱履歴の違いが、熱間圧延時の割れの原因とさ
れるのである。
On the other hand, in the case of the direct rolling method, the retained heat of the steel billet is utilized to the fullest, and the steel slab is rolled without going through the γ-α transformation, so the single grain size is very large, and the γ-grain boundary There is also a large amount of precipitation, resulting in a decrease in hot workability, and therefore, such a difference in thermal history is considered to be the cause of cracking during hot rolling.

直接圧延にみられる熱間圧延時の割れの発生防止に関し
ては、既にいくつかの提案がなされているが、これらに
共通する考え方は特開昭55−84201号あるいは特
開昭55−84203号に代表されるように、凝固後の
鋳片の冷却速度を遅(するか、冷却途中で所定温度に一
定時間以上保持して、析出物を凝集・粗大化させ、1粒
界における析出物の数を減らすことにより割れを防止せ
んとするものである。すなわち、従来技術にあってはい
ずれも前述の割れ原因の一つである硫化物、炭窒化物な
どの析出形態の制御を狙ったもので、一応相当の効果が
認められた。
Several proposals have already been made regarding the prevention of cracks during hot rolling that occur in direct rolling, but the common idea among them is described in JP-A-55-84201 or JP-A-55-84203. As typically seen, by slowing down the cooling rate of the slab after solidification (or by holding it at a predetermined temperature for a certain period of time during cooling, the precipitates coagulate and become coarser, reducing the number of precipitates at one grain boundary). In other words, all of the conventional techniques aim to control the precipitation form of sulfides, carbonitrides, etc., which are one of the causes of cracks mentioned above. Considerable effects were observed.

しかし、その一方でこれら従来技術がかかえる問題点も
厚き彫りになってきた。すなわち、割れ防止に必要な冷
却速度あるいは温度保持条件を満足させることは実操業
において著しい生産性の低下を招き、そのような条件に
したがう限り殊に現在開発中の連続鋳造圧延法への適用
は至難なことである。
However, on the other hand, problems with these conventional techniques have also become more apparent. In other words, satisfying the cooling rate or temperature maintenance conditions necessary to prevent cracking will lead to a significant drop in productivity in actual operations, and as long as such conditions are followed, application to the continuous casting and rolling method currently under development will be difficult. This is extremely difficult.

(発明が解決しようとする問題点) 熱間加工性に及ぼす成分元素及び温度の影響については
従来より高温引張試験などにより明らかにされ、特にS
は熱間加工性を低下させ熱間圧延時の割れ発生の原因と
なり、一方Mn添加は割れ防止に有効であることが知ら
れている。しかし、このようなSあるいはMnの影響は
試験時の熱履歴により異なるものであり、従来からいわ
れているようなS、Mnの影響がMn/Sのような値で
整理できるのはあくまでも従来法のように冷却、再加熱
を繰り返すいわゆる再加熱引張法におけるものにすぎな
い。
(Problem to be solved by the invention) The effects of component elements and temperature on hot workability have been clarified through high-temperature tensile tests, etc.
It is known that Mn decreases hot workability and causes cracking during hot rolling, while addition of Mn is effective in preventing cracking. However, the influence of S or Mn differs depending on the thermal history during the test, and it is only by the conventional method that the influence of S and Mn can be summarized by a value such as Mn/S. This is just a so-called reheating tensile method that involves repeated cooling and reheating.

本発明者らは研究の結果、直接圧延のような凝固過程で
熱間圧延を加える溶融−凝固引張法においてはSの悪影
響はMnの量が低い場合においてのみあられれ、Mn量
が0.50%以上になるとSiに拘らず良好な延性が得
られることを知った。
As a result of our research, the present inventors found that in the melt-solidification tensile method, which involves hot rolling during the solidification process, such as direct rolling, the negative effects of S only occur when the amount of Mn is low, and the amount of Mn is 0.50. % or more, good ductility can be obtained regardless of the Si content.

そこでかかる知見に基づき、C:0.12%、Si:0
.20%、■n : 0.85%、P  :0.018
%、S  :0.010%、Sol、A1 : 0.0
33%、N : 35ppmからなる厚さ26dmmX
幅1350龍の連続鋳造スラブを直径1300龍の圧延
ロールを備えた2段圧延機により900 ’Cにおいて
、1パス当たり15mmの圧下量で厚さ130mmまで
直接圧延を行ったところ、従来認識されてきた高温引張
試験結果からの予想に反し、割れが発生した。
Based on this knowledge, C: 0.12%, Si: 0
.. 20%, n: 0.85%, P: 0.018
%, S: 0.010%, Sol, A1: 0.0
33%, N: 35 ppm, thickness 26 dmm
A continuously cast slab with a width of 1,350 mm was directly rolled to a thickness of 130 mm at 900'C with a rolling roll of 1,300 mm in diameter at 900'C. Contrary to expectations from the high temperature tensile test results, cracking occurred.

