JPS616864A - Thin-film photo-thyristor - Google Patents

Thin-film photo-thyristor

Info

Publication number
JPS616864A
JPS616864A JP59127903A JP12790384A JPS616864A JP S616864 A JPS616864 A JP S616864A JP 59127903 A JP59127903 A JP 59127903A JP 12790384 A JP12790384 A JP 12790384A JP S616864 A JPS616864 A JP S616864A
Authority
JP
Japan
Prior art keywords
layer
electrode
type
type semiconductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59127903A
Other languages
Japanese (ja)
Inventor
Masaaki Ueda
昌明 上田
Nobuo Nakayama
中山 信男
Hideo Koseki
小関 秀夫
Nobuhiro Dobashi
土橋 伸弘
Yuuko Toyonaga
豊永 由布子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59127903A priority Critical patent/JPS616864A/en
Publication of JPS616864A publication Critical patent/JPS616864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/111Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristor
    • H01L31/1113Devices sensitive to infrared, visible or ultraviolet radiation characterised by at least three potential barriers, e.g. photothyristor the device being a photothyristor

Abstract

PURPOSE:To form a thin-film photo-thyristor having excellent performance as a photosensor by shaping N-P-N-P four layer laminated structure consisting of a II-VI group compound semiconductor. CONSTITUTION:A P type semiconductor layer 4, an N type semiconductor layer 5, a P type semiconductor layer 6 and an N type semiconductor layer 7 are laminated on an electrode 3 on an insulating substrate 1 in succession, and a conductive layer 8 for connecting an electrode 2 pairing with the electrode 3 and an N type semiconductor layer 8 is formed. A II-VI group compound semiconductor, such as CdS, CdTe, CdSe, ZnSe, ZnTe or the like is used as a compound semiconductor material at that time, and Al, Ga, In, Cu, Li, Au, Sb or the like is added as an impurity in order to bring these compounds to an N type or a P type, thus forming a thin-film through a method such as evaporation, sputtering or the like. Al, Cr, Ni or the like is shaped previously onto the substrate 1 through a method such as evaporation as the electrodes 2, 3. Al, Cr, Ni or the like is used similarly as the conductive layer 8. When the conductive layer 8 is arranged so as not to be superposed on the electrode 3, incident beams can be projected from the direction of the uppermost layer 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はフォトセンサアレーなどに用いられる薄膜光サ
イリスタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film optical thyristor used in photosensor arrays and the like.

従来例の構成とその問題点 単結晶シリコンを用いたフォトダイオードやフォトトラ
ンジスタが光センサとして広く用いられている。近年イ
メージセンサとして大面積化が要望されており、一般的
なフォトセンサアレートシても大形のものが必要とされ
ているが、ンリコン単結晶は大きさが制約されており、
また高価でもあるので薄膜型のセンサアレーが開発され
ている。−1この種の材料としてアモルファスシリコン
と共に、1l−VI族化合物半導体が用いられる。■−
■族化合物半導体は容易に薄膜が形成でき、P−型、N
−型の制御が出来る為、薄膜トランジスタアレーを形成
することができる。
Conventional configurations and their problems Photodiodes and phototransistors using single crystal silicon are widely used as optical sensors. In recent years, there has been a demand for larger area image sensors, and even general photosensor arrays are required to be larger, but NRICON single crystals are limited in size.
Moreover, since it is expensive, a thin film type sensor array has been developed. -1 As this type of material, a 1l-VI group compound semiconductor is used together with amorphous silicon. ■−
Group II compound semiconductors can be easily formed into thin films, and include P-type, N-type
- Since the mold can be controlled, thin film transistor arrays can be formed.

然しなから、■−■族化合物半導体薄膜は多結晶である
ため、単結晶シリコンのフ1 トランジスタに比較する
と光電流が小さかったり、漏れ電流が大きすぎるなどし
て、良好な電流−電圧特性を得られないことが多かった
However, since the ■-■ group compound semiconductor thin film is polycrystalline, the photocurrent is small and the leakage current is too large compared to single-crystal silicon F1 transistors, making it difficult to maintain good current-voltage characteristics. I often couldn't get it.

