JPS6167922A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPS6167922A
JPS6167922A JP19081784A JP19081784A JPS6167922A JP S6167922 A JPS6167922 A JP S6167922A JP 19081784 A JP19081784 A JP 19081784A JP 19081784 A JP19081784 A JP 19081784A JP S6167922 A JPS6167922 A JP S6167922A
Authority
JP
Japan
Prior art keywords
upper electrode
plasma treating
insulator
jetting ports
jetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19081784A
Other languages
Japanese (ja)
Other versions
JPH0520898B2 (en
Inventor
Kenji Koyama
小山 堅二
Kanetake Takasaki
高崎 金剛
Atsuhiro Tsukune
敦弘 筑根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19081784A priority Critical patent/JPS6167922A/en
Publication of JPS6167922A publication Critical patent/JPS6167922A/en
Publication of JPH0520898B2 publication Critical patent/JPH0520898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable to feed high power to a plasma treating device and to contrive to shorten the plasma treating process by a method wherein an insulator is molded by burying in the jetting ports of the upper electrode. CONSTITUTION:An insulator 10 is buried in the jetting ports 7 of an upper electrode 9. This insulator, which is made of ceramic, such as alumina, is formed into a conical form, is fitted in the jetting ports 7 of the upper electrode 9 and can be used for coping with the wind pressure of jetting gas and a difference between the thermal expansion coefficients of the parts of the jetting ports. By constituting the jetting ports 7 in such a way, it can be dissolved for an electric field to concentrate on the parts of the jetting ports 7 by an insulation effect. As a result, high power can be fed to the plasma treating device and the plasma treating process can be shortened.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放電電流密度の均等化を実現したプラズマ処理
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plasma processing apparatus that achieves equalization of discharge current density.

トランジスタ、 IC,LS’1などの半導体素子はシ
リコン(Sl)で代表される単体半導体或いはガリウム
砒素(Ga As ) 、  インジウム燐(Inp)
のまうな化合物半導体からなる単結晶基板を用いて形成
されている。
Semiconductor elements such as transistors, ICs, and LS'1 are made of simple semiconductors such as silicon (Sl), gallium arsenide (GaAs), and indium phosphide (Inp).
It is formed using a single crystal substrate made of a stable compound semiconductor.

ここで単結晶基板は単結晶成長装置により育成された高
純度の結晶ロッドを約500μmの厚さに切り出し、こ
れに研磨や清浄化などの表面処理を施したものであり、
これに薄膜形成技術とホトエツチングとからなる写真食
刻技術(ホトリソグラフィ)を用いて多数の半導体素子
を一括して形成している。
Here, the single-crystal substrate is a high-purity crystal rod grown using a single-crystal growth device, cut into a thickness of about 500 μm, and subjected to surface treatments such as polishing and cleaning.
A large number of semiconductor elements are formed all at once using a photolithography technique consisting of a thin film formation technique and photoetching.

現在最も量産化が進んでいる半導体材料はSiであるが
、この単結晶は育成技術が進んで6インチ径のものまで
実用化されている。
The semiconductor material that is currently being mass-produced the most is Si, and the growth technology for this single crystal has progressed to the point where it has been put into practical use up to a diameter of 6 inches.

一方IC,LSIなど半導体素子は大きなものでも10
n角であり、そのため一枚の半導体基板(以下略してウ
ェハ)から数多くの素子形成が可能で、コストダウンを
実現するため、ウェハの大形化は非常な努力で進められ
ている。
On the other hand, even large semiconductor devices such as ICs and LSIs have a
Because it is n-sided, it is possible to form a large number of elements from a single semiconductor substrate (hereinafter referred to as a wafer), and great efforts are being made to increase the size of wafers in order to reduce costs.

さて、かかるウェハに対し化学気相成長法(略称CVD
 ) 、真空蒸着法、スパッタ法などにより導体層や絶
縁層を形成し、これにホトエツチングを施して微細パタ
ーンの形成が行われζル)るが、この薄膜形成やエツチ
ングはウェハの全面に互って均等に行われていることが
素子の信頼性確保および収率向上のために必要である。
Now, such a wafer is processed by chemical vapor deposition (abbreviated as CVD).
), a conductive layer or an insulating layer is formed using a vacuum evaporation method, a sputtering method, etc., and then photoetched to form a fine pattern. It is necessary to ensure the reliability of the device and improve the yield that the process is carried out evenly.