以上のことから高温引張試験結果と実際の圧延結果とは
必ずしも一致しないものであること、すなわち温度、成
分、更には熱履歴だけでは実際の圧延における熱間加工
性を評価できないことが明らかになった。
From the above, it has become clear that the high temperature tensile test results and the actual rolling results do not necessarily match, that is, it is not possible to evaluate hot workability in actual rolling based only on temperature, composition, and even thermal history. Ta.

本発明者らは、実際の圧延においては材料内部の応力状
態が引張試験などのように単純でなく、両者の変形様式
の違いにその原因があるものと推定し、熱履歴だけでな
く変形様式もシュミレートすべく、実験室的に直接圧延
を再現し、種々研究した。
The present inventors presume that the stress state inside the material in actual rolling is not as simple as in a tensile test, and that the cause lies in the difference in the deformation mode between the two. In order to simulate this, we directly reproduced rolling in the laboratory and conducted various research.

(問題点を解決するための手段) 熱履歴だけでなく変形様式をシュミレートする方法を採
用した直接圧延の実験において、直接圧延による熱間圧
延時の表面割れの発生状況を知るベく途中止め圧延によ
り割れの発生状況を観察した結果、材料がロールにより
圧下される直前においてすでに割れが発生していること
を知った。
(Means for solving the problem) In a direct rolling experiment that adopted a method that simulates not only the thermal history but also the deformation mode, we conducted stop rolling in order to understand the occurrence of surface cracks during hot rolling by direct rolling. As a result of observing the occurrence of cracks, it was found that cracks had already occurred just before the material was rolled down by the rolls.

第1図はこの場合の鋼片1の材料の流れを模式的に示す
概略説明図であり、鋳片1は剪断変形により太鼓状に後
方へ押出されるが、圧延ロール2人側に剛体領域3 (
図中、斜線部分として示す)が存在するため、これに適
合するように中心層は図中、点線の矢印で示すように圧
縮応力を、表面層は図中、実線の矢印で示すように引張
応力を夫々受ける。ロール圧下直前に発生する割れ4は
このような表面層における引張応力によるものである。
FIG. 1 is a schematic explanatory view schematically showing the flow of the material of the slab 1 in this case. 3 (
(shown as the shaded area in the figure), so in order to accommodate this, the center layer is subjected to compressive stress as shown by the dotted line arrow in the figure, and the surface layer is subjected to tensile stress as shown by the solid line arrow in the figure. Each receives stress. The cracks 4 that occur immediately before rolling are caused by such tensile stress in the surface layer.

以上のことからも熱間加工性の評価、検討における変形
様式を考慮する必要性が生じた。
From the above, it became necessary to consider the deformation mode in evaluating and examining hot workability.

そして、本発明者らは、このような応力状態は材料の不
均一変形度に依存し、この不均一変形度と熱間加工性は
圧延ロール径、鋳片形状、圧下量などの圧延条件から決
定される下記式に示す圧延形状比(mlとの相関性が強
いことを見い出した。
The present inventors have discovered that this stress state depends on the degree of non-uniform deformation of the material, and that the degree of non-uniform deformation and hot workability are determined by rolling conditions such as the diameter of the rolling rolls, the shape of the slab, and the amount of reduction. It has been found that there is a strong correlation with the rolling shape ratio (ml) determined by the following formula.

n1+nま ただし、R:圧延ロール半径 hl:ロール入側の材料厚さ h2二ロール出側の材料厚さ なお、この圧延形状比(ITllは圧下の浸過度を表す
パラメーター(ロール接触弧長/板厚)であり、mが大
であればそれだけ圧下は内部まで’/+Sし均一な変形
がなされていることを意味しており、換言すればこれは
ロール接触弧長が大となる程均−変形になるということ
である。
n1+n, where R: rolling roll radius hl: material thickness on roll entry side h2 material thickness on roll exit side (thickness), and the larger m is, the more the reduction is '/+S' to the inside, meaning that uniform deformation is achieved.In other words, this means that the larger the roll contact arc length is, the more uniform the deformation is. This means that it will become deformed.

そこで第1表に示す広範囲の成分系の溶鋼から第2表に
示す形状の一連の鋼塊または鋳片を作成し、実験室規模
の圧延機及び実際の生産ラインでの圧延機を使って第3
表に示す圧延条件範囲で直接圧延を行い、割れ発生状況
を調べた。この場合の直接圧延に供した鋼塊又は鋳片の
数は約300本に及び、圧延形状比((6)は0.3〜
9.7まで変化させた。これら一連の試験の結果を第2
図にグラフにまとめて示す。
Therefore, we created a series of steel ingots or slabs with the shapes shown in Table 2 from molten steel with a wide range of compositions shown in Table 1, and then rolled them using a laboratory-scale rolling mill and a rolling mill on an actual production line. 3
Direct rolling was performed under the rolling conditions shown in the table, and the occurrence of cracks was investigated. In this case, the number of steel ingots or slabs subjected to direct rolling was about 300, and the rolling shape ratio ((6) was 0.3 to
It was changed to 9.7. The results of these series of tests are
The figures are summarized in a graph.