発明の目的 本発明は薄膜フォトトランジスタが有する上記の欠点を
解消し、優れた電流−電圧特性を持つ■−■族化合物半
導体の薄膜光サイリスタを提供しようとするものである
OBJECTS OF THE INVENTION The present invention aims to eliminate the above-mentioned drawbacks of thin film phototransistors and to provide a thin film photothyristor of a ■-■ group compound semiconductor having excellent current-voltage characteristics.

発明の構成 本発明の薄膜サイリスタはCdS 、 CdTe 、 
CdSe・ZnTe 、 Zn5eなどの■−■族化合
物半導体を用い、N−P−N−Pの4層の薄膜を積層し
て形成したものである。捷たこれらをアレー状に形成し
フォトセンサのアレーとして機能するものである。
Structure of the invention The thin film thyristor of the invention is made of CdS, CdTe,
It is formed by laminating four N-P-N-P thin films using a ■-■ group compound semiconductor such as CdSe.ZnTe or Zn5e. These twisted pieces are formed into an array to function as a photo sensor array.

実施例の説明 図面及び実施例を用いて説明する。第1図は本発明によ
る薄膜光サイリスタの構成を示す断面図である。絶縁性
の基板1上の電極3の上にP型半導体層4、N型半導体
層6、P型半導体層6、N型半導体層7を順次積層し、
電極3と対をなす電極2とN型半導体層8を接続するた
め導電層8を形成する。ここで化合物半導体材料として
は、CdS 、 CdTe 、 CdSe 、 Zn5
e 、 ZnTeなどのn−v+族化合物半導体を使用
し、それらをN型あるいは。
DESCRIPTION OF EMBODIMENTS Description will be made using drawings and examples. FIG. 1 is a sectional view showing the structure of a thin film optical thyristor according to the present invention. A P-type semiconductor layer 4, an N-type semiconductor layer 6, a P-type semiconductor layer 6, and an N-type semiconductor layer 7 are sequentially stacked on an electrode 3 on an insulating substrate 1,
A conductive layer 8 is formed to connect the electrode 2 paired with the electrode 3 and the N-type semiconductor layer 8 . Here, as compound semiconductor materials, CdS, CdTe, CdSe, Zn5
e, by using n-v+ group compound semiconductors such as ZnTe, and converting them into N-type or N-type.

P型にするため不純物としてAI 、 Ga、 In、
 Cu。
In order to make it P type, AI, Ga, In,
Cu.

Li 、 Au 、 Sbなどを添加し、蒸着あるいは
スパッタなどの方法で薄膜を形成する。電極2,3はA
l。
Li, Au, Sb, etc. are added and a thin film is formed by a method such as vapor deposition or sputtering. Electrodes 2 and 3 are A
l.

Cr、Niなどをあらかじめ基板1の上に蒸着などの方
法で形成しておく。導電層8も同じ(Al、Cr。
Cr, Ni, etc. are formed on the substrate 1 in advance by a method such as vapor deposition. The conductive layer 8 is also the same (Al, Cr.

N1  などを用いる。第1図に示すように導電層8を
電極3と重ならないように配量すれば、入射光は最上層
7の方向から入射させることができる。
N1 etc. are used. As shown in FIG. 1, if the conductive layer 8 is arranged so as not to overlap the electrode 3, the incident light can be incident from the direction of the uppermost layer 7.

寸だ基板1として透光性のものを用いれば基板側から光
を入射させることもできる。
If a translucent substrate is used as the substrate 1, light can also be incident from the substrate side.

第2図は、本発明による薄膜光サイリスタの他の例を示
す断面図である。第1図との相違点は、4層の半導体層
の第2層にもう一つの電極9を設けたことである。この
電極9をゲート電極として用いることにより光サイリス
タの動作をより安定させることができる。
FIG. 2 is a sectional view showing another example of the thin film optical thyristor according to the present invention. The difference from FIG. 1 is that another electrode 9 is provided in the second layer of the four semiconductor layers. By using this electrode 9 as a gate electrode, the operation of the optical thyristor can be made more stable.

4層の半導体薄膜の積層順序は上記のようにP−N−P
−Nとともに、N−P−N−Pでも全く同等であること
は言うまでもない。光の入射方向に応じて、適切な構成
を選ぶことができる。
The stacking order of the four-layer semiconductor thin film is P-N-P as described above.
It goes without saying that N-P-N-P is completely equivalent to -N. An appropriate configuration can be selected depending on the direction of light incidence.