〔従来の技術〕[Conventional technology]

導電層、絶縁層の形成やエツチング処理などにプラズマ
化学反応は広く使用されている。
Plasma chemical reactions are widely used for forming conductive layers, insulating layers, and etching.

第2図はプラズマ化学反応を行うプラズマ処理装置の構
成を示すもので、反応室1の上部には容器と絶縁されて
上部電極2があり、これに対向してウェハ3を載置した
ステージ4があり、反応容器5を通して接地されている
FIG. 2 shows the configuration of a plasma processing apparatus that performs a plasma chemical reaction. In the upper part of a reaction chamber 1, there is an upper electrode 2 which is insulated from the container. Opposed to this is a stage 4 on which a wafer 3 is placed. and is grounded through the reaction vessel 5.

またステージ4の下にはヒータ6が設けられ、ウェハ3
が加熱できるよう構成されている。
Further, a heater 6 is provided below the stage 4, and the wafer 3
It is constructed so that it can be heated.

ここで上部電極2は反応ガスの供給口を兼ね、下側に多
数の噴出ロアを備えてジャワ状に形成されている。
Here, the upper electrode 2 also serves as a supply port for the reactant gas, and is formed in a Java-like shape with a large number of ejection lowers on the lower side.

ここでSiからなるウェハ3の上に窒化珪素(Si N
)からなる絶縁膜を形成する場合は上部電(働2の噴出
ロアから反応ガスとしてモノシラン(SiHa)とアン
モニア(NH3)を窒素(N2)或いはアルゴン(Ar
 )ガスをキャリアとして反応室■に導入し、排出口8
から排気して室内の真空度を0.2〜1Torrに保と
共にヒータ6に通電してウェハ3の温度を300〜40
0 ’Cに保っておく。
Here, silicon nitride (Si N
), monosilane (SiHa) and ammonia (NH3) are mixed with nitrogen (N2) or argon (Ar
) Gas is introduced into the reaction chamber ■ as a carrier, and the gas is introduced into the reaction chamber ■ through the exhaust port 8.
The temperature of the wafer 3 is raised to 300 to 40 Torr by evacuating the room and maintaining the vacuum level in the room at 0.2 to 1 Torr.
Keep it at 0'C.

かかる状態でアルミ製の上部電極2とステージ4との間
に数百KHzの高周波電界を印加して放電を行うとウェ
ハ3の表面には反応生成物である5iN(正確にはSi
、Nア)の成長が進行し、処i時間を調節することによ
り所定の厚さの絶縁層を作ることができる。
In this state, when a high frequency electric field of several hundred KHz is applied between the aluminum upper electrode 2 and the stage 4 to generate a discharge, 5iN (to be precise, Si), which is a reaction product, is deposited on the surface of the wafer 3.
, NA) progresses, and an insulating layer of a predetermined thickness can be formed by adjusting the treatment time.

また絶縁層として二酸化珪素(Si02)層や燐珪酸ガ
ラス(略称PSG )層を作る場合も同様であって前者
の場合は反応ガスとしてSi Haと亜酸化窒素(N2
0)をまた後者の場合はSi Haとホスフィン(PH
3)との混合ガスを使用することにより形成することが
できる。
The same is true when forming a silicon dioxide (Si02) layer or a phosphosilicate glass (PSG) layer as an insulating layer; in the former case, SiHa and nitrous oxide (N2) are used as reactive gases.
0) and in the latter case, Si Ha and phosphine (PH
It can be formed by using a mixed gas with 3).

またこれらの絶縁層あるいは導体層をエツチングして微
細パターンを形成するには、ごらの層の上にホトレジス
トを被覆し、投影露光或いは接着露光を施して部分的に
感光せしめ、ホトレジストとしてポジ形を用いる場合は
感光部が現像液に可溶となるのを利用し、またネガ形を
用いる場合は感光部が不溶となるのを利用してレジスト
膜に窓開けされた微細パターンを形成し、反応ガスとし
て四弗化炭素(CF4通称フレオン)と酸素(02)と
の混合ガスを使用し、13.56 MHz  の高周波
電界を加えてプラズマ放電を行わせ、放電により発生す
るFラジカル(F*)と絶縁層およびレジスト層と反応
させ、レジスト層のエツチング速度が小さいのを利用し
て窓開けした絶縁層或いは導体層を選択的にエツチング
して微細パターンが形成される。
In addition, to form fine patterns by etching these insulating or conductive layers, a photoresist is coated on the layer, and a portion is exposed by projection exposure or adhesive exposure, and a positive photoresist is formed. When using a negative type, the photosensitive area is soluble in the developer, and when using a negative type, the photosensitive area is insoluble to form a fine pattern with openings in the resist film. A mixed gas of carbon tetrafluoride (CF4, commonly known as freon) and oxygen (02) is used as a reaction gas, and a high frequency electric field of 13.56 MHz is applied to generate a plasma discharge. ) is reacted with the insulating layer and the resist layer, and by taking advantage of the low etching rate of the resist layer, the insulating layer or conductive layer with the openings is selectively etched to form a fine pattern.