第2表 供試鋼の形状 第3表 圧延条件 以上の試験結果の検討から、割れ発生状況には成分、温
度、圧延条件範囲々の要因との相関性が存在するものの
、更に総合してみると割れ発生の有無についてはMn量
及び圧延形状比(mlの数値範囲により区別できること
が判明した。
Table 2 Shape of test steel Table 3 From the examination of the test results above the rolling conditions, although there is a correlation between the occurrence of cracking and various factors such as composition, temperature, and range of rolling conditions, let us take a more comprehensive look. It was found that the presence or absence of cracking can be distinguished by the numerical range of Mn content and rolling shape ratio (ml).

すなわち、第2rXJに示すように、0.50%以上の
Mnを含有する鋼種の直接圧延においては熱間圧延時の
圧延形状比mが1以上となるような圧延条件下で圧延す
れば割れの発生を防止できることが見い出された。
In other words, as shown in No. 2rXJ, in direct rolling of steels containing 0.50% or more Mn, cracking can be prevented by rolling under rolling conditions such that the rolling shape ratio m during hot rolling is 1 or more. It has been found that this can be prevented.

しかし、試験の・結果はMn量が0.5%未満の場合お
よび圧延形状比(mlが1未満の場合では直接圧延にお
いて割れが発生することを意味するものである。本発明
者らはこのような条件下における割れ防止法について更
に検討を進め、M n ffiが0.5%未満又は圧延
形状比(mlが1未満の条件下で割れが発生する原因は
、γ粒界への硫化物の析出量が多いか、あるいは析出量
は少な(でも圧延中の材料が応力状態的に不利な条件下
にあることによるものと結論づけた。
However, the test results indicate that cracks occur in direct rolling when the Mn content is less than 0.5% and when the rolling shape ratio (ml) is less than 1. We further investigated ways to prevent cracking under such conditions and found that the cause of cracking under conditions where Mnffi is less than 0.5% or the rolled shape ratio (ml) is less than 1 is due to the presence of sulfides at the γ grain boundaries. It was concluded that either the amount of precipitation was large or the amount of precipitation was small (but this was due to the material being rolled under unfavorable stress conditions).

そこで、このような割れの起点となる析出物の析出形態
を更に改善すべく研究した結果、Tiの添加が非常に有
効であることを見い出し、また割れ防止に有効なTi添
加量の範囲についての知見も得た。
Therefore, as a result of research to further improve the precipitation form of precipitates that are the starting point of such cracks, we found that the addition of Ti is very effective, and we also investigated the range of the amount of Ti added that is effective in preventing cracks. I also gained some knowledge.

そして、割れの起点となる析出物としては硫化物のほか
炭窒化物が考えられ、Tiはこれらの析出形態に影響を
及ぼすとの推定から、C,S、−N量との関係を調べた
In addition to sulfides, carbonitrides are thought to be the precipitates that become the starting point of cracks, and based on the assumption that Ti affects the form of these precipitations, we investigated the relationship between the amounts of C, S, and -N. .

ここに、前述の第1表に示す成分範囲の鋼組成を基本に
し、最大0.30%までのTiを添加し、一方Mn1l
を0.50%未満とした鋼に圧延形状比(mlが1以上
の条件で80本の鋳片又は鋼塊について直接圧延時の割
れ発生状況を試験した結果、本発明者らは割れ防止に有
効なTi添加量の範囲はNとの相関性関係で定まるもの
であるという事実を発見した。
Here, based on the steel composition in the composition range shown in Table 1 above, up to 0.30% of Ti is added, while Mn1l
As a result of testing the occurrence of cracks during direct rolling on 80 slabs or steel ingots under the condition that the rolling shape ratio (ml) is less than 0.50%, the present inventors found that It has been discovered that the effective range of Ti addition amount is determined by the correlation with N.

これはC,S、NのうちTiとの親和力が最も強いのは
Nであり、Tiを添加することにより、TiはまずNと
結合してTiNとなり、更にこれを核として硫化物が析
出することに起因すると考えられる。
This is because among C, S, and N, N has the strongest affinity for Ti, and by adding Ti, Ti first combines with N to form TiN, and further, sulfides are precipitated using this as a nucleus. This is thought to be due to this.

しかもこれら1粒内に多く析出する結果、熱間加工性も
向上するのである。
Moreover, as a result of precipitating a large amount within each grain, hot workability is also improved.

一方、Ti添加量が多すぎると、TiCがγ粒界に析出
してくるため熱間加工性は逆に低下する。
On the other hand, if the amount of Ti added is too large, TiC will precipitate at the γ grain boundaries, resulting in a decrease in hot workability.

第3図は以上の結果をTiとNとの関係で整理したもの
であるが、二つの異った傾きをもつ直線により割れ発生
の有無は区分され、その境界条件はTi/N比が2と2
5である。すなわち、Mn量が0.50%未満であって
も圧延形状比(mlが1以上の場合、含有するNMの2
〜25倍のTiを添加すれば割れの発生は防止できると
いうことが判明した。
Figure 3 organizes the above results in terms of the relationship between Ti and N. The presence or absence of cracking is determined by two straight lines with different slopes, and the boundary condition is that the Ti/N ratio is 2. and 2
It is 5. In other words, even if the Mn content is less than 0.50%, if the rolled shape ratio (ml is 1 or more, 2
It has been found that cracking can be prevented by adding ~25 times as much Ti.