以上の例において、N型半導体層としてAI、Ga。In the above examples, AI and Ga are used as the N-type semiconductor layer.

In などを不純物として含むCdSを用い、P型半導
体層としてLi、 Sb、 Cu、 Au  などを不
純物として含むCdTeを用いると良好なヘテロ接合を
形成するので、これらを4層積層することによシ良い特
性を持つ光サイリスタを形成することができる。腫だC
dTe 1iA1 、 Inなどの添加によりN型。
By using CdS containing impurities such as In and using CdTe containing impurities such as Li, Sb, Cu, and Au as the P-type semiconductor layer, a good heterojunction is formed. Optical thyristors with good characteristics can be formed. Tumor C
N-type by addition of dTe 1iA1, In, etc.

Cu、Sbなどの添加によりP型の両方の薄膜を容易に
形成できるのでホモ接合からなる4層の光サイリスタを
形成することができる。このことはホモ接合による良好
な特性を期待できるとともに、蒸着、スパッタなどの薄
膜形成の際、連続的な形成を可能にするなどプロセス制
御を容易にし、結果として良い性能を実現することがで
きる。
Since both P-type thin films can be easily formed by adding Cu, Sb, etc., a four-layer optical thyristor consisting of a homojunction can be formed. This means that good characteristics can be expected due to homojunction, and when forming thin films by vapor deposition, sputtering, etc., process control is facilitated by enabling continuous formation, and as a result, good performance can be achieved.

本発明による光サイリスタは薄膜であるので、これをア
レー状に形成することは容易である。第3図に示すよう
に薄膜光サイリスタP1.P2.P3゜・−・、Pn 
をアレー状に形成し、それぞれにスイッチS S S 
  ・、 Sn を直列に接続して全1.2,3゜ 体を並列に接続する。これに電源E1負荷抵抗Rを直列
に接続し、スイッチを順次切シ替えれば、光サイリスタ
のON、OFFに応じた出力信号を出力端子Oから取シ
出すことができる。
Since the optical thyristor according to the present invention is a thin film, it is easy to form it into an array. As shown in FIG. 3, the thin film optical thyristor P1. P2. P3゜・-・、Pn
are formed in an array, each with a switch S S S
・, Sn are connected in series and all 1.2, 3° bodies are connected in parallel. By connecting the power source E1 and the load resistor R in series and sequentially switching the switches, an output signal corresponding to the ON/OFF state of the optical thyristor can be taken out from the output terminal O.

サイリスタの電流−電圧特性は、ダイオードやトランジ
スタと異なり、フォトセンサとして利用した場合、光の
強度に対する直線性はない。しかしON状態での光電流
として極めて大きい電流を取り出すことができると同時
にOFF 状態でのもれ電流が極めて小さい。従って光
信号を1.0の2値として判定するフォトセンサとして
非常に適している。
Unlike diodes and transistors, the current-voltage characteristics of a thyristor are not linear with respect to light intensity when used as a photosensor. However, it is possible to extract an extremely large photocurrent in the ON state, and at the same time, the leakage current in the OFF state is extremely small. Therefore, it is very suitable as a photosensor that determines an optical signal as a binary value of 1.0.

発明の効果 以上の説明で明らかなように、本発明によれば、n−■
族化合物半導体のN−P−N−P44層積構造により、
フォトセンサとして優れた性能をもつ薄膜光サイリスタ
を形成することができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, n-■
Due to the N-P-N-P44 layered structure of group compound semiconductor,
A thin film optical thyristor with excellent performance as a photosensor can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明による薄膜光サイリスタの
構成を示す断面図、第3図は本発明によるアレー状の薄
膜光サイリスタの動作を示す構成図である。 1・・ 基板、2.3・・・・・電極、4,5,6.7
・・ n−vt族化合物半導体層、8・・・・導電層、
9ゲート電極、Pl、P2.・・ Pn・・・光サイリ
スタ、Sl、 S2.−8n−スイッチ、E ・ 電源
、R・ ・負荷抵抗、○・・・出力端子。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第2
図 ρ
1 and 2 are cross-sectional views showing the configuration of a thin film optical thyristor according to the present invention, and FIG. 3 is a configuration diagram showing the operation of an array-shaped thin film optical thyristor according to the present invention. 1... Substrate, 2.3... Electrode, 4, 5, 6.7
... n-vt group compound semiconductor layer, 8... conductive layer,
9 gate electrodes, Pl, P2. ... Pn... optical thyristor, Sl, S2. -8n- switch, E, power supply, R, load resistance, ○...output terminal. Name of agent: Patent attorney Toshio Nakao, 1st person, 2nd person
Figure ρ