ごのように第2図に示すような装置を使用してプラスマ
CVD或いはプラズマエツチングが行われているがウェ
ハ3の全域に互って均一に成長或いはエツチングを行う
ことは必要であるが、これはウェハの大形化と共に困難
となってきた。
As shown in FIG. 2, plasma CVD or plasma etching is performed using an apparatus as shown in FIG. This has become more difficult as wafers become larger.

ずなわら第3図は第2図の上部電極2の部分の拡大図で
あって、反応ガスの噴出が行われる複数個の噴出ロアの
部分が放電に当たって電流密度が大きくなるため、プラ
ズマCvOを行う場合は噴出ロアの周囲に反応生成物が
特に析出し、これが剥離してガス流により落下し四散し
てウェハ3の上に落ちるので不良発生が起こり易く、ま
たプラズマエツチングの場合は噴出ロアの対向部のウェ
ハ部分が特に侵され易いと云う現象を生ずる。
FIG. 3 is an enlarged view of the upper electrode 2 in FIG. 2, and shows that the parts of the plurality of ejection lowers where the reaction gas is ejected hit the discharge and the current density increases, so the plasma CvO is When etching is performed, reaction products are particularly deposited around the ejection lower, and this is likely to peel off and fall due to the gas flow, scattering and falling onto the wafer 3, resulting in defects. A phenomenon occurs in which the opposing wafer portion is particularly susceptible to attack.

そのためプラズマCvD或いはエツチング処理に際して
電力を下げ、このように噴出ロアの周辺部での電界集中
(異常放電)が顕著にならない範囲で行う必要があった
Therefore, it is necessary to lower the power during the plasma CvD or etching process so that electric field concentration (abnormal discharge) at the periphery of the ejection lower does not become noticeable.

〔発明が解決しようとする問題点3 以上説明したようにプラズマCvD或いはエツチングを
行う場合に上部電極においてガスの噴出が行われる噴出
ロアの周辺部に電界が集中し、そのためエツチングにお
いては噴出ロアの対向部が強くエツチングされ、またC
VDでは噴出部に特に析出物が堆積し、剥離して塵埃と
なりウェハ3を汚染し不良化することが問題である。
[Problem to be Solved by the Invention 3] As explained above, when plasma CVD or etching is performed, the electric field is concentrated around the ejection lower where gas is ejected at the upper electrode. The opposing part is strongly etched, and C
In VD, there is a problem in that precipitates in particular accumulate at the ejection part and peel off to become dust, which contaminates the wafer 3 and makes it defective.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点は被処理基板を載置したステージに対向し
て反応室の上方に設けられ複数個の反応ガス噴出口を備
えて構成される上部電極が該ガスIIF出口に絶縁物を
嵌め込んで形成されていることを’L?敗とづるプラズ
マ処理装置により解決することかできる。
The above problem is caused by the fact that the upper electrode, which is provided above the reaction chamber facing the stage on which the substrate to be processed is mounted and is equipped with a plurality of reaction gas outlets, is fitted with an insulator at the outlet of the gas IIF. 'L? This problem can be solved by using a plasma processing equipment.

〔作用〕[Effect]

本発明はプラズマCVD或いはエツチングに当たって上
部電極2の噴出ロアの付近に電界が集中する1i(囚は
機械加工により形成された噴出ロアの部分に突起部があ
り、所謂る縁端効果により電界が集中するためであるか
ら、この部分を絶縁物で被覆することにより縁端効果を
無くし、これにより電界の集中を解消するものである。
In the present invention, the electric field is concentrated near the ejection lower part of the upper electrode 2 during plasma CVD or etching. Therefore, by covering this portion with an insulating material, the edge effect is eliminated, thereby eliminating the concentration of the electric field.