圧延形状比の影響については既に述べたとおり、圧延形
状比が大きくなるほど圧延中の材料変形の不均一度は小
さくなり、したがってロール入側における材料表面相に
生ずる引張応力が小さくなるため割れが発生しにくくな
る。
Regarding the influence of the rolling shape ratio, as already mentioned, as the rolling shape ratio increases, the degree of non-uniformity of material deformation during rolling becomes smaller, and therefore the tensile stress generated on the material surface phase at the roll entry side becomes smaller, leading to cracking. It becomes difficult to do.

以上を総合した結果、本発明を完成したものであり、す
なわち本発明は造塊もしくは連続鋳造した直後のMnを
0.50%未満含有する鋼片を、直送圧延もしくはホッ
トチャージ圧延する方法において、該鋼片にはTiをT
t/Nが2〜25となる量含有せしめ、かつ熔融凝固に
引き続く冷却過程の温度域で、下記式で定義される圧延
形状比(mlが1以上となる圧延条件下で圧延すること
を特徴とする鋼片の表面割れを防止した熱間圧延法であ
る。
As a result of integrating the above, the present invention has been completed, that is, the present invention provides a method for directly rolling or hot charge rolling a steel billet containing less than 0.50% Mn immediately after ingot formation or continuous casting. The steel piece contains Ti and T.
It is characterized by containing an amount such that t/N is 2 to 25, and rolling under rolling conditions such that the rolling shape ratio (ml) defined by the following formula is 1 or more in the temperature range of the cooling process following melting and solidification. This is a hot rolling method that prevents surface cracking of steel slabs.

式: ただし、R:圧延ロール半径 h工:ロール入側の材料厚さ h2:ロール出側の材料厚さ なお、本発明にあっ°ては各回の圧延パスにおいていず
れも圧延形状比Fmlが1以上であることが望ましいが
、l&述するように、圧延形技比(m)が1以上の圧延
を少なくとも1パス加えるという条件の下で圧延形状比
(mlが1未満の圧延パスの適用をも許容するものであ
って、かかる場合には、その累計圧下量は20%未満に
制限するのが好ましい。
Formula: However, R: Roll radius h: Material thickness on the roll entry side h2: Material thickness on the roll exit side In the present invention, the rolling shape ratio Fml is 1 in each rolling pass. It is desirable that the rolling shape ratio (ml) be less than 1, but as described in l&, it is possible to apply a rolling pass with a rolling shape ratio (ml) of less than 1 under the condition that at least one pass of rolling with a rolling shape ratio (m) of 1 or more is applied. In such cases, it is preferable to limit the cumulative reduction amount to less than 20%.

ただし、Ti添加は前記効果を奏する反面、溶接性を低
下させるものであるから、そうした用途の鋼種にはTi
添加量の上限を0.050%とすることが好ましく、そ
の場合、それに応じてさらにNを低減させるべきことと
なる。
However, while Ti addition has the above effects, it also reduces weldability, so Ti is added to steel types for such applications.
It is preferable to set the upper limit of the addition amount to 0.050%, and in that case, N should be further reduced accordingly.

(作用) 本発明の重要点である圧延形状比の影響作用については
、前記したとおり、圧延形状比(mlが大きくなるほど
圧延中の材料変形の不均一度は小さくなり、したがって
ロール入側における材料表面層に生ずる引張応力が小さ
くなるため割れが発生しにくくなる。
(Function) Regarding the effect of the rolling shape ratio, which is an important point of the present invention, as mentioned above, the larger the rolling shape ratio (ml), the smaller the non-uniformity of material deformation during rolling. Since the tensile stress generated in the surface layer is reduced, cracks are less likely to occur.

また、hの影響については硫化物の析出形感に関する調
査結果から、Mn量が増加すると硫化物のγ粒内への析
出量は増え、γ粒界への析出−が減少する結果、熱間加
工性の向上がはかられることが判明した。
As for the effect of h, based on the results of the investigation on the texture of sulfide precipitation, as the amount of Mn increases, the amount of sulfide precipitated within the γ grains increases, and the amount of sulfide precipitated at the γ grain boundaries decreases. It was found that the processability was improved.

すなわち、hn僅が0.50%未満または圧延形状比が
1未満の条件下での割れの原因は1粒界への硫化物の析
出量が多いか、あるいは析出量は少なくても圧延中の材
料が応力状態的に不利な条件下にあることが原因である
といえる。
In other words, the cause of cracking under conditions where the hn content is less than 0.50% or the rolling shape ratio is less than 1 is due to a large amount of sulfide precipitated at grain boundaries, or even if the amount of precipitation is small, it is due to the amount of sulfide precipitated during rolling. This can be said to be caused by the material being under unfavorable stress conditions.