Claims (4)

【特許請求の範囲】[Claims] (1)II−VI族化合物半導体のN−P−N−PまたはP
−N−P−N_4層の薄膜積層構造よりなる薄膜光サイ
リスタ。
(1) N-P-N-P or P of II-VI group compound semiconductor
-N-P-N_A thin film optical thyristor consisting of a 4-layer thin film laminated structure.
(2)II−VI族化合物半導体がCdS、CdTeからな
りヘテロ接合を有する特許請求の範囲第1項記載の薄膜
光サイリスタ。
(2) The thin film optical thyristor according to claim 1, wherein the II-VI group compound semiconductor is made of CdS or CdTe and has a heterojunction.
(3)II−VI族化合物半導体がCdTeでありホモ接合
を有する特許請求の範囲第1項記載の薄膜光サイリスタ
(3) The thin film optical thyristor according to claim 1, wherein the II-VI group compound semiconductor is CdTe and has a homojunction.
(4)アレー状に形成されたことを特徴とする特許請求
の範囲第1項から第3項のいずれかに記載の薄膜光サイ
リスタ。
(4) The thin film optical thyristor according to any one of claims 1 to 3, characterized in that it is formed in an array shape.
JP59127903A 1984-06-21 1984-06-21 Thin-film photo-thyristor Pending JPS616864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127903A JPS616864A (en) 1984-06-21 1984-06-21 Thin-film photo-thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127903A JPS616864A (en) 1984-06-21 1984-06-21 Thin-film photo-thyristor

Publications (1)

Publication Number Publication Date
JPS616864A true JPS616864A (en) 1986-01-13

Family

ID=14971510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127903A Pending JPS616864A (en) 1984-06-21 1984-06-21 Thin-film photo-thyristor

Country Status (1)

Country Link
JP (1) JPS616864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099167A1 (en) * 2001-05-31 2002-12-12 Honeywell International Inc. Crystalline compositions, radiation detector elements, and methods of formation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895196A (en) * 1972-03-16 1973-12-06
JPS5759380A (en) * 1980-09-26 1982-04-09 Ricoh Co Ltd Thin film type thyristor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895196A (en) * 1972-03-16 1973-12-06
JPS5759380A (en) * 1980-09-26 1982-04-09 Ricoh Co Ltd Thin film type thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099167A1 (en) * 2001-05-31 2002-12-12 Honeywell International Inc. Crystalline compositions, radiation detector elements, and methods of formation

Similar Documents

Publication Publication Date Title
US6548751B2 (en) Thin film flexible solar cell
US4255211A (en) Multilayer photovoltaic solar cell with semiconductor layer at shorting junction interface
EP0042498A2 (en) Solar cell device
JP2008211217A (en) Thin-film solar battery, and manufacturing method thereof
JPH0322709B2 (en)
US20140076376A1 (en) Solar cell module
JP2018060919A (en) Infrared sensor
JP2005268719A (en) Thin film solar cell
US10886425B2 (en) Tandem photovoltaic cell
US20080157105A1 (en) Laterally configured electrooptical devices
JPH0494174A (en) Compound thin film solar cell and its production
JPS616864A (en) Thin-film photo-thyristor
JP2001085718A (en) Solar battery
JPH02177374A (en) Photoelectric conversion device
JPH0779004A (en) Thin film solar cell
JPH10117005A (en) Solar battery
JPS616878A (en) Thin-film transistor and manufacture thereof
JPS6213066A (en) Photoelectric converter
CN218277720U (en) Photoelectric detector based on perovskite nanowire radial junction
JPS62296569A (en) Tandem-structure solar battery
JPH0472774A (en) Solar cell
JPH03263880A (en) Solar cell and manufacture thereof
KR20170122380A (en) Photosensor of functionally multilayered structure having chalcogen and oxide thin film
JPH0732260B2 (en) Photodetector having superlattice structure of amorphous semiconductor
JPH0472773A (en) Multilayer junction type solar cell