〔実施例〕〔Example〕

第1図(△)は本発明を実施した上部電極9の断面図で
あって噴出ロアには絶縁物10が埋め込み成形されてい
る。
FIG. 1 (Δ) is a sectional view of an upper electrode 9 according to the present invention, in which an insulator 10 is embedded and molded in the ejection lower part.

同図(B)はこの噴出ロアと絶縁物10の部分の拡大図
で絶縁物はアルミナなどのセラミックで形成しておくと
耐熱性と耐薬品性が優れているため都合が良い、またエ
ツチングのみを行う場合はテフロンのような合成樹脂を
用いてもよい。
Figure (B) is an enlarged view of the ejection lower and the insulator 10. It is convenient to form the insulator with ceramic such as alumina because it has excellent heat resistance and chemical resistance, and it is convenient to make the insulator with ceramic such as alumina. In this case, a synthetic resin such as Teflon may be used.

なお同図(B)に示すように絶縁物を播鉢状に形成し、
上部電極9の噴出ロアに[!χ合させて置けば噴出ガス
の風圧や熱膨張係数の相違などにより離脱するのを無く
することができる。
In addition, as shown in the same figure (B), the insulator is formed in a pot shape,
[! If they are placed with the same χ, it is possible to prevent them from separating due to differences in the wind pressure or thermal expansion coefficient of the ejected gas.

このように噴出ロアの周囲に絶縁物の埋め込みを行うと
、この部分の電界の集中をなくすることができ、従って
高周波電力の増加が可能となる。
By embedding an insulating material around the ejection lower in this way, it is possible to eliminate the concentration of electric field in this part, and therefore it is possible to increase high frequency power.

具体的には今まで電力密度は0.2W/cnlが使用限
界であったが本発明の実施により0.4W/cnlの使
用が可能となった。
Specifically, the power density used to be 0.2 W/cnl was the limit of use, but by implementing the present invention, it has become possible to use 0.4 W/cnl.

〔発明の効果〕〔Effect of the invention〕

以上記したように本発明の実施によりプラズマ放電に当
たって上部電極の反応ガス噴出口に電界が集中する欠点
が無くなり、そのため従来と較べて高電力の供給が可能
となり、工程の短縮が可能となる。
As described above, the implementation of the present invention eliminates the drawback that the electric field concentrates on the reactant gas outlet of the upper electrode during plasma discharge, and therefore it becomes possible to supply higher power than in the past, and shorten the process.

図、同図(B)は噴出口部分の拡大断面図、第2図はプ
ラズマ処理装置の断面構成図、第3図は上部電極の断面
図、 である。
FIG. 2B is an enlarged cross-sectional view of the jet nozzle portion, FIG. 2 is a cross-sectional configuration diagram of the plasma processing apparatus, and FIG. 3 is a cross-sectional view of the upper electrode.

図において 1は反応室、      2,9は上部電極、3はウェ
ハ、     4はステージ、7は噴出口、     
10は絶縁物、である。
In the figure, 1 is a reaction chamber, 2 and 9 are upper electrodes, 3 is a wafer, 4 is a stage, 7 is a spout,
10 is an insulator.

¥−1聞 ′I#2TE¥-1 listen 'I#2TE

Claims (1)

【特許請求の範囲】[Claims] 被処理基板を載置したステージに対向して反応室の上方
に設けられ複数個の反応ガス噴出口を備えて構成される
上部電極が該ガス噴出口に絶縁物を嵌め込んで形成され
ていることを特徴とするプラズマ処理装置。
An upper electrode is provided above the reaction chamber facing the stage on which the substrate to be processed is mounted, and includes a plurality of reaction gas outlets, and is formed by fitting an insulator into the gas outlets. A plasma processing apparatus characterized by the following.
JP19081784A 1984-09-12 1984-09-12 Plasma treating device Granted JPS6167922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19081784A JPS6167922A (en) 1984-09-12 1984-09-12 Plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19081784A JPS6167922A (en) 1984-09-12 1984-09-12 Plasma treating device

Publications (2)

Publication Number Publication Date
JPS6167922A true JPS6167922A (en) 1986-04-08
JPH0520898B2 JPH0520898B2 (en) 1993-03-22