そこでMniが0.50%未満の場合は、γ粒界への硫
化物の析出を抑える必要があり、このためTiを添加す
るのであるが、その作用はTiとNとの親和力が非常に
強いため、まずNと結合してTiNを生成し、これが核
となって1粒界にではなく、γ粒内に硫化物を多(析出
させる結果、熱間加工性が向上するのである。
Therefore, when Mni is less than 0.50%, it is necessary to suppress the precipitation of sulfide at the γ grain boundaries, and for this reason Ti is added, but its action is due to the extremely strong affinity between Ti and N. Therefore, it first combines with N to produce TiN, which acts as a nucleus and causes a large amount of sulfide to precipitate within the γ grains instead of at one grain boundary, resulting in improved hot workability.

しかし、Tl添加量が増加しTi/N比(重量)で25
を越えるとTiCがγ粒界に析出してくるため熱間加工
性は低下し、またTi添加量が減少し、Ti/N比で2
未満になるとTiNの生成量が少な(なり、1粒内に硫
化物を析出させる核としての働きが不充分となるのでこ
の場合も熱間加工性は低下することとなる。好ましくは
Ti/N比(重量)は3〜17である。
However, as the amount of Tl added increased, the Ti/N ratio (weight) increased to 25
If the value exceeds 2, hot workability decreases because TiC precipitates at the γ grain boundaries, and the amount of Ti added decreases, resulting in a Ti/N ratio of 2.
If it is less than that, the amount of TiN produced will be small (and the function as a nucleus for precipitating sulfides in one grain will be insufficient, so hot workability will also be reduced in this case. Preferably, Ti/N The ratio (weight) is 3-17.

凛J1対 Mnを含有する各種鋼の鋳片または鋼塊を種々の圧延条
件下で、直送圧延またはホットチャージ圧延し、それら
の状況を第4表にまとめた。咳表中試験隘6〜9は本発
明に属する実施例であり、試験患1〜5.10〜13は
本発明外の比較例であるが、これらのデータからみて、
Mn O,50%未満の鋼であっても、Ti、 N含量
をTi/N比で2〜25とし、かつ圧延形状比を1以上
とした場合には、割れの発生はほとんど認められないこ
とが理解できる。
Slabs or steel ingots of various steels containing Rin J1 and Mn were directly rolled or hot charge rolled under various rolling conditions, and the conditions are summarized in Table 4. Test cases 6 to 9 in the cough table are examples belonging to the present invention, and test cases 1 to 5 and 10 to 13 are comparative examples outside the present invention, but from these data,
Even in steel containing less than 50% MnO, when the Ti and N contents are set to a Ti/N ratio of 2 to 25 and the rolled shape ratio is set to 1 or more, almost no cracking is observed. I can understand.

なお、表中の圧延形状比+mlの値は全て、パススケジ
ュールの1バス目のものを表示した。
Note that all values of rolling shape ratio +ml in the table are those for the first bus of the pass schedule.

なお一連の実験結果、割れが発生するのは全圧下量が2
0%以上となった場合であり、全圧下量が20%未満で
あれば、たとえ圧下形状比(mlが1未満となるような
パススケジュールで圧延されても割れは発生しないこと
が確認された。したがって、本発明によれば、少なくと
も1のパスにおいて軽圧下(m=1未満)を加える場合
であってもその累計圧下量は20%未満に制限すること
が好ましい。
As a result of a series of experiments, cracks occur only when the total reduction is 2.
It has been confirmed that if the total rolling reduction is less than 20%, no cracking will occur even if rolling is performed with a pass schedule such that the rolling shape ratio (ml) is less than 1. Therefore, according to the present invention, even if a light reduction (m=less than 1) is applied in at least one pass, it is preferable to limit the cumulative reduction amount to less than 20%.

(発明の効果) 前記のごと<、Mn含晋が0.5%未満の鋼片を直送圧
延もしくはホットチャージ圧延する場合でも、含有Ti
とNをTi/N比で2〜25にコントロールし、かつ圧
延形状比(mlを1以上となるようにして、直接圧延す
る本発明の方法によれば、従来技術が有するエネルギー
効率の低下や鋼片を一旦室温近くまで冷却した後再加熱
するといった煩わしい処理工程を要するような問題点も
なく、有効・確実に割れの発生を防止でき、直接熱間圧
延の適用を容、 易にすることができる点で、本発明の
効果は非常に大である。
(Effects of the invention) As described above, even when a steel billet with Mn content of less than 0.5% is subjected to direct rolling or hot charge rolling, the Ti content is
According to the method of the present invention, in which the Ti/N ratio is controlled to be 2 to 25, and the rolling shape ratio (ml) is directly rolled, the decrease in energy efficiency and To effectively and reliably prevent the occurrence of cracks and to facilitate the application of direct hot rolling without the problem of requiring a troublesome processing process such as once cooling a steel billet to near room temperature and then reheating it. The effect of the present invention is very large in that it can do the following.

以上のように熱間加工性の評価においては成分、温度、
熱履歴だけでなく、変形様式即ち各種圧延条件そしてそ
れから決定される応力状態を考慮することがいかに重要
であるかは明白である。しかるに従来のような引張ある
いはねじりなどに代表される評価方法では変形様式まで
シュミレートすることは困難であり、本発明者らの調査
方法によりはじめてそれらの関係が解明され、本発明の
完成をみたのである。
As mentioned above, when evaluating hot workability, ingredients, temperature,
It is clear how important it is to consider not only the thermal history but also the deformation mode, ie the various rolling conditions and the stress state determined therefrom. However, it is difficult to simulate the deformation mode using conventional evaluation methods such as tension or torsion, and it was only through the investigation method of the present inventors that the relationship between them was elucidated and the present invention was completed. be.

(従来技術との比較) (従来の技術)の項で挙げた技術例のほか、鋼中にTi
を添加して熱間加工性を改善する技術も従来より知られ
ており、[鉄鋼と合金元素J  1966年丸善発行L
428〜430(公知例Aという)や特公昭58−98
12号公報(公知例Bという)などが挙げられる。
(Comparison with conventional technology) In addition to the technology examples listed in the (Conventional technology) section, Ti
The technology of improving hot workability by adding
428-430 (referred to as publicly known example A) and Special Publication No. 58-98
No. 12 (referred to as known example B) and the like.

そして、上記公知例Aでは、熱間加工性に対するSの悪
影響はMn添加だけでなくTi添加によっても解消でき
るというものであるが、Mnの代わりにSと安定な化合
物を作るTiを応用して熱間加工性を付与すること、0
.02〜0.05%S、0.05%in鋼でMn+Ti
の和がSの6倍であれば熱間脆性が生しないことまたT
i/S比が2以上あれば実用上の高温脆性は現われない
こと、更にTiNの叶出物には大型のものと微細なもの
とがあって大部分がフェライト地中に散在していること
などが記載されている。
In the above-mentioned known example A, the negative effect of S on hot workability can be eliminated not only by adding Mn but also by adding Ti, but by applying Ti, which forms a stable compound with S, instead of Mn. Imparting hot workability, 0
.. 02~0.05%S, 0.05%in steel with Mn+Ti
If the sum of T is 6 times S, hot embrittlement will not occur.
If the i/S ratio is 2 or more, practical high-temperature brittleness does not appear, and furthermore, there are large and fine TiN extrusions, and most of them are scattered in the ferrite ground. etc. are listed.

また公知例Bでは、連続鋳造直後の鋳片を直接圧延する
方式において、Tiを添加しておくことにより熱間圧延
終了後にTiCが析出するようにして、高強度の鋼板を
製造することが開示されている。
In addition, Publication B discloses that in a method of directly rolling a slab immediately after continuous casting, a high-strength steel plate is manufactured by adding Ti so that TiC precipitates after hot rolling is completed. has been done.

しかしながら、上記各公知例には、そもそも本発明の技
術思想が基礎とする熱間加工時の表面割れ発生防止のた
めにTiを添加することについては教示されておらず、
TiとNとの相関性の強さとその比の特定範囲設定すな
わち、Ti/N比を2〜25とすること、に及んでは、
その開示は全く見当たらないものである。
However, the above-mentioned known examples do not teach about adding Ti to prevent surface cracking during hot working, which is the basis of the technical idea of the present invention.
Regarding the strength of the correlation between Ti and N and setting a specific range of the ratio thereof, that is, setting the Ti/N ratio to 2 to 25,
The disclosure is completely absent.

そして、本発明では、直接圧延時の圧延条件として圧延
形状比を設定しそれを1以上と定めることによってMn
が0.5%未満含有される鋳片を直接圧延する場合、鋼
片の表面割れ発生が防止できるのである。
In the present invention, Mn
When a slab containing less than 0.5% of C is directly rolled, surface cracking of the steel slab can be prevented.