Family

ID=16264244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19081784A Granted JPS6167922A (en) 1984-09-12 1984-09-12 Plasma treating device

Country Status (1)

Country Link
JP (1) JPS6167922A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279784A (en) * 1988-05-02 1989-11-10 Tokyo Electron Ltd Etching device
JPH0245631U (en) * 1988-09-24 1990-03-29
US4954201A (en) * 1988-10-15 1990-09-04 Leybold Aktiengesellschaft Apparatus for etching substrates with a luminous discharge
US5324411A (en) * 1991-09-20 1994-06-28 Toshiba Ceramics Co., Ltd. Electrode plate for plasma etching
US5643394A (en) * 1994-09-16 1997-07-01 Applied Materials, Inc. Gas injection slit nozzle for a plasma process reactor
WO1998046808A1 (en) * 1997-04-11 1998-10-22 Tokyo Electron Limited Processor
WO2005052980A1 (en) * 2003-11-13 2005-06-09 Oxford Instruments Plasma Technology Limited Gas port assembly
JP2013251367A (en) * 2012-05-31 2013-12-12 Shimadzu Corp Plasma cvd deposition apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279784A (en) * 1988-05-02 1989-11-10 Tokyo Electron Ltd Etching device
JPH0245631U (en) * 1988-09-24 1990-03-29
JPH0713217Y2 (en) * 1988-09-24 1995-03-29 株式会社リコー Lower electrode of semiconductor manufacturing equipment
US4954201A (en) * 1988-10-15 1990-09-04 Leybold Aktiengesellschaft Apparatus for etching substrates with a luminous discharge
US5324411A (en) * 1991-09-20 1994-06-28 Toshiba Ceramics Co., Ltd. Electrode plate for plasma etching
US5643394A (en) * 1994-09-16 1997-07-01 Applied Materials, Inc. Gas injection slit nozzle for a plasma process reactor
WO1998046808A1 (en) * 1997-04-11 1998-10-22 Tokyo Electron Limited Processor
US6334983B1 (en) 1997-04-11 2002-01-01 Tokyo Electron Limited Processing system
USRE39939E1 (en) 1997-04-11 2007-12-18 Tokyo Electron Limited Processing system
USRE39969E1 (en) 1997-04-11 2008-01-01 Tokyo Electron Limited Processing system
USRE40046E1 (en) 1997-04-11 2008-02-12 Tokyo Electron Limited Processing system
WO2005052980A1 (en) * 2003-11-13 2005-06-09 Oxford Instruments Plasma Technology Limited Gas port assembly
US7651552B2 (en) 2003-11-13 2010-01-26 Oxford Instruments Plasma Technology Limited Gas port assembly
JP2013251367A (en) * 2012-05-31 2013-12-12 Shimadzu Corp Plasma cvd deposition apparatus

Also Published As

Publication number Publication date
JPH0520898B2 (en) 1993-03-22

Similar Documents

Publication Publication Date Title
JP3242166B2 (en) Etching equipment
KR20070037507A (en) Heated gas box for pecvd applications
KR100727205B1 (en) Plasma deposition method and system
JPH0213810B2 (en)
JPS6167922A (en) Plasma treating device
JP3257356B2 (en) Vapor phase growth apparatus, vapor phase growth method, and cleaning method for vapor phase growth apparatus
JPH0766186A (en) Anisotropic depositing method of dielectric
JP2000269201A (en) Method and apparatus for plasma treatment
JP2003059918A (en) Method and apparatus for plasma treatment and manufacturing method for semiconductor device
JPH11330047A (en) Etching apparatus and method thereof
JPH03237715A (en) Etching method
JPH11317396A (en) Etching system
JP3301152B2 (en) Plasma processing equipment
JPH05109702A (en) Manufacture of semiconductor device
JP2630089B2 (en) Microwave plasma processing equipment
JP3261795B2 (en) Plasma processing equipment
JPS6159734A (en) Etching process for semiconductor substrate
JPH0491432A (en) Magnetron rie apparatus
JPH09209119A (en) Thin film forming and working device and thin film forming and working method
JPS6134933A (en) Plasma vapor growing device
JPH0372080A (en) Plasma vapor phase growth device
JPH0243731A (en) Vapor growth device for semiconductor
JPS62163326A (en) Dry etching device
JPH06338470A (en) Plasma processing apparatus
JPH0669032B2 (en) Plasma processing device