したがって、公知例にはTiを添加して鋼材の性質を改
善することや、直接圧延を行うことの記載はあっても、
本発明の基礎とするTi添加による熱間加工時の表面割
れ発生防止の技術思想をはじめとし、Mn添加量とTi
/N含有比と圧延形状比の特定数値による組合せの技術
思想に至っては全く教示のないものであって、本発明と
それら公知技術との間に格段の差異が存在する。
Therefore, although the known examples include descriptions of adding Ti to improve the properties of steel materials and performing direct rolling,
In addition to the technical concept of preventing surface cracking during hot working by adding Ti, which is the basis of the present invention, the amount of Mn added and Ti
The technical idea of combining the /N content ratio and rolling shape ratio with specific values is not taught at all, and there is a significant difference between the present invention and those known techniques.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、直接圧延にみられる熱間圧延時の材料の流れ
を示す概略説明図; 第2図は、鋼片のMn含有量と圧延形状比が直接圧延に
おける熱間圧延時の割れ発生に及ぼす状を示すグラフ;
および 第3図は、Mn含有量が0.50%未満の鋼片を圧延形
状比1以上で直接圧延する際に、TiとNの含有■比が
鋼片の割れ発生に及ぼす状況を示すグラフである。 1:鋼片      2;ロール 3:剛体領域    4:割れ 出願人  住友金屈工業株式会社 代理人  弁理士 広 瀬 章 −(他1名)為/閏 仝 第2図 圧延形0丈比<rn) 汎3 凹 Ti+rx) 手続補正書 昭和60年10月 9日 昭和59年特許願第160212号 2、発明の名称 鋼片の表面割れを防止した熱間圧延法 3、補正をする者 事件との関係  特許出願人 住所 大阪市東区北浜5丁目15番地 名称 (211)住友金届工業株式会社4、代理人 (別紙) (1)特許請求の範囲を次の通り訂正する。 「 造塊もしくは連続鋳造した直後のMnを0.50%
未満含有する延坪を、直送圧延もしくはホットチャージ
圧延−レボ」1士!−直する方法において、jl 54
片にはTiをTi/Nが2〜25となる量含有せしめ、
かつ溶融凝固に引き続く冷却過程の温度域で、下記式で
定義される圧延形状比((ロ)が1以上となる圧延条件
下で圧延することを特徴とする鋼片の表面割れを防止し
た熱間圧延法。 式: ただし、R:圧延ロール半径 hl: ロール入側の材料厚さ h2: ロール出側の材木4厚さ 」 (2)明細書第2頁7〜8行目、「または造塊・・・・
熱間圧延を行なう」とある記載を、r未だAr、変聾点
以上の表面温度を有する鋳片を一旦加熱炉または保温炉
に装入してから軌間圧延を行な(6)明細書中の下記の
箇所の記載をすべて「鋳片」と訂正する。 亘  丘亘  土点五起塁 26112I片 6  2   スラブ 7  4   鋼片 12  15.17   〃 以上 うJと訂正する。 (3)同書第2頁15〜17行目、「あるいは同様に・
・・・熱間圧延すること」とある記載を、「あるいは未
だAr、変態点以上の表面温度を有する鋳片を一旦加熱
炉または保温炉に装入してから熱間圧延すること」と訂
正する。 (4)同書第12頁16行目、「圧延する」とある記載
を「圧延して鋼片を製造するJと訂正する。 (5)明細書中の下記の箇所の記載を次の通り訂正する
。 且  丘旦  もとの記載  肛工盪二星淑2  12
   または鋼塊   −削除−34変態点    A
r、変態点 −13炭素化物   炭窒化物 8   11    M塊または   −削除−l11
5   @塊又は 1111   又は鋼塊 15   8   または鋼塊
Figure 1 is a schematic explanatory diagram showing the material flow during hot rolling seen in direct rolling; Figure 2 is a diagram showing the occurrence of cracking during hot rolling in direct rolling when the Mn content and rolling shape ratio of the steel billet are A graph showing the effect on
and Fig. 3 is a graph showing the effect of the content ratio of Ti and N on the occurrence of cracks in a steel billet when a steel billet with a Mn content of less than 0.50% is directly rolled at a rolling shape ratio of 1 or more. It is. 1: Steel billet 2; Roll 3: Rigid region 4: Cracking Applicant: Sumitomo Kinku Kogyo Co., Ltd. Agent Patent attorney: Akira Hirose - (1 other person) / Leap Figure 2 Rolled shape 0 length ratio <rn) Pan 3 Concave Ti+rx) Procedural Amendment October 9, 1985 Patent Application No. 160212 of 1988 2, Name of invention Hot rolling method for preventing surface cracking of steel billet 3, Relationship with the person making the amendment case Patent Applicant Address: 5-15 Kitahama, Higashi-ku, Osaka Name (211) Sumitomo Metal Notification Industry Co., Ltd. 4, Agent (Attachment) (1) The scope of the patent claims is amended as follows. `` Mn is 0.50% immediately after ingot formation or continuous casting.
Direct rolling or hot charge rolling for rolling tsubo containing less than "Revo" 1 person! - how to fix jl 54
The piece contains Ti in an amount such that Ti/N is 2 to 25,
And in the temperature range of the cooling process following melt solidification, the heat that prevents surface cracking of the steel billet, which is characterized by rolling under rolling conditions where the rolling shape ratio ((b) defined by the following formula is 1 or more) Inter-rolling method. Formula: Where, R: Roll radius hl: Material thickness on the roll entry side h2: Timber 4 thickness on the roll exit side." (2) Page 2 of the specification, lines 7-8, "or mass····
(6) In the specification, a slab with a surface temperature above the deafening point is once charged into a heating furnace or an insulating furnace and then subjected to gauge rolling. All descriptions in the following sections are corrected to "slabs." Wataru Oka Wataru Soil Point 5 Base 26112I Piece 6 2 Slab 7 4 Steel Piece 12 15.17 〃 The above is corrected to J. (3) Ibid., page 2, lines 15-17, ``Or similarly...
The description "...to be hot-rolled" has been corrected to "or, to hot-roll a slab that is still Ar or has a surface temperature above the transformation point, once placed in a heating furnace or insulating furnace." do. (4) On page 12, line 16 of the same book, the statement "to roll" is corrected to "J to manufacture steel billets by rolling." (5) The statement in the following parts of the specification is corrected as follows. The original description of the original description of the anus is 2 stars. 12
Or steel ingot -Deletion-34 transformation point A
r, transformation point -13 carbonide carbonitride 8 11 M lump or -deletion-l11
5 @ ingot or 1111 or steel ingot 15 8 or steel ingot

Claims (1)

【特許請求の範囲】 造塊もしくは連続鋳造した直後のMnを0.50%未満
含有する鋼片を、直送圧延もしくはホットチャージ圧延
する方法において、該鋼片にはTiをTi/Nが2〜2
5となる量含有せしめ、かつ溶融凝固に引き続く冷却過
程の温度域で、下記式で定義される圧延形状比(m)が
1以上となる圧延条件下で圧延することを特徴とする鋼
片の表面割れを防止した熱間圧延法。 式: 圧延形状比(m)={2√[R(h_1−h_2)]}
/(h_1+h_2) ただし、R:圧延ロール半径 h_1:ロール入側の材料厚さ h_2:ロール出側の材料厚さ
[Claims] A method of directly rolling or hot charge rolling a steel billet containing less than 0.50% Mn immediately after ingot making or continuous casting, in which the steel billet has a Ti/N ratio of 2 to 2. 2
5, and is rolled under rolling conditions such that the rolling shape ratio (m) defined by the following formula is 1 or more in the temperature range of the cooling process following melting and solidification. Hot rolling method that prevents surface cracks. Formula: Rolling shape ratio (m) = {2√[R(h_1-h_2)]}
/(h_1+h_2) However, R: Roll radius h_1: Material thickness on the roll entry side h_2: Material thickness on the roll exit side
JP16021284A 1984-08-01 1984-08-01 Hot rolling method of billet prevented from surface cracking Pending JPS6171101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16021284A JPS6171101A (en) 1984-08-01 1984-08-01 Hot rolling method of billet prevented from surface cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16021284A JPS6171101A (en) 1984-08-01 1984-08-01 Hot rolling method of billet prevented from surface cracking

Publications (1)

Publication Number Publication Date
JPS6171101A true JPS6171101A (en) 1986-04-12

Family

ID=15710169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16021284A Pending JPS6171101A (en) 1984-08-01 1984-08-01 Hot rolling method of billet prevented from surface cracking

Country Status (1)

Country Link
JP (1) JPS6171101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197502A (en) * 1990-11-28 1992-07-17 Nkk Corp Hot rolling method
CN104561485A (en) * 2014-12-31 2015-04-29 南阳汉冶特钢有限公司 Production method for rolling crack-free steel plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577901A (en) * 1978-12-11 1980-06-12 Nippon Steel Corp Preventing method for surface cracking of billet in hot rolling pass
JPS58221603A (en) * 1982-06-19 1983-12-23 Kawasaki Steel Corp Method for preventing cracking in hot rolling of extra- low carbon steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5577901A (en) * 1978-12-11 1980-06-12 Nippon Steel Corp Preventing method for surface cracking of billet in hot rolling pass
JPS58221603A (en) * 1982-06-19 1983-12-23 Kawasaki Steel Corp Method for preventing cracking in hot rolling of extra- low carbon steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197502A (en) * 1990-11-28 1992-07-17 Nkk Corp Hot rolling method
CN104561485A (en) * 2014-12-31 2015-04-29 南阳汉冶特钢有限公司 Production method for rolling crack-free steel plate

Similar Documents

Publication Publication Date Title
CN100523265C (en) Toughness superior weather-resistant steel plate for welding heat affected zone
JP7216002B2 (en) Hot-rolled flat steel product composed of multi-phase steel having bainite microstructure as main component and method for producing such flat steel product
US5858130A (en) Composition and method for producing an alloy steel and a product therefrom for structural applications
CN107475624A (en) Titaniferous think gauge weathering steel and its production method
TW200540284A (en) Steel sheet for can and method for manufacturing the same
US4125416A (en) Method for producing steel strip or steel sheet containing carbide and nitride forming elements
WO2014143702A2 (en) Line pipe steels and process of manufacturing
JPH1192872A (en) Ferritic stainless steel excellent in surface characteristic, and its production
CA2359818A1 (en) Cold rolled steel
US4415376A (en) Formable high strength low alloy steel sheet
JPH0380846B2 (en)
JPS6171101A (en) Hot rolling method of billet prevented from surface cracking
JP3448498B2 (en) Ferritic stainless steel with excellent ridging characteristics and weldability
JPH01100248A (en) Two-phase stainless steel and its production
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties
JP2512650B2 (en) Method for producing Cr-Ni type stainless steel thin plate excellent in material and surface quality
JPS6047886B2 (en) Manufacturing method of high-strength thin steel plate for processing by continuous annealing
JP3417275B2 (en) Martensitic stainless steel seamless steel pipe with excellent hot workability and sulfide stress cracking resistance
JP3518517B2 (en) Manufacturing method of high chromium / ferritic heat resistant steel
JP4190617B2 (en) Method for producing hot rolled sheet of stainless steel
JP3271787B2 (en) How to make stainless steel
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
WO2024096073A1 (en) Hot-rolled coil
JP2004136321A (en) Hot-rolled steel sheet manufacturing method
JPS6171102A (en) Hot rolling method of billet prevented from surface cracking